
Sipwise GmbH

The Sipwise C5 PRO Handbook mr6.5.11

Sipwise GmbH
<support@sipwise.com>

The Sipwise C5 PRO Handbook mr6.5.11 ii

Contents

1 Introduction 1

1.1 About this Handbook . 1

1.2 What is the Sipwise C5 PRO? . 1

1.3 The Advantages of the Sipwise C5 PRO . 1

1.4 Who is the Sipwise C5 PRO for? . 2

1.5 Getting Help . 2

1.5.1 Phone Support . 2

1.5.2 Ticket System . 2

2 Architecture 3

2.1 SIP Signaling and Media Relay . 4

2.1.1 SIP Load-Balancer . 4

2.1.2 SIP Proxy/Registrar . 5

2.1.3 SIP Back-to-Back User-Agent (B2BUA) . 6

2.1.4 SIP App-Server . 6

2.1.5 Media Relay . 7

2.2 MySQL Database . 8

2.3 Redis Database . 8

2.4 High Availability and Fail-Over . 8

2.4.1 Overview . 8

2.4.2 Core Concepts and Configuration . 9

2.4.3 Administration . 9

3 Platform Deployment 10

3.1 Hardware Specifications . 10

3.1.1 Dimensions and Weight . 10

3.1.2 Front View . 11

3.1.3 Rear View . 12

ii

The Sipwise C5 PRO Handbook mr6.5.11 iii

3.1.4 Power Supply Units (PSU) . 13

3.2 Installation Prerequisites . 14

3.3 Rack-Mount Installation . 15

3.4 Power Supply Cabling . 16

3.5 Network Cabling . 17

3.5.1 Internal Communication . 17

3.5.2 External Communication . 18

4 VoIP Service Administration Concepts 19

4.1 Contacts . 19

4.2 Resellers . 19

4.3 SIP Domain . 20

4.3.1 Additional SIP Domains . 20

4.4 Contracts . 21

4.5 Customers . 21

4.5.1 Residential and SOHO customers . 21

4.5.2 Business customers with the Cloud PBX service . 22

4.5.3 SIP Trunking . 23

4.5.4 Mobile subscribers . 23

4.5.5 Pre-paid subscribers who use your calling cards . 23

4.6 Subscribers . 23

4.7 SIP Peerings . 24

5 VoIP Service Configuration Scenario 26

5.1 Creating a SIP Domain . 26

5.2 Creating a Customer . 27

5.3 Creating a Subscriber . 32

5.4 Domain Preferences . 36

5.5 Subscriber Preferences . 39

5.6 Creating Peerings . 40

iii

The Sipwise C5 PRO Handbook mr6.5.11 iv

5.6.1 Creating Peering Groups . 40

5.6.2 Creating Peering Servers . 42

5.6.3 Authenticating and Registering against Peering Servers . 53

5.7 Configuring Rewrite Rule Sets . 55

5.7.1 Inbound Rewrite Rules for Caller . 58

5.7.2 Inbound Rewrite Rules for Callee . 60

5.7.3 Outbound Rewrite Rules for Caller . 61

5.7.4 Outbound Rewrite Rules for Callee . 62

5.7.5 Emergency Number Handling . 62

5.7.6 Assigning Rewrite Rule Sets to Domains and Subscribers . 64

5.7.7 Creating Dialplans for Peering Servers . 65

5.7.8 Call Routing Verification . 65

6 Features 71

6.1 Managing System Administrators . 71

6.1.1 Configuring Administrators . 71

6.1.2 Access Rights of Administrators . 72

6.2 Access Control for SIP Calls . 75

6.2.1 Block Lists . 75

6.2.2 NCOS (Network Class of Service) Levels . 77

6.2.3 IP Address Restriction . 84

6.3 Call Forwarding and Call Hunting . 85

6.3.1 Call Forward Types . 85

6.3.2 Setting a simple Call Forward . 85

6.3.3 Call Forward Destinations . 86

6.3.4 Advanced Call Hunting . 87

6.4 Call Forking by Q value . 95

6.4.1 How it works . 95

6.4.2 Additional Information . 96

iv

The Sipwise C5 PRO Handbook mr6.5.11 v

6.5 Local Number Porting . 96

6.5.1 Local LNP Database . 96

6.5.2 External LNP via LNP API . 100

6.6 Emergency Mapping . 105

6.6.1 Emergency Mapping Description . 105

6.6.2 Emergency Mapping Configuration . 106

6.7 Emergency Priorization . 112

6.7.1 Call-Flow with Emergency Mode Enabled . 113

6.7.2 Configuration of Emergency Mode . 116

6.7.3 Activating Emergency Mode . 117

6.8 Header Manipulation . 118

6.8.1 Header Filtering . 118

6.8.2 Codec Filtering . 119

6.8.3 Enable History and Diversion Headers . 119

6.8.4 User Agent Filtering . 120

6.9 SIP Trunking with SIPconnect . 121

6.9.1 User provisioning . 121

6.9.2 Inbound calls routing . 121

6.9.3 Number manipulations . 121

6.9.4 Registration . 124

6.10 Trusted Subscribers . 125

6.11 Peer Probing . 125

6.11.1 Introduction to Peer Probing Feature . 125

6.11.2 Configuration of Peer Probing . 126

6.11.3 Monitoring of Peer Probing . 128

6.11.4 Further Details for Advanced Users . 128

6.12 Fax Server . 129

6.12.1 Fax2Mail Architecture . 129

v

The Sipwise C5 PRO Handbook mr6.5.11 vi

6.12.2 Sendfax and Mail2Fax Architecture . 130

6.13 Voicemail System . 131

6.13.1 Accessing the IVR Menu . 131

6.13.2 IVR Menu Structure . 132

6.13.3 Type Of Messages . 133

6.13.4 Folders . 134

6.13.5 Voicemail Languages Configuration . 134

6.13.6 Flowcharts with Voice Prompts . 135

6.14 Configuring Subscriber IVR Language . 140

6.15 Sound Sets . 140

6.15.1 Configuring Early Reject Sound Sets . 141

6.16 Conference System . 146

6.16.1 Configuring Call Forward to Conference . 147

6.16.2 Configuring Conference Sound Sets . 147

6.16.3 Joining the Conference . 149

6.16.4 Conference Flowchart with Voice Prompts . 149

6.17 Malicious Call Identification (MCID) . 151

6.17.1 Setup . 151

6.17.2 Usage . 152

6.17.3 Advanced configuration . 152

6.18 Subscriber Profiles . 152

6.18.1 Subscriber Profile Sets . 152

6.19 SIP Loop Detection . 155

6.20 Call-Through Application . 155

6.20.1 Administrative Configuration . 156

6.20.2 Call Flow . 158

6.21 Calling Card Application . 159

6.21.1 Administrative Configuration . 160

vi

The Sipwise C5 PRO Handbook mr6.5.11 vii

6.21.2 Call Flow . 162

6.22 Invoices and Invoice Templates . 163

6.22.1 Invoices Management . 163

6.22.2 Invoice Management via REST API . 165

6.22.3 Invoice Templates . 170

6.23 Email Reports and Notifications . 179

6.23.1 Email events . 179

6.23.2 Initial template values and template variables . 179

6.23.3 Password reset email template . 179

6.23.4 New subscriber notification email template . 180

6.23.5 Invoice email template . 180

6.23.6 Email templates management . 182

6.24 The Vertical Service Code Interface . 184

6.24.1 Vertical Service Codes for PBX customers . 185

6.24.2 Configuration of Vertical Service Codes . 185

6.24.3 Voice Prompts for Vertical Service Code Configuration . 185

6.25 Handling WebRTC Clients . 186

6.26 XMPP and Instant Messaging . 187

6.27 Call Recording . 187

6.27.1 Introduction to Call Recording Function . 187

6.27.2 Information on Files and Directories . 188

6.27.3 Configuration . 189

6.27.4 REST API . 193

6.28 Media Transcoding . 194

6.28.1 Overview . 194

6.28.2 Supported Codecs . 194

6.28.3 Configuration . 195

6.29 SMS (Short Message Service) on Sipwise C5 . 197

vii

The Sipwise C5 PRO Handbook mr6.5.11 viii

6.29.1 Configuration . 199

6.29.2 Monitoring, troubleshooting . 200

6.29.3 REST API . 207

7 Customer Self-Care Interface and Menus 208

7.1 The Customer Self-Care Web Interface . 208

7.1.1 Login Procedure . 208

7.1.2 Site Customization . 208

7.2 The Voicemail Menu . 214

8 Billing Configuration 215

8.1 Billing Profiles . 215

8.1.1 Creating Billing Profiles . 215

8.1.2 Creating Billing Fees . 217

8.1.3 Creating Off-Peak Times . 220

8.2 Peak Time Call Rating Modes . 222

8.2.1 Introduction to Call Rating Modes . 222

8.2.2 Typical Use Cases for Call Rating Modes . 223

8.2.3 Configuration of Call Rating Modes . 223

8.3 Prepaid Accounting . 223

8.4 Fraud Detection and Locking . 224

8.4.1 Fraud Lock Levels . 224

8.5 Billing Customizations . 225

8.5.1 Billing Networks . 226

8.5.2 Profile Mapping Schedule . 227

8.5.3 Profile Packages . 231

8.5.4 Vouchers . 242

8.5.5 Top-up . 245

8.5.6 Balance Overviews . 246

8.5.7 Usage Examples . 250

viii

The Sipwise C5 PRO Handbook mr6.5.11 ix

8.6 Notes on Billing and Call Rating . 252

8.7 Billing Data Export . 253

8.7.1 Glossary of Terms . 253

8.7.2 File Name Format . 254

8.7.3 File Format . 254

8.7.4 File Transfer . 267

9 Provisioning REST API Interface 268

9.1 API Workflows for Customer and Subscriber Management . 268

9.2 API performance considerations . 273

10 Configuration Framework 274

10.1 Configuration templates . 274

10.1.1 .tt2 and .customtt.tt2 files . 274

10.1.2 .prebuild and .postbuild files . 275

10.1.3 .services files . 276

10.2 config.yml, constants.yml and network.yml files . 277

10.3 ngcpcfg and its command line options . 277

10.3.1 apply . 277

10.3.2 build . 277

10.3.3 commit . 277

10.3.4 decrypt . 278

10.3.5 diff . 278

10.3.6 encrypt . 278

10.3.7 help . 278

10.3.8 initialise . 278

10.3.9 pull . 278

10.3.10push . 278

10.3.11services . 278

10.3.12status . 279

ix

The Sipwise C5 PRO Handbook mr6.5.11 x

11 Network Configuration 280

11.1 General Structure . 280

11.1.1 Available Host Options . 281

11.1.2 Interface Parameters . 282

11.2 Advanced Network Configuration . 283

11.2.1 Extra SIP Sockets . 283

11.2.2 Extra SIP and RTP Sockets . 284

11.2.3 Alternative RTP Interface Selection Using ICE . 285

11.2.4 Extended RTP Port Range Using Multiple Interfaces . 286

12 Licenses 288

12.1 What is Subject to Licensing? . 288

12.2 How Licensing Works . 288

12.3 How to Configure Licenses . 289

12.4 How to Monitor License Client . 289

13 Software Upgrade 290

13.1 Release Notes . 290

13.2 Overview . 291

13.3 Planning a software upgrade . 291

13.4 Preparing the software upgrade . 292

13.4.1 Log into the C5 standby node . 292

13.4.2 Check the overall system status . 292

13.4.3 Check access to license server and license validity . 293

13.4.4 Evaluate and update custom modifications . 294

13.4.5 Check system integrity . 294

13.4.6 Check the configuration framework status . 295

13.5 Upgrade from previous LTS release mr5.5.* to mr6.5.11 . 295

13.6 Upgrading Sipwise C5 . 295

13.6.1 License check . 296

x

The Sipwise C5 PRO Handbook mr6.5.11 xi

13.6.2 Preparing for maintenance mode . 296

13.6.3 Switch to the new repositories . 297

13.6.4 Download the new packages into the approx cache (on standby node only) 297

13.6.5 Install the package used to upgrade C5 . 297

13.6.6 ngcp-upgrade options . 298

13.6.7 Upgrade the first PRO node . 298

13.6.8 The customtt files handling (if necessary) . 299

13.6.9 Promote the upgraded standby node to active . 299

13.6.10Upgrade the second PRO node . 299

13.7 Post-upgrade tasks . 300

13.7.1 Migrate location entries from Mysql to Redis DB . 300

13.7.2 Disabling maintenance mode . 301

13.7.3 Post-upgrade checks . 301

13.8 Applying the Latest Hotfixes . 301

13.8.1 Update the approx cache on the standby node . 302

13.8.2 Apply hotfixes on the standby node . 302

13.8.3 Recheck or update the custom configuration tempates . 302

13.8.4 Promote the standby node to active . 302

13.8.5 Apply hotfixes on the second node . 302

14 Backup, Recovery and Database Maintenance 303

14.1 Sipwise C5 Backup . 303

14.1.1 What data to back up . 303

14.1.2 The built-in backup solution . 303

14.2 Recovery . 304

14.3 Reset Database . 304

14.4 Synchronize database . 304

14.5 Accounting Data (CDR) Cleanup . 306

14.5.1 Cleanuptools Configuration . 306

xi

The Sipwise C5 PRO Handbook mr6.5.11 xii

14.5.2 Accounting Database Cleanup . 307

14.5.3 Exported CDR Cleanup . 310

15 Platform Security, Performance and Troubleshooting 311

15.1 Sipwise SSH access to Sipwise C5 . 311

15.2 Firewalling . 311

15.2.1 Firewall framework . 311

15.2.2 Sipwise C5 firewall configuration . 313

15.2.3 IPv4 System rules . 313

15.2.4 Custom rules . 317

15.2.5 Example firewall configuration section . 317

15.3 Password management . 318

15.3.1 The "root" account . 318

15.3.2 The "administrator" account . 318

15.3.3 The "cdrexport" account . 319

15.3.4 The MySQL "root" user . 319

15.3.5 The "ngcpsoap" account . 319

15.4 SSL certificates. 319

15.5 Securing your Sipwise C5 against SIP attacks . 320

15.5.1 Denial of Service . 320

15.5.2 Bruteforcing SIP credentials . 321

15.6 Topology Hiding . 321

15.6.1 Introduction to Topology Hiding on NGCP . 321

15.6.2 Configuration of Topology Hiding . 322

15.6.3 Considerations for Topology Hiding . 322

15.7 System Requirements and Performance . 323

15.8 Troubleshooting . 325

15.8.1 Collecting call information from logs . 328

15.8.2 Collecting SIP traces . 329

xii

The Sipwise C5 PRO Handbook mr6.5.11 xiii

16 Monitoring and Alerting 331

16.1 Internal Monitoring . 331

16.1.1 Service monitoring . 331

16.1.2 System monitoring via Telegraf . 331

16.1.3 Sipwise C5 specific monitoring via ngcp-witnessd . 331

16.1.4 Monitoring data in InfluxDB . 332

16.2 Statistics Dashboard . 332

16.3 External Monitoring Using SNMP . 333

16.3.1 Overview and Initial Setup . 333

16.3.2 Details . 333

17 Extensions and Additional Modules 339

17.1 Cloud PBX . 339

17.1.1 PBX Device Provisioning . 339

17.1.2 Preparing PBX Rewrite Rules . 341

17.1.3 Creating Customers and Pilot Subscribers . 345

17.1.4 Creating Regular PBX Subscribers . 355

17.1.5 Assigning Subscribers to a Device . 361

17.1.6 Configuring Sound Sets for the Customer PBX . 369

17.1.7 Auto-Attendant Function . 371

17.1.8 Cloud PBX Groups with Busy Members . 377

17.1.9 Configuring Call Queues . 379

17.1.10Device Auto-Provisioning Security . 381

17.1.11Device Bootstrap and Resync Workflows . 383

17.1.12Device Provisioning and Deployment Workflows . 391

17.1.13List of available pre-configured devices . 394

17.1.14Phone features . 398

17.1.15Shared line appearance . 430

17.2 Sipwise sip:phone App (SIP client) . 430

xiii

The Sipwise C5 PRO Handbook mr6.5.11 xiv

17.2.1 Zero Config Launcher . 431

17.2.2 Mobile Push Notification . 435

17.3 Lawful Interception . 456

17.3.1 Introduction . 456

17.3.2 Architecture and Configuration of LI Service . 458

17.3.3 X1, X2 and X3 Interface Specification . 466

17.4 3rd Party Call Control . 480

17.4.1 Introduction . 480

17.4.2 Details of Call Processing with PCC . 481

17.4.3 Voicemail Notification . 487

17.4.4 Incoming Short Message Acceptance . 489

17.4.5 Configuration of PCC . 490

17.4.6 Troubleshooting of PCC . 491

A Basic Call Flows 495

A.1 General Call Setup . 495

A.2 Endpoint Registration . 496

A.3 Basic Call . 499

A.4 Session Keep-Alive . 500

A.5 Voicebox Calls . 501

B Sipwise C5 configs overview 503

B.1 config.yml Overview . 503

B.1.1 apps . 503

B.1.2 asterisk . 503

B.1.3 autoprov . 505

B.1.4 backuptools . 505

B.1.5 cdrexport . 506

B.1.6 checktools . 507

B.1.7 cleanuptools . 509

xiv

The Sipwise C5 PRO Handbook mr6.5.11 xv

B.1.8 cluster_sets . 510

B.1.9 database . 511

B.1.10 faxserver . 511

B.1.11 general . 511

B.1.12 heartbeat . 512

B.1.13 intercept . 512

B.1.14 kamailio . 513

B.1.15 lnpd . 526

B.1.16 mediator . 526

B.1.17 modules . 526

B.1.18 nginx . 527

B.1.19 ntp . 527

B.1.20 ossbss . 527

B.1.21 pbx (only with additional cloud PBX module installed) . 529

B.1.22 prosody . 529

B.1.23 pushd . 530

B.1.24 qos . 532

B.1.25 rate-o-mat . 533

B.1.26 redis . 533

B.1.27 reminder . 533

B.1.28 rsyslog . 534

B.1.29 rtpproxy . 534

B.1.30 security . 536

B.1.31 sems . 537

B.1.32 sms . 539

B.1.33 snmpagent . 540

B.1.34 sshd . 540

B.1.35 sudo . 541

xv

The Sipwise C5 PRO Handbook mr6.5.11 xvi

B.1.36 voisniff . 541

B.1.37 www_admin . 543

B.2 constants.yml Overview . 545

B.3 network.yml Overview . 546

C NGCP-Faxserver Configuration 548

C.1 Faxserver Components . 548

C.2 Enabling Faxserver . 548

C.3 Fax Templates Configuration . 548

C.4 Fax Services Configuration per Subscriber . 549

C.5 Fax2Mail and SendFax Settings . 550

C.6 Mail2Fax Settings . 551

C.7 Sending Fax from Web Panel . 552

C.8 Faxserver Mail2Fax Configuration . 553

C.9 Sending Fax Using E-mail Clients . 554

C.10 Managing Faxes via the REST API . 555

C.10.1 Configuring Fax Settings . 555

C.10.2 Sending a Fax . 556

C.10.3 Receiving a Fax . 556

C.10.4 Configuring Mail2Fax Settings . 557

C.10.5 Using Advanced Faxserver and Mail2Fax Settings via the REST API . 558

C.11 Troubleshooting . 558

C.11.1 Session ID (SID) . 559

C.11.2 Fax Storage Location . 559

C.12 Adjusting the PBX Devices Configuration . 560

C.12.1 Setting up Device Models . 561

C.12.2 Uploading Device Firmwares . 564

C.12.3 Creating Device Configurations . 565

C.12.4 Creating Device Profiles . 567

xvi

The Sipwise C5 PRO Handbook mr6.5.11 xvii

D RTC:engine 569

D.1 Overview . 569

D.2 RTC:engine enabling . 569

D.2.1 Enabling services via CLI . 569

D.2.2 Enabling via Panel for resellers and subscribers . 570

D.2.3 Create RTC:engine session . 570

D.3 RTC:engine protocol details . 571

D.3.1 Terminology . 571

D.3.2 Messages . 572

D.3.3 Account . 574

D.3.4 Call . 578

D.3.5 Session . 584

E comx-fileshare-service 586

E.1 Overview . 586

E.2 Configuration and Usage . 586

E.2.1 Change authentication method . 586

E.2.2 Database Structure . 587

E.3 Activation of Filesharing Service on NGCP . 588

E.4 Message Sequence Chart . 589

E.4.1 Simple Message Sequence . 589

E.4.2 Detailed Message Sequence . 590

E.5 API of Filesharing Service . 590

E.5.1 HTTP Authentication . 590

E.5.2 Upload and Download with Simple Identification . 591

E.5.3 Upload and Download with Session Identification . 591

E.5.4 Curl Example for Simple Upload Request . 591

E.5.5 Upload Parameters . 591

E.5.6 Number of Possible Downloads . 593

xvii

The Sipwise C5 PRO Handbook mr6.5.11 xviii

F NGCP Disk partitioning 594

F.1 Supported IO drives . 594

F.2 Hardware vs. software RAID . 594

F.3 The default disk partitions . 594

F.4 UEFI . 595

F.5 Swap partition vs. file . 595

G NGCP Internals 597

G.1 Pending reboot marker . 597

G.2 Redis id constants . 597

G.2.1 InfluxDB monitoring keys . 598

G.3 Enum preferences . 599

H Extra Configuration Scenarios 601

H.1 AudioCodes devices workaround . 601

xviii

The Sipwise C5 PRO Handbook mr6.5.11 1 / 601

1 Introduction

1.1 About this Handbook

This handbook describes the architecture and the operational steps to install, operate and modify the Sipwise C5 PRO.

In various chapters, it describes the system architecture, the installation and upgrade procedures and the initial configuration

steps to get your first users online. It then dives into advanced preference configurations such as rewrite rules, call blocking, call

forwarding, etc.

There is a description of the customer self-care interface, how to configure the billing system and how to provision the system via

the API.

Finally, it describes the internal configuration framework, the network configuration and gives hints about tweaking the system for

better security and performance.

1.2 What is the Sipwise C5 PRO?

Sipwise C5 (also known as NGCP - the Next Generation Communication Platform) is a SIP-based Open Source Class 5 VoIP soft-

switch platform that allows you to provide rich telephony services. It offers a wide range of features (e.g. call forwarding, voicemail,

conferencing etc.) that can be configured by end users in the self-care web interface. For operators, it offers a web-based

administrative panel that allows them to configure subscribers, SIP peerings, billing profiles, and other entities. The administrative

web panel also shows the real-time statistics for the whole system. For tight integration into existing infrastructures, Sipwise C5

provides a powerful REST API interface.

Sipwise C5 has three solutions that differ in call capacity and service redundancy: CARRIER, PRO and CE. The current handbook

describes the PRO solution.

The Sipwise C5 PRO can be pre-installed on two hardware servers or deployed in a customer virtual environment. Apart from

your product specific configuration, there is no initial configuration or installation to be done to get started.

1.3 The Advantages of the Sipwise C5 PRO

Opposed to free VoIP software, Sipwise C5 is not a single application, but a complete software platform based on Debian

GNU/Linux.

Using a highly modular design approach, Sipwise C5 leverages popular open-source software like MySQL, NGINX, Kamailio,

SEMS, Asterisk, etc. as its core building blocks. These blocks are glued together using optimized and proven configurations

and workflows and are complemented by functionality developed by Sipwise to provide fully-featured and easy-to-operate VoIP

services.

The installed applications are managed by the Sipwise C5 Configuration Framework. This configuration framework makes it

possible to change low-level system parameters in a single place, so Sipwise C5 administrators don’t need to have any knowledge

of dozens of different configuration files from different packages. This provides a very easy and bullet-proof way of operating,

changing and tweaking an otherwise quite complex system.

1

The Sipwise C5 PRO Handbook mr6.5.11 2 / 601

Once configured, integrated web interfaces are provided for both end users and Sipwise C5 administrators. Provisioning and

billing API allows companies to tightly integrate Sipwise C5 into existing OSS/BSS infrastructures to optimize workflows.

1.4 Who is the Sipwise C5 PRO for?

The Sipwise C5 PRO is specifically tailored to companies who want to provide fully-featured SIP-based VoIP service without

having to go through the steep learning curve of SIP signalling. It integrates the different building blocks to make them work

together in a reasonable way. The Sipwise C5 PRO is already deployed all around the world by all kinds of VoIP operators, using

it as Class5 soft-switch, as Class4 termination platform or even as Session Border Controller with all kinds of access networks,

like Cable, DSL, WiFi and Mobile networks.

1.5 Getting Help

1.5.1 Phone Support

Depending on your support contract, you are eligible to contact our Support Team by phone either during business hours or around

the clock. Business hours refer to the CET/CEST time zone (Europe/Vienna). Please check your support contract to find out the

type of support you’ve purchased.

Before calling our Support Team, please also open a ticket in our Ticket System and provide as much detail as you can for us to

understand the problems, fix them and investigate the cause. Please provide the number of your newly created ticket when asked

by our support personnel on the phone.

You can find phone numbers, Ticket System URL, and account information in your support contract. Please make this information

available to the persons in your company maintaining Sipwise C5.

1.5.2 Ticket System

Depending on your support contract, you can create either a limited or an unlimited amount of support tickets on our Web-based

Ticket System. Please provide as much information as possible when opening a ticket, especially the following:

• WHAT is affected (e.g. the whole system is unreachable, or customers can’t register or place calls)

• WHO is affected (e.g. all customers, only parts of it, and WHICH parts - only customers in a particular domain or customers

with specific devices, etc.)

• WHEN did the problem occur (time frames, or after the firmware of specific devices types have been updated, etc.)

Our Support Team will ask further questions via the Ticket System along the way of troubleshooting your issue. Please provide

the information as soon as possible to solve your issue promptly.

2

The Sipwise C5 PRO Handbook mr6.5.11 3 / 601

2 Architecture

The Sipwise C5 PRO platform consists of two identical appliances working in active/standby mode. The components of a node

are outlined in the following figure:

Figure 1: Architecture Overview

The main building blocks of Sipwise C5 are:

• SIP Signaling and Media Relay

• Provisioning

• Mediation and Billing

• Monitoring and Alerting

• High Availability and Fail-Over

3

The Sipwise C5 PRO Handbook mr6.5.11 4 / 601

2.1 SIP Signaling and Media Relay

In SIP-based communication networks, it is important to understand that the signaling path (e.g. for call setup and tear-down) is

completely independent of the media path. On the signaling path, the involved endpoints negotiate the call routing (which user

calls which endpoint, and via which path - e.g. using SIP peerings or going through the PSTN - the call is established) as well as

the media attributes (via which IPs/ports are media streams sent and which capabilities do these streams have - e.g. video using

H.261 or Fax using T.38 or plain voice using G.711). Once the negotiation on signaling level is done, the endpoints start to send

their media streams via the negotiated paths.

The components involved in SIP and Media on the Sipwise C5 PRO are shown in the following figure:

Figure 2: SIP and Media Relay Components

2.1.1 SIP Load-Balancer

The SIP load-balancer is a Kamailio instance acting as ingress and egress point for all SIP traffic to and from the system. It’s a

high-performance SIP proxy instance based on Kamailio and is responsible for sanity checks of inbound SIP traffic. It filters broken

SIP messages, rejects loops and relay attempts and detects denial-of-service and brute-force attacks and gracefully handles them

to protect the underlying SIP elements. It also performs the conversion of TLS to internal UDP and vice versa for secure signaling

between endpoints and Sipwise C5, and does far-end NAT traversal in order to enable signaling through NAT devices.

The load-balancer is the only SIP element in the system which exposes a SIP interface to the public network. Its second leg binds

in the switch-internal network to pass traffic from the public internet to the corresponding internal components.

The name load-balancer comes from the fact that when scaling out Sipwise C5 beyond just one pair of servers, the load-balancer

instance becomes its own physical node and then handles multiple pairs of proxies behind it.

On the public interface, the load-balancer listens on port 5060 for UDP and TCP, as well as on 5061 for TLS connections. On the

4

The Sipwise C5 PRO Handbook mr6.5.11 5 / 601

internal interface, it speaks SIP via UDP on port 5060 to the other system components, and listens for XMLRPC connections on

TCP port 5060, which is used by the OSSBSS system to control the daemon.

Its config files reside in /etc/ngcp-config/templates/etc/kamailio/lb/, and changes to these files are applied

by executing ngcpcfg apply "my commit message".

Tip

The SIP load-balancer can be managed via the commands ngcp-service lb start, ngcp-service lb stop and

ngcp-service lb restart. Its status can be queried by executing ngcp-service lb status or ngcp-serv

ice summary | grep "ˆlb". Also ngcp-kamctl lb and ngcp-sercmd lb are provided for querying kamailio

functions, for example: ngcp-sercmd lb htable.dump ipban. Execute the command: ngcp-kamctl lb fifo

system.listMethods or ngcp-sercmd lb system.listMethods to get the list of all available queries.

2.1.2 SIP Proxy/Registrar

The SIP proxy/registrar (or short proxy) is the work-horse of Sipwise C5. It’s also a separate Kamailio instance running in the

switch-internal network and is connected to the provisioning database via MySQL, authenticates the endpoints, handles their

registrations on the system and does the call routing based on the provisioning data. For each call, the proxy looks up the

provisioned features of both the calling and the called party (either subscriber or domain features if it’s a local caller and/or callee,

or peering features if it’s from/to an external endpoint) and acts accordingly, e.g. by checking if the call is blocked, by placing

call-forwards if applicable and by normalizing numbers into the appropriate format, depending on the source and destination of a

call.

It also writes start- and stop-records for each call, which are then transformed into call detail records (CDR) by the mediation

system.

If the endpoints indicate negotiation of one or more media streams, the proxy also interacts with the Media Relay to open, change

and close port pairs for relaying media streams over Sipwise C5, which is especially important to traverse NAT.

The proxy listens on UDP port 5062 in the system-internal network. It cannot be reached directly from the outside, but only via the

SIP load-balancer.

Its config files reside in /etc/ngcp-config/templates/etc/kamailio/proxy/, and changes to these files are ap-

plied by executing ngcpcfg apply "my commit message".

Tip

The SIP proxy can be controlled via the commands ngcp-service proxy start, ngcp-service proxy stop

and ngcp-service proxy restart. Its status can be queried by executing ngcp-service proxy status or

ngcp-service summary | grep "ˆproxy". Also ngcp-kamctl proxy and ngcp-sercmd proxy are pro-

vided for querying kamailio functions, for example: ngcp-kamctl proxy ul show. Execute the command: ngcp-

kamctl proxy fifo system.listMethods or ngcp-sercmd proxy system.listMethods to get the list

of all available queries.

5

The Sipwise C5 PRO Handbook mr6.5.11 6 / 601

2.1.3 SIP Back-to-Back User-Agent (B2BUA)

The SIP B2BUA (also called SBC within the system) decouples the first call-leg (calling party to Sipwise C5) from the second

call-leg (Sipwise C5 to the called party).

The software part used for this element is a commercial version of SEMS, with the main difference to the open-source version that

it includes a replication module to share its call states with the stand-by node.

This element is typically optional in SIP systems, but it is always used for SIP calls (INVITE) that don’t have Sipwise C5 as

endpoint. It acts as application server for various scenarios (e.g. for feature provisioning via Vertical Service Codes and as

Conferencing Server) and performs the B2BUA decoupling, topology hiding, caller information hiding, SIP header and Media

feature filtering, outbound registration, outbound authentication, Prepaid accounting and call length limitation as well as Session

Keep-Alive handler.

Due to the fact that typical SIP proxies (like the load-balancer and proxy in Sipwise C5) do only interfere with the content of

SIP messages where it’s necessary for the SIP routing, but otherwise leave the message intact as received from the endpoints,

whereas the B2BUA creates a new call leg with a new SIP message from scratch towards the called party, SIP message sizes are

reduced significantly by the B2BUA. This helps to bring the message size under 1500 bytes (which is a typical default value for the

MTU size) when it leaves Sipwise C5. That way, chances of packet fragmentation are quite low, which reduces the risk of running

into issues with low-cost SOHO routers at customer sides, which typically have problems with UDP packet fragmentation.

The SIP B2BUA only binds to the system-internal network and listens on UDP port 5080 for SIP messages from the load-balancer

or the proxy, on UDP port 5040 for control messages from the cli tool and on TCP port 8090 for XMLRPC connections from the

OSSBSS to control the daemon.

Its configuration files reside in /etc/ngcp-config/templates/etc/ngcp-sems, and changes to these files are applied

by executing ngcpcfg apply "my commit message".

Tip

The SIP B2BUA can be controlled via the commands ngcp-service sbc start sbc, ngcp-service sbc stop

and ngcp-service sbc restart. Its status can be queried by executing ngcp-service sbc status or ngcp-

service summary | grep "ˆsbc".

2.1.4 SIP App-Server

The SIP App-Server is an Asterisk instance used for voice applications like Voicemail and Reminder Calls. It is also used in the

software-based Faxserver solution to transcode SIP and RTP into the IAX protocol and vice versa, in order to talk to the Software

Fax Modems. Asterisk uses the MySQL database as a message spool for voicemail, so it doesn’t directly access the file system

for user data. The voicemail plugin is a slightly patched version based on Asterisk 1.4 to make Asterisk aware of Sipwise C5

internal UUIDs for each subscriber. That way a SIP subscriber can have multiple E164 phone numbers, but all of them terminate

in the same voicebox.

The App-Server listens on the internal interface on UDP port 5070 for SIP messages and by default uses media ports in the range

from UDP port 10000 to 20000.

The configuration files reside in /etc/ngcp-config/templates/etc/asterisk, and changes to these files are applied

6

The Sipwise C5 PRO Handbook mr6.5.11 7 / 601

by executing ngcpcfg apply "my commit message".

Tip

The SIP App-Server can be controlled via the commands ngcp-service asterisk start, ngcp-service ast

erisk stop and ngcp-service asterisk restart. Its status can be queried by executing ngcp-service

asterisk status or ngcp-service summary | grep "ˆasterisk".

2.1.5 Media Relay

The Media Relay (also called rtpengine) is a Kernel-based packet relay, which is controlled by the SIP proxy. For each media

stream (e.g. a voice and/or video stream), it maintains a pair of ports in the range of port number 30000 to 40000. When the media

streams are negotiated, rtpengine opens the ports in user-space and starts relaying the packets to the addresses announced by

the endpoints. If packets arrive from different source addresses than announced in the SDP body of the SIP message (e.g. in

case of NAT), the source address is implicitly changed to the address the packets are received from. Once the call is established

and the rtpengine has received media packets from both endpoints for this call, the media stream is pushed into the kernel and is

then handled by a custom Sipwise iptables module to increase the throughput of the system and to reduce the latency of media

packets.

The rtpengine internally listens on UDP port 12222 for control messages from the SIP proxy. For each media stream, it opens two

pairs of UDP ports on the public interface in the range of 30000 and 40000 per default, one pair on even port numbers for the media

data, and one pair on the next odd port numbers for metadata, e.g. RTCP in case of RTP streams. Each endpoint communicates

with one dedicated port per media stream (opposed to some implementations which use one pair for both endpoints) to avoid

issues in determining where to send a packet to. The rtpengine also sets the QoS/ToS/DSCP field of each IP packet it sends to a

configured value, 184 (0xB8, expedited forwarding) by default.

The kernel-internal part of the rtpengine is facilitated through an iptables module having the target name RTPENGINE. If any ad-

ditional firewall or packet filtering rules are installed, it is imperative that this rule remains untouched and stays in place. Otherwise,

if the rule is removed from iptables, the kernel will not be able to forward the media packets and forwarding will fall back to the

user-space daemon. The packets will still be forwarded normally, but performance will be much worse under those circumstances,

which will be especially noticeable when a lot of media streams are active concurrently. See the section on Firewalling for more

information.

The rtpengine configuration file is /etc/ngcp-config/templates/etc/default/ngcp-rtpengine-daemon, and

changes to this file are applied by executing ngcpcfg apply "my commit message". The UDP port range can be

configured via the config.yml file under the section rtpproxy. The QoS/ToS value can be changed via the key qos.

tos_rtp.

Tip

The Media Relay can be controlled via the commands ngcp-service rtpengine start, ngcp-service rtpe

ngine stop and ngcp-serivce rtpengine restart. Its status can be queried by executing ngcp-service

rtpengine status" or ngcp-service summary | grep "ˆrtpengine".

7

The Sipwise C5 PRO Handbook mr6.5.11 8 / 601

2.2 MySQL Database

The MySQL database consists of a pair of active/standby MySQL servers. They run a MySQL master/master replication with

replication integrity checks to ensure data consistency and redundancy.

The MySQL servers on both physical nodes synchronize via the row-based master/master replication. In theory, any of the two

servers in the pair can be used to write data to the database, however, in practice the shared IP address is used towards clients

accessing the service, hence only the active MySQL server will receive the write requests and replicate them to the standby one.

2.3 Redis Database

The redis database is used as a high-perfomance key/value storage for global system datashared across proxies. This includes

calls information and concurrent calls counters for customers and subscribers, etc..

The active-standby replication ensures that the data is immediately copied from the active node to the standby one. As all sensitive

call information is held in the shared storage, Sipwise C5 allows one to switch the operational state from active to standby on one

physical node and from standby to active on the other node without any call interruptions. Your subscribers will never notice that

their calls being established on one physical server, were successfully moved to another one and successfully completed there.

2.4 High Availability and Fail-Over

2.4.1 Overview

The two servers of a complete Sipwise C5 system form a pair, a simple cluster with two nodes. Their names are fixed as sp1 and

sp2, however neither of them is inherently a first or a second. They’re both equal and identical and either can be the active node

of the cluster at any time. Only one node is always ever active, the other one is in standby mode and doesn’t perform any active

functions.

High availability is achieved through constant communication between the two nodes and constant state replication from the active

node to the standby one. Whenever the standby node detects that the other node has become unresponsive, has gone offline

and has failed in any other way, it will proceed with taking over all resources and becoming the active node, with all operations

resuming where the failed node has left off. Through that, the system will remain fully operational and service disruption will be

minimal.

When the failed node comes back to life, it will become the new standby node, replicate everything that has changed in the

meantime from the new active node, and then the cluster will be back in fully highly available state.

Tip

The login banner at the SSH shell provides information about whether the local system is currently the active one or the standby

one. See Section 2.4.3 for other ways to differentiate between the active and the standby node.

8

The Sipwise C5 PRO Handbook mr6.5.11 9 / 601

2.4.2 Core Concepts and Configuration

The direct Ethernet crosslink between the two nodes provides the main mechanism of HA communication between them. All state

replication happens over this link. Additionally, the HA daemon heartbeat uses this link to communicate with the other node to see

if it’s still alive and active. A break in this link will therefore result in a split brain scenario, with either node trying to become the

active one. This is to be avoided at all costs.

The config.yml file allows specification of a list of ping nodes under the key heartbeat.pingnodes, which are used by

heartbeat to determine if local network communications are healthy. Both servers will then constantly compare the number of

locally reachable ping nodes with each other, and if the standby server is able to reach more of them, then it will become the active

one.

The main resource that heartbeat manages is the shared service IP address. Each node has its own static IP address configured

on its first Ethernet interface (eth0), which is done outside of the Sipwise C5 configuration framework (i.e. in the Debian-

specific config file /etc/network/interfaces). The shared service IP is specified in network.yml at the key hosts.

sp1|sp2.eth0.shared_ip. Heartbeat will configure it as a secondary IP address on the first Ethernet interface (eth0:0)

on the active node and will deconfigure it on the standby node. Thus, all network communications with this IP address will always

go only to the currently active node.

2.4.3 Administration

The current status of the local Sipwise C5 node can be determined using the ngcp-check-active shell command. This

command produces no output, but returns an exit status of 0 for the active node and 1 for the standby node. A more complete

shell command to produce visible output could be: ngcp-check-active -v

To force a currently active node into standby mode, use the command ngcp-make-standby. For the opposite effect, use the

command ngcp-make-active. This will also always affect the state of the other node, as the system automatically makes

sure that always only one node is active at a time.

9

The Sipwise C5 PRO Handbook mr6.5.11 10 / 601

3 Platform Deployment

This chapter will provide the step by step instructions on how to put Sipwise C5 into operations.

3.1 Hardware Specifications

Sipwise provides Sipwise C5 platform fully pre-installed on two Dell PowerEdge R330 servers. Their most important characteristics

are:

• Up to 8 pcs. of 2.5" storage drives (HDD or SSD); shipped with 4 drives installed and configured as RAID10 array

• Gbit Ethernet ports: 2 on-board and 2 additional ports (optional)

• iDRAC module for remote maintenance

Note

Please be aware that prior to Q3 2016 Sipwise used to provide its Sipwise C5 platform on older Dell PowerEdge server models:

R310 and R320.

3.1.1 Dimensions and Weight

The hardware dimensions are defined in the following figure:

10

The Sipwise C5 PRO Handbook mr6.5.11 11 / 601

Xa Xb (Width) Y (Height) Za w/ bezel Za w/o bezel Zb (Depth) Zc

482.4mm 434mm 42.8mm 35mm 21mm 610mm 639.5mm

Weight of the server with storage drives and internal components installed: 13.4kg

3.1.2 Front View

The front view of a current Sipwise C5 Dell R330 server:

Figure 3: Dell R330 Front View

The front view of a former Sipwise C5 Dell R310. . . :

Figure 4: Dell R310 Front View

. . . and Dell R320 server:

Figure 5: Dell R320 Front View

11

The Sipwise C5 PRO Handbook mr6.5.11 12 / 601

3.1.3 Rear View

The rear view of a current Sipwise C5 Dell R330 server:

Figure 6: Dell R330 Rear View

The rear view of a former Sipwise C5 Dell R310. . . :

Figure 7: Dell R310 Rear View

. . . and Dell R320 server:

12

The Sipwise C5 PRO Handbook mr6.5.11 13 / 601

Figure 8: Dell R320 Rear View

3.1.4 Power Supply Units (PSU)

The servers are equipped with 2 redundant, hot-swappable PSUs, which are accessible from the rear side and located on the right

of the chassis:

Figure 9: Redundant PSUs

The redundant PSUs include LEDs that indicate the status of the PSU:

Figure 10: PSU Indicators

13

The Sipwise C5 PRO Handbook mr6.5.11 14 / 601

A. The indicator is solidly lit green: A valid power source is connected to the PSU and the PSU is operational.

B. The indicator is flashing green: The PSU firmware is being updated.

Caution

Do not disconnect the power cord or unplug the PSU when updating the firmware. If a firmware update is

interrupted, the PSUs will not function. You must roll back the PSU firmware by using Dell Lifecycle Controller.

For more information, see Dell Lifecycle Controller User’s Guide at Dell.com/idracmanuals.

C. The indicator is flashing green and turns off: When hot-adding a PSU, the PSU handle flashes green five times at 4 Hz

rate and turns off. This indicates that there is a PSU mismatch with respect to efficiency, feature set, health status, and

supported voltage. Ensure that both the PSUs are the same.

D. The indicator is flashing amber: Indicates a problem with the PSU.

Caution

When correcting a PSU mismatch, replace only the PSU with the flashing indicator. Swapping the other PSU to

make a matched pair can result in an error condition and unexpected system shutdown. To change from a High

Output configuration to a Low Output configuration or vice versa, you must turn off the system.

Caution

AC PSUs support both 220 V and 110 V input voltages with the exception of Titanium PSUs, which support only

220 V. When two identical PSUs receive different input voltages, they can output different wattages, and trigger

a mismatch.

Caution

If two PSUs are used, they must be of the same type and have the same maximum output power.

Caution

Combining AC and DC PSUs is not supported and triggers a mismatch.

E. The indicator is not lit: Power is not connected.

3.2 Installation Prerequisites

In order to put Sipwise C5 into operations, you need to rack-mount it into 19" racks.

You will find the following equipment in the box:

• 2 servers

14

The Sipwise C5 PRO Handbook mr6.5.11 15 / 601

• 2 pairs of rails to rack-mount the servers

• 2 cable management arms

You will additionally need the following parts as they are not part of the distribution:

• 4 power cables

Note

The exact type required depends on the location of installation, e.g. there are various forms of power outlets in different

countries.

• At least 2 CAT5 cables to connect the servers to the access switches for external communication

• 1 CAT5 cable to directly connect the two servers for internal communication

3.3 Rack-Mount Installation

Install the two servers into the rack (either into a single one or into two geographically distributed ones).

The rails shipped with the servers fit into standard 4-Post 19" racks. If they do not fit, please consult your rack vendor to get proper

rails.

The following figure shows the mounted rails:

15

The Sipwise C5 PRO Handbook mr6.5.11 16 / 601

Figure 11: Rack-mounted Rails

3.4 Power Supply Cabling

Each server has two redundant Power Supply Units (PSU). Connect one PSU to your normal power circuit and the other one to

an Uninterruptible Power Supply Unit (UPS) to gain the maximum protection against power failures.

The cabling should look like in the following picture to prevent accidental power cuts:

16

The Sipwise C5 PRO Handbook mr6.5.11 17 / 601

Figure 12: Proper PSU Cabling

3.5 Network Cabling

Internal Communication
The high availability (HA) feature of Sipwise C5 requires that a direct Ethernet connection between the servers is established.

One of the network interfaces must be dedicated to this functionality.

External Communication
Remaining network interfaces may be used to make the servers publicly available for communication services (SIP, mes-

saging, etc.) and also for their management and maintenance.

3.5.1 Internal Communication

Patch a cross-link with a straight CAT5 cable between the two servers by connecting the cable to the network interface assigned

to the HA component by Sipwise. The direct cross cable is applied for maximum availability because this connection is used by

the servers to communicate with each other internally.

17

The Sipwise C5 PRO Handbook mr6.5.11 18 / 601

Important

We strongly suggest against using a switch in between the servers for this internal interface. Using a switch is ac-

ceptable only if there is no another way to connect the two ports (e.g. if you configure a geographically distributed

installation).

Note

In case you are using a switch for cross-link make sure to enable portfast mode on Cisco switches. The thing is that STP puts

the port into learning mode for 90 seconds, after it comes up for the first time. During this learning phase, the link is technically

up, but no traffic passes through, so heartbeat service will detect the other node as dead during boot. The portfast mode

tells the switch to skip the learning phase and go to forwarding state right away: spanning-tree portfast [trunk].

3.5.2 External Communication

For both servers, depending on the network configuration, connect one or more straight CAT5 cables to the ports on the servers

network cards and plug them into the corresponding switch ports. Information about proper ports of the servers to be used for this

purpose are provided by Sipwise.

18

The Sipwise C5 PRO Handbook mr6.5.11 19 / 601

4 VoIP Service Administration Concepts

4.1 Contacts

A contact contains information such as the name, the postal and email addresses, and others. A contact’s main purpose is to

identify entities (resellers, customers, peers and subscribers) it is associated with.

A person or an organization may represent a few entities and it is handy to create a corresponding organization’s contact be-

forehand and use it repeatedly when creating new entities. In this case we suggest populating the External # field to distinguish

between customers associated with the same contact.

Note that the only required contact field is email. For contacts associated with customers, it will be used for sending invoices and

notifications such as password reset, new subscriber creation and others. A contact for a subscriber is created automatically but

only if you specify an email address for this subscriber. It is mainly used to send notification messages, e.g. in case of a password

reset.

4.2 Resellers

The reseller model allows you to expand your presence in the market by including virtual operators in the sales chain. A virtual

operator can be a company without its own VoIP platform and even without a technical background, but with sales presence in

a market. You define such a company as a reseller in the platform: grant limited access to the administrative web interface (the

reseller administrator will only see his own customers, domains and billing profiles) and define wholesale rates for this reseller.

Then, the reseller is free to operate under its own brand, make up its retail rates, establish the customer base and resell your

services to its customers. The reseller’s profit is a margin between the wholesale and retail rates.

Let us consider an example:

• You operate in Munich and provide residential and business services.

• A company Cheap Call that has a strong presence in Frankfurt offers to resell your services under its own brand in this city.

• You define wholesale rates for Cheap Call, such as calls to Argentina at C0,03.

• Cheap Call defines its retail price and offers calls to Argentina at C0,04.

• When one of Cheap Call’s subscribers makes a 5-minute call to Argentina, this subscriber will be charged C0,20.

• You will get C0,15 revenue and Cheap Call’s profit will be C0,20 - C0,15 = C0,05.

19

The Sipwise C5 PRO Handbook mr6.5.11 20 / 601

A reseller usually uses dedicated IP addresses or SIP domain names to provide services. Also, a reseller can rebrand the self-care

web interface for its customers and select languages per SIP domain that allows the reseller to operate even in multiple countries.

4.3 SIP Domain

A SIP domain represents an external Internet address where your subscribers register their SIP phones to make calls or send

messages. The SIP domain also contains particular default configuration for all the subscribers registered with this SIP domain.

A SIP domain can be a regular FQDN (e.g. sip.yourdomain.com) or a NAPTR/SRV record. Using IP addresses for SIP domains

in production is strongly discouraged.

4.3.1 Additional SIP Domains

You can create as many SIP domains as required to satisfy your networking or marketing requirements, e.g.:

• A dedicated SIP domain is suggested per CloudPBX customer.

• A separate SIP domain may be dedicated to every whitelabel reseller.

• Multiple SIP domains may be used to provide services in different countries or regions.

• Multiple SIP domains may be used to brand your own services.

20

The Sipwise C5 PRO Handbook mr6.5.11 21 / 601

4.4 Contracts

A contract is a combination of a contact and a billing profile, hence it represents a business contract for your resellers and peering

partners.

Contracts can be created in advance on the Reseller and Peering Contracts page, or immediately during creation of a peer or a

reseller.

Note that the customer entity (described below) is a special type of the contract. A customer entity has an email and an invoice

templates in addition to a contact and a billing profile.

4.5 Customers

A customer is a physical or legal entity whom you provide the VoIP service with and send invoices to. Here are the main features

of a customer:

• Contains the contact and legal information. For example, an address or an email address for invoicing.

• Associated with a billing profile (to define fees per destination) and tracks the balance (used mostly for post-paid customers).

• Contains a certain number of subscribers who actually use the service and whose calls appear in the customer’s list of CDRs.

• Provides some default parameters for all its subscribers. For example, voice prompts and call restriction.

Here are two common examples of the customer model:

4.5.1 Residential and SOHO customers

With this service you provide your residential and SOHO customers with one or multiple numbers and offer the service on a

post-paid basis.

For a residential customer you usually create one customer entity with one subscriber under it. A residential customer can register

multiple devices with the same number thus having a convenient Viber or Skype-like service: any device can be used to make a

21

The Sipwise C5 PRO Handbook mr6.5.11 22 / 601

call and all of them will ring simultaneously when there is an incoming call. At the end of the billing period, you send an invoice to

the customer.

For SOHO customers you usually create multiple subscribers under the same customer and assign every subscriber a dedicated

number to allow users make and receive calls. A common invoice will contain calls of all the subscribers.

4.5.2 Business customers with the Cloud PBX service

In this case you create a Customer and all the required entities under it to reflect the company’s structure: subscribers, extensions,

hunt groups, auto-attendant menus, etc.

22

The Sipwise C5 PRO Handbook mr6.5.11 23 / 601

4.5.3 SIP Trunking

If a customer PBX can register itself with C5, you create a regular subscriber for it and configure a standard username/password

authentication. Multiple PBX users can then send and receive calls.

Legacy PBX devices that are not capable of passing the challenge-based authentication can be authenticated by the IP address.

Optionally, every user of such a PBX can be authenticated separately by the FROM header and the IP address. For more details,

refer to the Trusted Sources section.

4.5.4 Mobile subscribers

The pre-paid model works perfectly for mobile application users. In this case you generally create a single subscriber under a

customer.

4.5.5 Pre-paid subscribers who use your calling cards

In this case you will most likely create a single subscriber under a customer, although multiple subscribers would work as well.

In the latter case, they will share and top-up the common balance. Notice that the customer entity itself does not contain any

technical configuration for the VoIP service authentication and instead contains other entities called subscribers, which do.

4.6 Subscribers

Every subscriber represents a SIP line or a SIP trunk. For example, in the residential services a subscriber entity is dedicated to

every user. In the SIP trunking scenario, a subscriber can be used to authenticate all VoIP traffic from the remote PBX device.

In the following table logical subscriber types and their purpose are described.

Service Subscriber Type Purpose Features

Residential Regular

subscriber

A regular VoIP service Requires a DID number to receive

calls from outside of your network

Enterprise

(CloudPBX)

Pilot subscriber A base number for the enterprise

customer; Lists all extra numbers

(aliases)

Configures the rest of customer

subscribers in its self-care web

interface

23

https://www.sipwise.com/products/sipphone-sip-phone-app-for-android-and-ios

The Sipwise C5 PRO Handbook mr6.5.11 24 / 601

Service Subscriber Type Purpose Features

Extension Extra numbers (DIDs, “implicit”

extensions) for the enterprise

customer

Can be dialed in different ways; The

number configuration builds on top of

the Pilot subscriber

PBX Group Forwards incoming calls to multiple

extensions

Ringing policy defines in which order

the extensions will ring

SIP Trunk Digest

authentication

Dynamically registers a remote IP

PBX device

Handles multiple users behind the IP

PBX device

IP authentication IP authentication of legacy IP PBX

devices incapable of registering with

the platform

Might require Trusted Subscriber and

Trusted Source configuration

Prepaid Regular

subscriber with

prepaid billing

profile

Authorization of services based on

customer balance; Disconnection of

calls on “zero balance”

Voucher and cache top-up; Billing

Profile Packages

Tip

Subscriber Aliases can provide Extra DIDs or extension numbers to a subscriber.

4.7 SIP Peerings

A SIP peering is your interconnection with the external VoIP or PSTN network. Usually, a VoIP service provider has at least a few

termination partners to offer its subscribers calls to virtually any landline and mobile destination.

SIP peerings also enable incoming calls to your platform. For example, if you rent a pool of DID numbers from a SIP peer and

offer them to your residential and business customers.

An interconnection with your termination partners and DID number providers can include multiple servers and enable both out-

bound and inbound calls, hence such a configuration is called a SIP peering group. You configure at least one SIP peering group

for every partner and the main principle here is that all servers in a group terminate calls to the same set of listed destinations.

Any SIP peering group is associated with a contract for reconciliation and billing purposes and includes two main technical

configurations:

• Peering Servers Represent connections to/from your SIP peering’s network. The parameters include an IP address and/or a

hostname of the remote part. For outbound calls, this is the destination address where to send calls to and for inbound calls it

is an IP authorization of the remote server.

• Outbound/Inbound Peering Rules Outbound rules define through which SIP peering group a call from a specific subscriber will

be sent for termination to a specific destination.

The example below shows four SIP peering groups with different priorities, callee prefixes (actual destinations offered by this SIP

peering) and callee / called patterns (fine-tuning which callee request URIs and caller URIs are allowed through this SIP peering

group).

24

The Sipwise C5 PRO Handbook mr6.5.11 25 / 601

The figure shows how calls from premium subscribers can in the first place be routed through a dedicated SIP peering group

unavailable to regular subscribers.

See the Routing Order Selection section for details about call routing.

Inbound rules allow filtering out incoming INVITE requests arriving from the corresponding SIP peering servers.

25

The Sipwise C5 PRO Handbook mr6.5.11 26 / 601

5 VoIP Service Configuration Scenario

A basic VoIP service configuration is fast, easy and straight-forward. Provided that your network and required DNS records have

been preconfigured, the configuration of a VoIP service can be done purely via the administrative web interface. The configuration

mainly includes the following steps:

• Reseller creation (optional)

• SIP domain configuration

• Customer creation

• Subscribers provisioning

Let us assume you are using the 1.2.3.4 IP address with an associated sip.yourdomain.com domain to provision VoIP services.

This allows you to provide an easy-to-remember domain name instead of the IP address as the proxy server. Also, your sub-

scribers’ URIs will look like 1234567@sip.yourdomain.com.

Tip

Using an IP address instead of an associated FQDN (domain name) for a SIP domain is not suggested as it could add extra

administrative work if you decide to relocate your servers to another datacenter or just change IP addresses.

Go to the Administrative Web Panel (Admin Panel) running on https://<ip>:1443/login/admin and follow the steps below. The

default web panel user and password are administrator, if you have not already changed it.

5.1 Creating a SIP Domain

A SIP domain is a connection point for your subscribers. The SIP domain also contains specific default configuration for all its

subscribers.

Tip

Thoroughly plan your domain names policy in advance and take into account that: 1) the name of a SIP domain cannot be

changed after creating it in the administrative web panel; 2) subscribers cannot be moved from one domain to another and

must be recreated.

To create a SIP domain, follow these steps:

1. Firstly, configure an FQDN on your DNS server for it.

The domain name must point to the physical IP address you are going to use for providing the VoIP service. A good

approach is to create an SRV record:

SIP via UDP on port 5060

SIP via TCP on port 5060

SIP via TCP/TLS on port 5061

26

The Sipwise C5 PRO Handbook mr6.5.11 27 / 601

2. Create a new SIP domain in the administrative web panel.

Go to the Domains page and create a new SIP Domain using the FQDN created above.

Select a Reseller who will own the subscribers in this SIP domain. Use the default virtual reseller if you provide services

directly. Enter your SIP domain name and press Save.

3. Adjust the new SIP domain’s preferences if necessary.

You can create multiple SIP domains reusing the existing IP address or adding a new one. Extra SIP domains are required e.g. if

you would like to host a virtual operator on your platform, create separate domains for providing services in different countries or

just offer a new service.

5.2 Creating a Customer

A Customer is a special type of contract acting as legal and billing information container for SIP subscribers. A customer can have

one or more SIP subscriber entities that represent SIP lines.

Tip

For correct billing, notification and invoicing, create a customer with a single SIP subscriber for the residential service (as it

normally has only one telephone line) and a customer with multiple SIP subscribers to provide a service to a company with

many telephone lines.

To create a Customer, go to Settings→Customers.

27

The Sipwise C5 PRO Handbook mr6.5.11 28 / 601

Click on Create Customer.

28

The Sipwise C5 PRO Handbook mr6.5.11 29 / 601

Each Customer has a Contact — a container for the personal and legal information that identifies a private or corporate customer.

Tip

Create a dedicated Contact for every Customer as it contains specific data e.g. name, address and IBAN that identifies this

customer.

Click on Create Contact to create a new Contact.

29

The Sipwise C5 PRO Handbook mr6.5.11 30 / 601

Select the required Reseller and enter the contact details (at least an Email is required), then press Save.

30

The Sipwise C5 PRO Handbook mr6.5.11 31 / 601

You will be redirected back to the Customer form. The newly created Contact is selected by default now, so only select a Billing

Profile and press Save.

You will now see your first Customer in the list. Hover over the customer and click Details to make extra configuration if necessary.

31

The Sipwise C5 PRO Handbook mr6.5.11 32 / 601

5.3 Creating a Subscriber

In your Customer details view, click on the Subscribers row, then click Create Subscriber.

32

The Sipwise C5 PRO Handbook mr6.5.11 33 / 601

Select a SIP Domain created earlier and specify required and optional parameters:

• Domain: The domain part of the SIP URI for your subscriber.

• E164 Number: This is the telephone number mapped to the subscriber, separated into Country Code (CC), Area Code (AC)

and Subscriber Number (SN). For the first tests, you can set an imaginary number here and change it later when you get number

blocks assigned by your PSTN interconnect partner. So in our example, we’ll use 43 as CC, 99 as AC and 1001 as SN to form

the imaginary number +43 99 1001.

Tip

This number can actually be used to place calls between local subscribers, even if you don’t have any PSTN interconnection.

This comes in handy if you use phones instead of soft-clients for your tests. The format in which this number can be dialled, so

the subscriber is reached is defined in Section 5.7.

Important

Sipwise C5 allows a single subscriber to have multiple E.164 numbers to be used as aliases for receiving incoming calls.

Also, Sipwise C5 supports so-called "implicit" extensions. If a subscriber has phone number 012345, but somebody

calls 012345100, then NGCP first tries to send the call to number 012345100 (even though the user is registered as

012345). If Sipwise C5 then receives the 404 - Not Found response, it falls back to 012345 (the user-part with which

the callee is registered).

33

The Sipwise C5 PRO Handbook mr6.5.11 34 / 601

• Email: An email address for sending service-related notifications to.

• Web Username: This is the user part of the username the subscriber may use to log into her Customer Self Care Interface. The

user part will be automatically suffixed by the SIP domain you choose for the SIP URI. Usually, the web username is identical to

the SIP URI, but you may choose a different naming schema.

Caution

The web username needs to be unique. The system will return a fault if you try to use the same web username twice.

• Web Password: This is the password for the subscriber to log into her Customer Self Care Interface. It must be at least 6

characters long.

• SIP Username: The user part of the SIP URI for your subscriber.

• SIP Password: The password of your subscriber to authenticate on the SIP proxy. It must be at least 6 characters long.

• Status: You can lock a subscriber here, but for creating one, you will most certainly want to use the active status.

• External ID: You can provision an arbitrary string here (e.g. an ID of a 3rd party provisioning/billing system).

• Administrative: If you have multiple subscribers in one account and set this option for one of them, this subscriber can admin-

istrate other subscribers via the Customer Self Care Interface.

34

The Sipwise C5 PRO Handbook mr6.5.11 35 / 601

35

The Sipwise C5 PRO Handbook mr6.5.11 36 / 601

Repeat the creation of Customers and Subscribers for all your test accounts. You should have at least 3 subscribers to test the

functionality of the NGCP.

Tip

At this point, you’re able to register your subscribers to Sipwise C5 and place calls between these subscribers.

You should now revise the Domain and Subscriber Preferences.

5.4 Domain Preferences

The Domain Preferences are the default settings for Subscriber Preferences, so you should set proper values there if you don’t

want to configure each subscriber separately. You can later override these settings in the Subscriber Preferences if particular

subscribers need special settings. To configure your Domain Preferences, go to Settings→Domains and click on the Preferences

button of the domain you want to configure.

36

The Sipwise C5 PRO Handbook mr6.5.11 37 / 601

The most important settings are in the Number Manipulations group.

Here you can configure the following:

• for incoming calls - which SIP message headers to take numbers from

• for outgoing calls - where in the SIP messages to put certain numbers to

• for both - how these numbers are normalized to E164 format and vice versa

To assign a Rewrite Rule Set to a Domain, create a set first as described in Section 5.7, then assign it to the domain by editing

the rewrite_rule_set preference.

37

The Sipwise C5 PRO Handbook mr6.5.11 38 / 601

Select the Rewrite Rule Set and press Save.

38

The Sipwise C5 PRO Handbook mr6.5.11 39 / 601

Then, select the field you want the User Provided Number to be taken from for inbound INVITE messages. Usually the From-

Username should be fine, but you can also take it from the Display-Name of the From-Header, and other options are available as

well.

5.5 Subscriber Preferences

You can override the Domain Preferences on a subscriber basis as well. Also, there are Subscriber Preferences which don’t have

a default value in the Domain Preferences.

To configure your Subscriber, go to Settings→Subscribers and click Details on the row of your subscriber. There, click on the

Preferences button on top.

You want to look into the Number Manipulations and Access Restrictions options in particular, which control what is used as

user-provided and network-provided calling numbers.

• For outgoing calls, you may define multiple numbers or patterns to control what a subscriber is allowed to send as user-provided

calling numbers using the allowed_clis preference.

• If allowed_clis does not match the number sent by the subscriber, then the number configured in cli (the network-provided

number) preference will be used as user-provided calling number instead.

• You can override any user-provided number coming from the subscriber using the user_cli preference.

39

The Sipwise C5 PRO Handbook mr6.5.11 40 / 601

Note

Subscribers preference allowed_clis will be synchronized with subscribers primary number and aliases if oss-

bss→provisioning→auto_allow_cli is set to 1 in /etc/ngcp-config/config.yml.

Note

Subscribers preference cli will be synchronized with subscribers primary number if ossbss→provisioning→auto_sync_cli is

set to yes in /etc/ngcp-config/config.yml.

5.6 Creating Peerings

If you want to terminate calls at or allow calls from 3rd party systems (e.g. PSTN gateways, SIP trunks), you need to create SIP

peerings for that. To do so, go to Settings→Peerings. There you can add peering groups, and for each peering group add peering

servers and rules controlling which calls are routed over these groups. Every peering group needs a peering contract for correct

interconnection billing.

5.6.1 Creating Peering Groups

Click on Create Peering Group to create a new group.

In order to create a group, you must select a peering contract. You will most likely want to create one contract per peering group.

40

The Sipwise C5 PRO Handbook mr6.5.11 41 / 601

Click on Create Contract create a Contact, then select a Billing Profile.

Click Save on the Contacts form, and you will get redirected back to the form for creating the actual Peering Group. Put a name,

priority and description there, for example:

• Peering Contract: select the id of the contract created before

• Name: test group

• Priority: 1

• Description: peering to a test carrier

41

The Sipwise C5 PRO Handbook mr6.5.11 42 / 601

The Priority option defines which Peering Group to favor (Priority 1 gives the highest precedence) if two peering groups have

peering rules matching an outbound call. Peering Rules are described below.

Then click Save to create the group.

5.6.2 Creating Peering Servers

In the group created before, you need to add peering servers to route calls to and receive calls from. To do so, click on Details on

the row of your new group in your peering group list.

To add your first Peering Server, click on the Create Peering Server button.

42

The Sipwise C5 PRO Handbook mr6.5.11 43 / 601

Figure 13: Create Peering Server

In this example, we will create a peering server with IP 2.3.4.5 and port 5060:

• Name: test-gw-1

• IP Address: 2.3.4.5

• Hostname: leave empty

• Port: 5060

• Protocol: UDP

• Weight: 1

• Via Route: None

43

The Sipwise C5 PRO Handbook mr6.5.11 44 / 601

Figure 14: Peering Server Properties

Click Save to create the peering server.

Tip

The hostname field for a peering server is optional. Usually, the IP address of the peer is used as the domain part of the

Request URI. Fill in this field if a peer requires a particular hostname instead of the IP address. The IP address must always be

given though as it is used for the selection of the inbound peer. By default outbound requests will always be sent to the specified

IP address, no matter what you put into the hostname field. If you want to send the request using the DNS resolution of the

configured hostname, disregarding in that way the IP, you have to enable outbound_hostname_resolution option in

peer preferences.

Tip

If you want to add a peering server with an IPv6 address, enter the address without surrounding square brackets into the IP

Address column, e.g. ::1.

You can force an additional hop (e.g. via an external SBC) towards the peering server by using the Via Route option. The available

options you can select there are defined in /etc/ngcp-config/config.yml, where you can add an array of SIP URIs in

44

The Sipwise C5 PRO Handbook mr6.5.11 45 / 601

kamailio→lb→external_sbc like this:

kamailio:

lb:

external_sbc:

- sip:192.168.0.1:5060

- sip:192.168.0.2:5060

Execute ngcpcfg apply "added external sbc gateways", then edit your peering server and select the hop from

the Via Route selection.

Once a peering server has been created, this server can already send calls to the system.

5.6.2.1 Outbound Peering Rules

Important

To be able to send outbound calls towards the servers in the Peering Group, you also need to define Outbound Peering

Rules. They specify which source and destination numbers are going to be terminated over this group. To create a rule,

click the Create Outbound Peering Rule button.

Figure 15: Create Outbound Peering Rule

45

The Sipwise C5 PRO Handbook mr6.5.11 46 / 601

Since the previously created peering group will be the only one in our example, we have to add a default rule to route all calls via

this group. To do so, create a new peering rule with the following values:

• Callee Prefix: leave empty

• Callee Pattern: leave empty

• Caller Pattern: leave empty

• Description: Default Rule

Figure 16: Outbound Peering Rule Properties

Then click Save to add the rule to your group.

Tip

In contrast to the callee/caller pattern, the callee prefix has a regular alphanumeric string and can not contain any regular

expression.

Tip

If you set the caller or callee rules to refine what is routed via this peer, enter all phone numbers in full E.164 format, that is

<cc><ac><sn>.

Tip

The Caller Pattern field covers the whole URI including the subscriber domain, so you can only allow certain domains over this

peer by putting for example @example\.com into this field.

46

The Sipwise C5 PRO Handbook mr6.5.11 47 / 601

5.6.2.2 Inbound Peering Rules

Starting from mr5.0 release, Sipwise C5 supports filtering SIP INVITE requests sent by SIP peers. The system administrator may

define one or more matching rules for SIP URIs that are present in the headers of SIP INVITE requests, and select which SIP

header (or part of the header) must match the pattern declared in the rule.

If the incoming SIP INVITE message has the proper headers, Sipwise C5 will accept and further process the request. If the

message does not match the rule it will be rejected.

Caution

An incoming SIP INVITE message must match all the inbound peering rules so that Sipwise C5 does not reject the

request.

In order to create an inbound peering rule you have to select a peering group, press Details and then press Create Inbound

Peering Rule button.

Figure 17: Create Inbound Peering Rule

47

The Sipwise C5 PRO Handbook mr6.5.11 48 / 601

An inbound peering rule has the following properties:

Figure 18: Inbound Peering Rule Properties

• Match Field: select which header and which part of that header in a SIP INVITE message will be checked for matching the

pattern

• Pattern: a POSIX regular expression that defines the accepted value of a header; example: ˆsip:.+@example\.org$

— this will match a SIP URI that contains "example.org" in the domain part

• Reject code: optional; a SIP status code that will be sent as a response to an INVITE request that does not match the

pattern; example: 403

• Reject reason: optional; an arbitrary text that will be included in the SIP response sent with the reject code

• Enabled: a flag to enable / disable the particular inbound peering rule

Note

Both of the properties Reject code and Reject reason must be left empty if a peering server (i.e. a specific IP

address) is part of more peering groups. Such a configuration is useful when an incoming SIP INVITE request needs to

be treated differently in the affected peering groups, based on its content, and that’s why if the INVITE message only partly

matches an inbound peering rule it should not simply be rejected.

When all settings for a peering group are done the details of the group look like:

48

The Sipwise C5 PRO Handbook mr6.5.11 49 / 601

Figure 19: Peering Servers Overview

5.6.2.3 Routing Order Selection

The selection of peering groups and peering servers for outgoing calls is done in the following way:

1. All peering groups that meet the following criteria configured in the outbound peering rule are added to the list of routes for

a particular call:

• Callee’s username matches callee prefix

• Callee’s URI matches callee pattern

• Caller’s URI matches caller pattern

2. When all matching peering groups are selected, they are ordered by callee prefix according to the longest match basis

(sometimes referred to as the longest pattern match or maximum pattern length match). One or more peering group

with longest callee prefix match will be given first positions on the list of routes.

49

The Sipwise C5 PRO Handbook mr6.5.11 50 / 601

3. Peering groups with the same callee prefix length are further ordered by Priority. Peering group(s) with the higher priorities

will occupy higher positions.

Important

Priority 1 gives the highest precedence to the corresponding peering group. Hence, a lower priority value will

put the peering group higher in the list of routes (compared to other peering groups with the same callee prefix

length).

Priority can be selected from 1 (highest) to 9 (lowest).

4. All peering servers in the peering group with the highest priority (e.g. priority 1) are tried one-by-one starting from the

highest server weight. Peering groups with lower priorities or with shorter callee prefix will be used only for fail-over.

The weight of the peering servers in the selected peering group will influence the order in which the servers within the

group will be tried for routing the outbound call. The weight of a server can be set in the range from 1 to 127.

Important

Opposite to the peering group priority, a peering server with a higher weight value has a higher precedence, but the

server weight rather sets a probability than a strict order. E.g. although a peering server with weight 127 has the highest

chance to be the first in the list of routes, another server with a lower weight (e.g. 100) sometimes will be selected first.

In order to find out this probability knowing the weights of peering servers, use the following script:

#!/usr/bin/perl

#This script can be used to find out actual probabilities

#that correspond to a list of peering weights.

$num_args = $#ARGV + 1;

if ($num_args < 1) {

print "Usage: lcr_weight_test.pl <list of weights (integers 1-254)>\n";

exit 0;

}

my $iters = 10000;

my @rands;

for (my $i=1; $i <= $iters; $i++) {

my %elem;

for (my $j=0; $j < $num_args; $j++) {

my $random = int(rand(2000000000));

$elem{"$j"} = $ARGV[$j] * $random;

}

push(@rands, \%elem);

}

50

The Sipwise C5 PRO Handbook mr6.5.11 51 / 601

my @counts;

for (my $j=0; $j < $num_args; $j++) {

$counts["$j"] = 0;

}

foreach my $rand (@rands) {

my $higher = 0;

my $higher_key = 0;

foreach $key (keys %{$rand}) {

if ($rand->{$key} > $higher) {

$higher = $rand->{$key};

$higher_key = $key;

}

}

$counts[$higher_key]++;

}

for (my $j=0; $j < $num_args; $j++) {

my $prob = $counts[$j]/$iters;

print "Peer with weight $ARGV[$j] has probability $prob \n";

}

Let us say you have 2 peering servers, one with weight 1 and another with weight 2. At the end — running the script as below —

you will have the following traffic distribution:

lcr_weight_test.pl 1 2

Peer with weight 1 has probability 0.2522

Peer with weight 2 has probability 0.7478

If a peering server replies with SIP codes 408, 500 or 503, or if a peering server doesn’t respond at all, the next peering server

in the current peering group is tried as a fallback. All the servers within the group are tried one after another until the call succeeds.

If no more servers are left in the current peering group, the next group which matches the outbound peering rules is used.

Note

The Sipwise C5 may use a slightly different approach in selecting the appropriate peering server if the peer probing feature is

enabled. See the details in Section 6.11 of the handbook.

5.6.2.4 Least Cost Routing (LCR) Configuration

The default call routing uses statically configured peering group priorities to decide where to send the calls. This solution is useful

when you have an external SBC that makes all the routing decisions and is described in the Routing Order Selection section.

Sipwise C5 also allows you routing calls to the cheapest SIP peers saving your termination cost.

To enable LCR routing, do the following:

51

The Sipwise C5 PRO Handbook mr6.5.11 52 / 601

• Upload the billing fees provided by your peers to the corresponding peering billing profiles

• Enable the LCR module in config.yml (kamailio.proxy.perform_peer_lcr: yes)

When the LCR routing is enabled, the selection of peering groups would be the following:

1. All peering groups that meet the following criteria configured in the outbound peering rule are added to the list of routes for

a particular call (for pure LCR you might want to omit these filters leaving them blank):

• Callee’s username matches callee prefix

• Callee’s URI matches callee pattern

• Caller’s URI matches caller pattern

2. When all matching peering groups are selected, the longest matching callee prefix is selected from each of them. And the

peering groups are temporary ordered according to the longest matching prefix and priority.

3. Then, the LCR module re-orders the peering groups starting from the lowest termination cost to the highest (ignoring the

prefix length and peering group priorities).

4. The platform will first route the call to the servers of the first peering group in this list. If no peering server can terminate the

call, the call would fail-over to the second peering group from the list and so on.

Note

The peering servers in every peering group are sorted and tried according to their weight as described in the previous

section.

Let us consider a short example. There are two peering groups (PG1 and PG2) that can deliver calls to New York (e.g.

12121234567) and they have the following rates:

Peering Group Prefix Cost Description

PG1 1 0.02 USA & Canada

PG2 1 0.05 USA & Canada

1212 0.03 New York, USA

PG1 has only one rate that matches the dialed number, so that it will be taken into account, PG2 has two rates and the longest

will be selected. The call will be routed to PG1 servers first as it has a cheaper price and can fail-over to PG2 servers.

The Sipwise C5 LCR feature together with the codec filtering, media transcoding, header manipulations, SIP, and RTP encryption

and other SBC features make an external SBC unnecessary. This simplifies your VoIP network and cuts deployment and operation

costs.

52

The Sipwise C5 PRO Handbook mr6.5.11 53 / 601

5.6.3 Authenticating and Registering against Peering Servers

5.6.3.1 Proxy-Authentication for outbound calls

If a peering server requires Sipwise C5 to authenticate for outbound calls (by sending a 407 as response to an INVITE), then you

have to configure the authentication details in the Preferences view of your peer host.

Figure 20: Select Peering Server Preferences

To configure this setting, open the Remote Authentication tab and edit the following three preferences:

• peer_auth_user: <username for peer auth>

• peer_auth_pass: <password for peer auth>

• peer_auth_realm: <domain for peer auth>

53

The Sipwise C5 PRO Handbook mr6.5.11 54 / 601

Important

If you do NOT authenticate against a peer host, then the caller CLI is put into the From and P-Asserted-Iden

tity headers, e.g. "+4312345" <sip:+4312345@your-domain.com>. If you DO authenticate, then the

From header is "+4312345" <sip:your_peer_auth_user@your_peer_auth_realm> (the CLI is in

the Display field, the peer_auth_user in the From username and the peer_auth_realm in the From domain), and the

P-Asserted-Identity header is as usual like <sip:+4312345@your-domain.com>. So for presenting

the correct CLI in CLIP no screening scenarios, your peering provider needs to extract the correct user either from the

From Display-Name or from the P-Asserted-Identity URI-User.

Tip

If peer_auth_realm is set, the system may overwrite the Request-URI with the peer_auth_realm value of the peer when sending

the call to that peer or peer_auth_realm value of the subscriber when sending a call to the subscriber. Since this is rarely a

desired behavior, it is disabled by default starting with Sipwise C5 release 3.2. If you need the replacement, you should set

set_ruri_to_peer_auth_realm: ’yes’ in /etc/ngcp-config/config.yml.

5.6.3.2 Registering at a Peering Server

Unfortunately, the credentials configured above are not yet automatically used to register Sipwise C5 at your peer hosts. There is

however an easy manual way to do so, until this is addressed.

54

The Sipwise C5 PRO Handbook mr6.5.11 55 / 601

Configure your peering servers with the corresponding credentials in /etc/ngcp-config/templates/etc/ngcp-sems/etc/reg_agent.conf.tt2,

then execute ngcpcfg apply "added upstream credentials".

Important

Be aware that this will force SEMS to restart, which will drop running conference calls.

5.7 Configuring Rewrite Rule Sets

On the NGCP, every phone number is treated in E.164 format <country code><area code><subscriber number>. Rewrite Rule

Sets is a flexible tool to translate the caller and callee numbers to the proper format before the routing lookup and after the routing

lookup separately. The created Rewrite Rule Sets can be assigned to the domains, subscribers and peers as a preference. Here

below you can see how the Rewrite Rules are used by the system:

As from the image above, following the arrows, you will have an idea about which type of Rewrite Rules are applied during a call.

In general:

• Call from local subscriber A to local subscriber B: Inbound RR from local Domain/Subscriber A and Outbound Rewrite Rules

from local Domain/Subscriber B.

• Call from local subscriber A to the peer: Inbound RR from local Domain/Subscriber A and Outbound Rewrite Rules from the

peer.

• Call from peer to local subscriber B: Inbound RR from the Peer and Outbound Rewrite Rules from local Domain/Subscriber B.

You would normally begin with creating a Rewrite Rule Set for your SIP domains. This is used to control what an end user can dial

for outbound calls, and what is displayed as the calling party on inbound calls. The subscribers within a domain inherit Rewrite

Rule Sets of that domain, unless this is overridden by a subscriber Rewrite Rule Set preference.

You can use several special variables in the Rewrite Rules, below you can find a list of them. Some examples of how to use them

are also provided in the following sections:

55

The Sipwise C5 PRO Handbook mr6.5.11 56 / 601

• ${caller_cc} : This is the value taken from the subscriber’s preference CC value under Number Manipulation

• ${caller_ac} : This is the value taken from the subscriber’s preference AC value under Number Manipulation

• ${caller_emergency_cli} : This is the value taken from the subscriber’s preference emergency_cli value under Number

Manipulation

• ${caller_emergency_prefix} : This is the value taken from the subscriber’s preference emergency_prefix value under

Number Manipulation

• ${caller_emergency_suffix} : This is the value taken from the subscriber’s preference emergency_suffix value under

Number Manipulation

• ${caller_cloud_pbx_base_cli} :This is the value taken from the Primary Number field from section Details→Master

Data of the Pilot Subscriber for a particular PBX customer.

To create a new Rewrite Rule Set, go to Settings→Rewrite Rule Sets. There you can create a Set identified by a name. This

name is later shown in your peer-, domain- and user-preferences where you can select the rule set you want to use.

Click Create Rewrite Rule Set and fill in the form accordingly.

56

The Sipwise C5 PRO Handbook mr6.5.11 57 / 601

Press the Save button to create the set.

To view the Rewrite Rules within a set, hover over the row and click the Rules button.

57

The Sipwise C5 PRO Handbook mr6.5.11 58 / 601

The rules are ordered by Caller and Callee as well as direction Inbound and Outbound.

Tip

In Europe, the following formats are widely accepted: +<cc><ac><sn>, 00<cc><ac><sn> and 0<ac><sn>. Also, some countries

allow the areacode-internal calls where only subscriber number is dialed to reach another number in the same area. Within this

section, we will use these formats to show how to use rewrite rules to normalize and denormalize number formats.

5.7.1 Inbound Rewrite Rules for Caller

These rules are used to normalize user-provided numbers (e.g. passed in From Display Name or P-Preferred-Identity headers)

into E.164 format. In our example, we’ll normalize the three different formats mentioned above into E.164 format.

To create the following rules, click on the Create Rewrite Rule for each of them and fill them with the values provided below.

STRIP LEADING 00 OR +

• Match Pattern: ˆ(00|\+)([1-9][0-9]+)$

• Replacement Pattern: \2

• Description: International to E.164

• Direction: Inbound

58

The Sipwise C5 PRO Handbook mr6.5.11 59 / 601

• Field: Caller

REPLACE 0 BY CALLER’S COUNTRY CODE:

• Match Pattern: ˆ0([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}\1

• Description: National to E.164

• Direction: Inbound

• Field: Caller

NORMALIZE LOCAL CALLS:

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}${caller_ac}\1

• Description: Local to E.164

• Direction: Inbound

• Field: Caller

Normalization for national and local calls is possible with special variables ${caller_cc} and ${caller_ac} that can be

used in Replacement Pattern and are substituted by the country and area code accordingly during the call routing.

59

The Sipwise C5 PRO Handbook mr6.5.11 60 / 601

Important

These variables are only being filled in when a call originates from a subscriber (because only then the cc/ac information

is known by the system), so you can not use them when a calls comes from a SIP peer (the variables will be just empty

in this case).

Tip

When routing a call, the rewrite processing is stopped after the first match of a rule, starting from top to bottom. If you have

two rules (e.g. a generic one and a more specific one), where both of them would match some numbers, reorder them with the

up/down arrows into the appropriate position.

5.7.2 Inbound Rewrite Rules for Callee

These rules are used to rewrite the number the end user dials to place a call to a standard format for routing lookup. In our

example, we again allow the three different formats mentioned above and again normalize them to E.164, so we put in the same

rules as for the caller.

STRIP LEADING 00 OR +

• Match Pattern: ˆ(00|\+)([1-9][0-9]+)$

• Replacement Pattern: \2

60

The Sipwise C5 PRO Handbook mr6.5.11 61 / 601

• Description: International to E.164

• Direction: Inbound

• Field: Callee

REPLACE 0 BY CALLER’S COUNTRY CODE:

• Match Pattern: ˆ0([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}\1

• Description: National to E.164

• Direction: Inbound

• Field: Callee

NORMALIZE AREACODE-INTERNAL CALLS:

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}${caller_ac}\1

• Description: Local to E.164

• Direction: Inbound

• Field: Callee

Tip

Our provided rules will only match if the caller dials a numeric number. If he dials an alphanumeric SIP URI, none of our rules

will match and no rewriting will be done. You can however define rules for that as well. For example, you could allow your end

users to dial support and rewrite that to your support hotline using the match pattern ˆsupport$ and the replace pattern

43800999000 or whatever your support hotline number is.

5.7.3 Outbound Rewrite Rules for Caller

These rules are used to rewrite the calling party number for a call to an end user. For example, if you want the device of your

end user to show 0<ac><sn> if a national number calls this user, and 00<cc><ac><sn> if an international number calls, put the

following rules there.

REPLACE AUSTRIAN COUNTRY CODE 43 BY 0

• Match Pattern: ˆ43([1-9][0-9]+)$

• Replacement Pattern: 0\1

• Description: E.164 to Austria National

61

The Sipwise C5 PRO Handbook mr6.5.11 62 / 601

• Direction: Outbound

• Field: Caller

PREFIX 00 FOR INTERNATIONAL CALLER

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: 00\1

• Description: E.164 to International

• Direction: Outbound

• Field: Caller

Tip

Note that both of the rules would match a number starting with 43, so reorder the national rule to be above the international

one (if it’s not already the case).

5.7.4 Outbound Rewrite Rules for Callee

These rules are used to rewrite the called party number immediately before sending out the call on the network. This gives you an

extra flexibility by controlling the way request appears on a wire, when your SBC or other device expects the called party number

to have a particular tech-prefix. It can be used on calls to end users too if you want to do some processing in intermediate SIP

device, e.g. apply legal intercept selectively to some subscribers.

PREFIX SIPSP# FOR ALL CALLS

• Match Pattern: ˆ([0-9]+)$

• Replacement Pattern: sipsp#\1

• Description: Intercept this call

• Direction: Outbound

• Field: Callee

5.7.5 Emergency Number Handling

There are 2 ways to handle calls from local subscribers to emergency numbers in NGCP:

• Simple emergency number handling: inbound rewrite rules append an emergency tag to the called number, this will be recog-

nised by NGCP’s call routing logic and the call is routed directly to a peer. Please read the next section for details of simple

emergency number handling.

• An emergency number mapping is applied: a dedicated emergency number mapping database is consulted in order to obtain

the most appropriate routing number of emergency services. This logic ensures that the caller will contact the geographically

closest emergency service. Please visit the Emergency Mapping Section 6.6 section of the handbook for more details.

62

The Sipwise C5 PRO Handbook mr6.5.11 63 / 601

5.7.5.1 Simple Emergency Number Handling Overview

The overview of emergency call processing is as follows:

Figure 21: Simple Emergency Call Handling

Configuring Emergency Numbers is also done via Rewrite Rules.

5.7.5.2 Tagging Inbound Emergency Calls

For Emergency Calls from a subscriber to the platform, you need to define an Inbound Rewrite Rule For Callee, which adds a

prefix emergency_ to the number (and can rewrite the number completely as well at the same time). If the proxy detects a call

to a SIP URI starting with emergency_, it will enter a special routing logic bypassing various checks which might make a normal

call fail (e.g. due to locked or blocked numbers, insufficient credits or exceeding the max. amount of parallel calls).

TAG AN EMERGENCY CALL

• Match Pattern: ˆ(911|112)$

• Replacement Pattern: emergency_\1

63

The Sipwise C5 PRO Handbook mr6.5.11 64 / 601

• Description: Tag Emergency Numbers

• Direction: Inbound

• Field: Callee

To route an Emergency Call to a Peer, you can select a specific peering group by adding a peering rule with a callee prefix set to

emergency_ to a peering group.

5.7.5.3 Normalize Emergency Calls for Peers

In order to normalize the emergency number to a valid format accepted by the peer, you need to assign an Outbound Rewrite Rule

For Callee, which strips off the emergency_ prefix. You can also use the variables ${caller_emergency_cli}, ${cal

ler_emergency_prefix} and ${caller_emergency_suffix} as well as ${caller_ac} and ${caller_cc},

which are all configurable per subscriber to rewrite the number into a valid format.

NORMALIZE EMERGENCY CALL FOR PEER

• Match Pattern: ˆemergency_(.+)$

• Replacement Pattern: ${caller_emergency_prefix}${caller_ac}\1

• Description: Normalize Emergency Numbers

• Direction: Outbound

• Field: Callee

5.7.6 Assigning Rewrite Rule Sets to Domains and Subscribers

Once you have finished to define your Rewrite Rule Sets, you need to assign them. For sets to be used for subscribers, you can

assign them to their corresponding domain, which then acts as default set for all subscribers. To do so, go to Settings→Domains

and click Preferences on the domain you want the set to assign to. Click on Edit and select the Rewrite Rule Set created before.

64

The Sipwise C5 PRO Handbook mr6.5.11 65 / 601

You can do the same in the Preferences of your subscribers to override the rule on a subscriber basis. That way, you can finely

control down to an individual user the dial-plan to be used. Go to Settings→Subscribers, click the Details button on the subscriber

you want to edit, the click the Preferences button.

5.7.7 Creating Dialplans for Peering Servers

For each peering server, you can use one of the Rewrite Rule Sets that was created previously as explained in Section 5.7 (keep

in mind that special variables ${caller_ac} and ${caller_cc} can not be used when the call comes from a peer). To do

so, click on the name of the peering server, look for the preference called Rewrite Rule Sets.

If your peering servers don’t send numbers in E.164 format <cc><ac><sn>, you need to create Inbound Rewrite Rules for each

peering server to normalize the numbers for caller and callee to this format, e.g. by stripping leading + or put them from national

into E.164 format.

Likewise, if your peering servers don’t accept this format, you need to create Outbound Rewrite Rules for each of them, for

example to append a + to the numbers.

5.7.8 Call Routing Verification

The Sipwise C5 provides a utility that helps with the verification of call routing among local subscribers and peers. It is called

Call Routing Verification and employs rewrite rules and peer selection rules, in order to process calling and called numbers or SIP

users and find the appropriate peer for the destination.

65

The Sipwise C5 PRO Handbook mr6.5.11 66 / 601

The Call Routing Verification utility performs only basic number processing and does not invoke the full number manipulation logic

applied on real calls. The goal is to enable testing of rewrite rules, rather than validate the complete number processing.

• What is considered during the test:

– subscriber preferences: cli and allowed_clis

– domain / subscriber / peer rewrite rules

• What is not taken into account during the test:

– other subscriber or peer preferences

– LNP (Local Number Portability) lookup on called numbers; LNP rewrite rules

You can access the utility following the path on Admin web interface: Tools→ Call Routing Verification.

Expected input data

• Caller number/uri: 2 formats are accepted in this field:

– A simple phone number in international (00431.., +431..) or E.164 (431..) format.

– A SIP URI in username@domain format (without adding "sip:" at the beginning).

• Callee number/uri: The same applies as for Caller number/uri.

• Caller Type: Select Subscriber or Peer, depending on the source of the call.

• Caller Subscriber or Caller Peer: Optionally, you can select the subscriber or peer explicitly. Without the explicit

selection, however, the Call Routing Verification tool is able to find the caller in the database, based on the provided number /

URI.

• Caller RWR Override, Callee RWR Override, Callee Peer Override: The caller / callee rewrite rules

and peer selection rules defined in domain, subscriber and peer preferences are used for call processing by default. But you

can also override them by explicitly selecting another rewrite or peer selection rule.

Examples

1. Using only phone numbers and explicit subscriber selection

• Input Data:

66

The Sipwise C5 PRO Handbook mr6.5.11 67 / 601

Figure 22: Call Routing Verif. - Only Numbers - Input

• Result:

67

The Sipwise C5 PRO Handbook mr6.5.11 68 / 601

Figure 23: Call Routing Verif. - Only Numbers - Result

2. Using phone number and URI, without explicit subscriber selection

• Input Data:

68

The Sipwise C5 PRO Handbook mr6.5.11 69 / 601

Figure 24: Call Routing Verif. - Number and URI - Input

• Result:

69

The Sipwise C5 PRO Handbook mr6.5.11 70 / 601

Figure 25: Call Routing Verif. - Number and URI - Result

70

The Sipwise C5 PRO Handbook mr6.5.11 71 / 601

6 Features

The Sipwise C5 provides plenty of subscriber features to offer compelling VoIP services to end customers, and also to cover as

many deployment scenarios as possible. In this chapter, we provide the features overview and describe their function and use

cases.

6.1 Managing System Administrators

The Sipwise C5 offers the platform operator with an easy to use interface to manage users with administrative privileges. Such

users are representatives of resellers, and are entitled to manage configuration of services for Customers, Subscribers, Domains,

Billing Profiles and other entities on Sipwise C5.

Administrators, as user accounts, are also used for client authentication on the REST API of NGCP.

There are two administrators, whose account is enabled by default. Both of them belong to the default reseller. These users

are the superusers of Sipwise C5 administrative web interface (the so-called "admin panel"), and they have the right to modify

administrators of other Resellers as well. These users are:

• "administrator" is a default administrative account. It is fully manageable by the system owner.

• "sipwise" is solely for the Sipwise support access. This user can be only enabled or disabled but nor modified neither removed.

6.1.1 Configuring Administrators

Configuration of access rights of system administrators is possible through the admin panel of NGCP. In order to do that, please

navigate to Settings→ Administrators.

Figure 26: List of System Administrators

71

The Sipwise C5 PRO Handbook mr6.5.11 72 / 601

You have 2 options:

• If you’d like to create a new administrator user press Create Administrator button.

• If you’d like to update an existing administrator user press Edit button in its row.

There are some generic attributes that have to be set for each administrator:

Figure 27: Generic System Administrator Attributes

• Reseller : each administrator user must belong to a Reseller. There is always a default reseller (ID: 1, Name: default), but

the administrator has to be assigned to his real reseller, if such an entity (other than default) exists.

• Login: the login name of the administrator user

• Password : the password of the administrator user for logging in the admin panel, or for authentication on REST API

The second set of attributes is a list of access rights that are discussed in subsequent section of the handbook.

6.1.2 Access Rights of Administrators

The various access rights of administrators are shown in the figure and summarized in the table below.

72

The Sipwise C5 PRO Handbook mr6.5.11 73 / 601

Figure 28: Access Rights of System Administrators

Table 1: Access Rights of System Administrators

Label in admin list Access Right Description

not shown Is superuser The user is allowed to modify data on Reseller level and — among

others — is able to modify administrators of other resellers. There

should be only 1 user on Sipwise C5 with this privilege.

Master Is master The user is allowed to create, delete or modify other Admins who

belong to the same Reseller.

Active Is active The user account is active, i.e. the admin user can login on the web

panel or authenticate himself on REST API; otherwise user

authentication will fail.

73

The Sipwise C5 PRO Handbook mr6.5.11 74 / 601

Table 1: (continued)

Label in admin list Access Right Description

Read Only Read only The user will only be able to list various data but is not allowed to

modify anything.

• For the web interface this means that Create. . . and Edit buttons

will be hidden or disabled.

• For the REST API this means that only GET, HEAD, OPTIONS

HTTP request methods are accepted, and Sipwise C5 will reject

those targeting data modification: PUT, PATCH, POST,

DELETE.

Show Passwords Show passwords The user sees subscriber passwords (in plain text) on the web

interface.

Note

Admin panel user passwords are stored in an unreadable way (cryp-

tographic hash digest) in the database, while subscriber passwords

are basically always stored in plain text. The latter happens on pur-

pose, e.g. to make subscriber data migration possible.

Show CDRs Call data This privilege has effect on 2 items that will be displayed on admin

panel of NGCP, when Subscriber→ Details is selected:

1. PBX Groups list

2. Captured Dialogs list

Show Billing Info Billing data Some REST API resources that are related to billing are disabled:

HTTP requests on /api/vouchers, /api/topupcash and /

api/topupvoucher resources are rejected.

Lawful Intercept Lawful

intercept

If the privilege is selected then the REST API for interceptions (that is:

/api/interceptions) is enabled; if the privilege is not selected

then the interceptions API is disabled.

Note

This means that besides enabling LI in config.yml configuration

file one also needs to enable the API via the LI privilege of an ad-

ministrator user, so that Sipwise C5 can really provide LI service.

74

The Sipwise C5 PRO Handbook mr6.5.11 75 / 601

6.2 Access Control for SIP Calls

There are two different methods to provide fine-grained call admission control to both subscribers and admins. One is Block Lists,

where you can define which numbers or patterns can be called from a subscriber to the outbound direction and which numbers or

patterns are allowed to call a subscriber in the inbound direction. The other is NCOS (Network Class of Service) Levels, where

the admin predefines rules for outbound calls, which are grouped in certain levels. The subscriber can then just choose the level,

or the admin can restrict a subscriber to a certain level. Also Sipwise C5 offers some options to restrict the IP addresses that

subscriber is allowed to use the service from. The following sections describe these features in detail.

6.2.1 Block Lists

Block Lists provide a way to control which users/numbers can call or be called, based on a subscriber level, and can be found in

the Call Blockings section of the subscriber preferences.

Block Lists are separated into Administrative Block Lists (adm_block_*) and Subscriber Block Lists (block_*). They both have

the same behaviour, but Administrative Block Lists take higher precedence. Administrative Block Lists are only accessible by the

system administrator and can thus be used to override any Subscriber Block Lists, e.g. to block certain destinations. The following

break-down of the various block features apply to both types of lists.

75

The Sipwise C5 PRO Handbook mr6.5.11 76 / 601

6.2.1.1 Block Modes

Block lists can either be whitelists or blacklists and are controlled by the User Preferences block_in_mode, block_out_mode and

their administrative counterparts.

• The blacklist mode (option is not checked tells the system to allow anything except the entries in the list. Use this mode if

you just want to block certain numbers and allow all the rest.

• The whitelist mode indicates to reject anything except the entries in the list. Use this mode if you want to enforce a strict

policy and allow only selected destinations or sources.

You can change a list mode from one to the other at any time.

6.2.1.2 Block Lists

The list contents are controlled by the User Preferences block_in_list, block_out_list and their administrative counterparts. Click

on the Edit button in the Preferences view to define the list entries.

In block list entries, you can provide shell patterns like * and []. The behavior of the list is controlled by the block_xxx_mode

feature (so they are either allowed or rejected). In our example above we have block_out_mode set to blacklist, so all calls to US

numbers and to the Austrian number +431234567 are going to be rejected.

Click the Close icon once you’re done editing your list.

76

The Sipwise C5 PRO Handbook mr6.5.11 77 / 601

6.2.1.3 Block Anonymous Numbers

For incoming call, the User Preference block_in_clir and adm_block_in_clir controls whether or not to reject incoming calls with

number supression (either "[Aa]nonymous" in the display- or user-part of the From-URI or a header Privacy: id is set). The

behavior of the flag is controlled by the block_in_mode and its administrative counterpart:

• if block_in_mode is set to blacklist, then block_in_clir has to be checked to block anonymous call

• if block_in_mode is set to whitelist, then block_in_clir has to be not checked to block anonymous call

6.2.2 NCOS (Network Class of Service) Levels

NCOS Levels provide predefined lists of allowed or denied destinations for outbound calls of local subscribers. Compared to Block

Lists, they are much easier to manage, because they are defined on a global scope, and the individual levels can then be assigned

to each subscriber. Again there is the distinction for the user- and administrative- levels.

In a case of a conflict, when the Block Lists feature allows a number and NCOS Levels rejects the same number or vice versa, the

call will be rejected.

NCOS levels can either be whitelists or blacklists.

• The blacklist mode indicates to allow everything except the entries in this level. Use this mode if you want to block specific

destinations and allow all the rest.

• The whitelist mode indicates to reject anything except the entries in this level. Use this mode if you want to enforce a strict

policy and allow only selected destinations.

6.2.2.1 Creating NCOS Levels

To create an NCOS Level, go to Settings→NCOS Levels and press the Create NCOS Level button.

77

The Sipwise C5 PRO Handbook mr6.5.11 78 / 601

Select a reseller, enter a name, select the mode and add a description, then click the Save button.

78

The Sipwise C5 PRO Handbook mr6.5.11 79 / 601

6.2.2.2 Creating Rules per NCOS Level

To define the rules within the newly created NCOS Level, click on the Patterns button of the level.

79

The Sipwise C5 PRO Handbook mr6.5.11 80 / 601

There are 2 groups of patterns where you can define matching rules for the selected NCOS Level:

• NCOS Number Patterns: here you can define number patterns that will be matched against the called number and allowed or

blocked, depending on whitelist / blacklist mode. The patterns are regular expressions.

• NCOS LNP Carriers: here you can select predefined LNP Carriers that will be allowed (whitelist mode) or prohibited (blacklist

mode) to route calls to them. (See Section 6.5.1 in the handbook for the description of LNP functionality)

80

The Sipwise C5 PRO Handbook mr6.5.11 81 / 601

Figure 29: NCOS Patterns List

In the NCOS Number Patterns view you can create multiple patterns to define your level, one after the other. Click on the Create

Pattern Entry Button on top and fill out the form.

Figure 30: Create NCOS Number Pattern

In this example, we block (since the mode of the level is blacklist) all numbers starting with 439. Click the Save button to save the

entry in the level.

81

The Sipwise C5 PRO Handbook mr6.5.11 82 / 601

There are 2 options that help you to easily define specific number ranges that will be allowed or blocked, depending on whitelist /

blacklist mode:

• Include local area code: all subscribers within the caller’s local area, e.g. if a subscriber has country-code 43 and area-code 1,

then selecting this checkbox would result in the implicit number pattern: ˆ431.

• Intra PBX calls within same customer : all subscribers that belong to the same PBX customer as the caller himself.

In the NCOS LNP Carriers view you can select specific LNP Carriers — i.e. carriers that host the called ported numbers — that

will be allowed or blocked for routing calls to them (whitelist / blacklist mode, respectively).

Sipwise C5 performs number matching always with the dialed number and not with the number generated after LNP lookup that

is: either the original dialed number prefixed with an LNP carrier code, or the routing number.

An example of NCOS LNP Carrier pattern definition:

Figure 31: Create NCOS LNP Carrier

In the above example we created a rule that blocks calls to "LNP_Carr1" carrier, supposing we use blacklist mode of the NCOS

Level.

Note

Currently Sipwise C5 does not support filtering of individual phone numbers in addition to LNP Carrier matching. In other words:

combining phone number and LNP Carrier patterns is not possible.

82

The Sipwise C5 PRO Handbook mr6.5.11 83 / 601

Tip

There might be situations when phone number patterns may not be strictly aligned with telephony providers, for instance in

case of full number portability in a country. In such cases using NCOS LNP Carriers patterns still allows for defining NCOS

levels that allow / block calls to mobile numbers, for example. In order to achieve this goal you have to list all LNP carriers in

the NCOS patterns that are known to host mobile numbers.

6.2.2.3 Assigning NCOS Levels to Subscribers/Domains

Once you’ve defined your NCOS Levels, you can assign them to local subscribers. To do so, navigate to Settings→Subscribers,

search for the subscriber you want to edit, press the Details button and go to the Preferences View. There, press the Edit button

on either the ncos or adm_ncos setting in the Call Blockings section.

You can assign the NCOS level to all subscribers within a particular domain. To do so, navigate to Settings→Domains, select the

domain you want to edit and click Preferences. There, press the Edit button on either ncos or admin_ncos in the Call Blockings

section.

Note: if both domain and subscriber have same NCOS preference set (either ncos or adm_ncos, or both) the subscriber’s prefer-

ence is used. This is done so that you can override the domain-global setting on the subscriber level.

83

The Sipwise C5 PRO Handbook mr6.5.11 84 / 601

6.2.2.4 Assigning NCOS Level for Forwarded Calls to Subscribers/Domains

In some countries there are regulatory requirements that prohibit subscribers from forwarding their numbers to special numbers

like emergency, police etc. While Sipwise C5 does not deny provisioning Call Forward to these numbers, the administrator can

prevent the incoming calls from being actually forwarded to numbers defined in the NCOS list: just select the appropriate NCOS

level in the domain’s or subscriber’s preference adm_cf_ncos. This NCOS will apply only to the Call Forward from the subscribers

and not to the normal outgoing calls from them.

6.2.3 IP Address Restriction

The Sipwise C5 provides subscriber and domain preference allowed_ips to restrict the IP addresses that a particular subscriber

or any subscribers within the respective domain is allowed to use the service from. If the REGISTER or INVITE request comes

from an IP address that is not in the allowed list, Sipwise C5 will reject it with a 403 message. Also a voice message can be played

when the call attempt is rejected (if configured).

By default, allowed_ips is an empty list which means that subscriber is not restricted. If you want to configure a restriction, navigate

to Settings→Subscribers→Preferences or Settings→Domains→Preferences, and search for the allowed_ips preference in the

Access Restrictions section.

Press the Edit button to the right of empty drop-down list.

You can enter multiple allowed IP addresses or IP address ranges one after another. Click the Add button to save each entry in

the list. Click the Delete button if you want to remove some entry.

84

The Sipwise C5 PRO Handbook mr6.5.11 85 / 601

6.3 Call Forwarding and Call Hunting

The Sipwise C5 provides the capabilities for normal call forwarding (deflecting a call for a local subscriber to another party

immediately or based on events like the called party being busy or doesn’t answer the phone for a certain number of seconds)

and serial call hunting (sequentially executing a group of deflection targets until one of them succeeds). Targets can be stacked,

which means if a target is also a local subscriber, it can have another call forward or hunt group which is executed accordingly.

6.3.1 Call Forward Types

Currently 6 different types of Call Forward are available in Sipwise C5:

• Call Forward Unconditional (CFU): The call forward is always executed, completely disregarding the subscriber state.

• Call Forward Busy (CFB): The call forward is executed when the subscriber returns a busy state.

• Call Forward Timeout (CFT): The call forward is executed when no answer is received from the subscriber before the timeout

expiration. Timeout is configurable in ringtimeout subscriber preference.

• Call Forward Unavailable (CFNA): The call forward is executed when the subscriber has no endpoint registered.

• Call Forward SMS (CFS): The SMS forward is always executed, completely disregarding the subscriber state. SMS service

has to be enabled, see the SMS (Short Message Service) Section 6.29 subchapter for a detailed description on how to activate

it.

• Call Forward Rerouting (CFR): The call forward is executed only for particular reply codes received from the callee. The list

of the reply codes and the activation mode can be configured in rerouting_codes and rerouting_mode subscriber preferences.

Example: suppose that rerouting_codes is set to 503, rerouting_mode to whitelist and the CFR is configured. If that subscriber

places a call and it receives back a reply with code 503, then the call will be re-routed to the destination configured in the CFR.

For all the other reply codes the CFR will be NOT executed.

Important

Unlike all the other call forwards, CFR has to be configured on the caller subscriber.

6.3.2 Setting a simple Call Forward

Go to your Subscriber Preferences and click Edit on the Call Forward Type you want to set (e.g. Call Forward Unconditional).

85

The Sipwise C5 PRO Handbook mr6.5.11 86 / 601

If you select URI/Number in the Destination field, you also have to set a URI/Number. The timeout defines for how long this

destination should be tried to ring.

6.3.3 Call Forward Destinations

• Voicemail: Calls are forwarded to the Voicemail Application Server where the caller can leave a message.

• Conference: Calls are forwarded to the conference room. The subscriber is the host of the conference.

• Fax2Mail: Calls are forwarded to the Fax Server and the caller is supposed to leave a fax message. Note: The Fax2Mail feature

must be enabled in the subscriber’s preferences.

• Custom Announcement: A custom announcement is played back to the caller. Select an announcement from the Custom

announcement list.

• Manager Secretary: Calls are forwarded to numbers defined in the "manager_secretary_numbers" subscriber preference. The

"manger_secretary" feature must be enabled.

• URI/Number: The call is forwarded to the provided SIP-URI string or a number (See the Call Forward Destination Extra Param-

eters section below).

6.3.3.1 Call Forward Destination Options

• URI/Number: A destination to forward calls to. This option is only valid for the URI/Number destination type. Specify a valid

SIP-URI string or a plain number.

• for (seconds): Sets the ringing time, after which the call is forwarded to the next number on the list (if configured).

• Custom Announcement: Custom Announcements are created in Sound Sets and must have the name like custom_announcement_0,

where the trailing symbol is a digit from 0 to 9.

86

The Sipwise C5 PRO Handbook mr6.5.11 87 / 601

6.3.4 Advanced Call Hunting

Beside call forwarding to a single destination, Sipwise C5 offers the possibility to activate call forwarding in a more sophisticated

way:

• to multiple destinations (→ Destination Set)

• only during a pre-defined time set (→ Time Set)

• only for specific callers (→ Source Set)

• only for specific callee (→ B-Number Set)

If you want to define such more detailed call forwarding rules, you need to change into the Advanced View when editing your

call forward. There, you can select multiple Destination Set - Time Set - Source Set - B-Number Set groups that determine all

conditions under which the call will be forwarded.

Explanation of call forward parameters

• A Destination Set is a list of destinations where the call will be routed to, one after another, according to the order of their

assigned priorities. See the Destination Sets Section 6.3.4.1 subchapter for a detailed description.

• A Time Set is a time period definition, i.e. when the call forwarding has to be active. See the Time Sets Section 6.3.4.2

subchapter for a detailed description.

• A Source Set is a list of number patterns that will be matched against the calling party number; if the calling number matches

the call forwarding will be executed. See the Source Sets Section 6.3.4.3 subchapter for a detailed description.

• A B-Number Set is a list of number patterns that will be matched against the called party number; if the callee number matches

the call forwarding will be executed. See the B-Number Sets Section 6.3.4.4 subchapter for a detailed description.

6.3.4.1 Configuring Destination Sets

Click on Manage Destination Sets to see a list of available sets. The quickset_cfu has been implicitly created during our creation

of a simple call forward. You can edit it to add more destinations, or you can create a new destination set.

87

The Sipwise C5 PRO Handbook mr6.5.11 88 / 601

When you close the Destination Set Overview, you can now assign your new set in addition or instead of the quickset_cfu set.

88

The Sipwise C5 PRO Handbook mr6.5.11 89 / 601

Press Save to store your settings.

6.3.4.2 Configuring Time Sets

Click on Manage Time Sets in the advanced call-forward menu to see a list of available time sets. By default there are none, so

you have to create one.

89

The Sipwise C5 PRO Handbook mr6.5.11 90 / 601

You need to provide a Name, and a list of Periods where this set is active. If you only set the top setting of a date field (like the

Year setting in our example above), then it’s valid for just this setting (like the full year of 2013 in our case). If you provide the

bottom setting as well, it defines a period (like our Month setting, which means from beginning of April to end of September). For

example, if a CF is set with the following timeset: "hour { 10-12 } minute { 20-30 }", the CF will be matched within the following time

ranges:

• from 10.20am to 10:30am

• from 11.20am to 11:30am

• from 12.20am to 12:30am

Important

the period is a through definition, so it covers the full range. If you define an Hour definition 8-16, then this means from

08:00 to 16:59:59 (unless you filter the Minutes down to something else).

If you close the Time Sets management, you can assign your new time set to the call forwards you’re configuring.

6.3.4.3 Configuring Source Sets

Once the Advanced View of the call forward definition has been opened, you will need to press the Manage Source Sets button

to start defining new Source Sets or managing an existing one. The following image shows the Source Set definition dialog:

90

The Sipwise C5 PRO Handbook mr6.5.11 91 / 601

Figure 32: Creating a Call Forward Source Set

You will need to fill in the Name field first, the Mode: whitelist or blacklist, the is_regex flag and finally in the Source field you

can enter:

• A simple phone number in E.164 format

• A pattern, in order to define a range of numbers. You can use "*" (matches a string of 0 to any number of characters), "?"

(matches any single character), "[abc]" (matches a single character that is part of the explicitly listed set: a, b or c) and "[0-9]"

(matches a single character that falls in the range 0 to 9) as wildcards, as usual in shell patterns. Examples:

– "431*" (all numbers from Vienna / Austria)

– "49176[0-5]77*" (German numbers containing fixed digits and a variable digit in 0-5 range in position 6)

– "43130120??" (numbers from Vienna with fixed prefix and 2 digits variable at the end)

• A perl compatible regular expressions (only if is_regex if set). Capturing groups can be formed using parentheses and

referenced in the Destination Set via \\1, \\2,. . .

• The constant string "anonymous" that indicates a suppressed calling number (CLIR)

You can add more patterns to the Source Set by pressing the Add another source button. When you finished adding all patterns,

press the Save button. You will then see the below depicted list of Source Sets:

91

The Sipwise C5 PRO Handbook mr6.5.11 92 / 601

Figure 33: List of Call Forward Source Sets

6.3.4.4 Configuring B-Number Sets

Once the Advanced View of the call forward definition has been opened, you will need to press the Manage B-Number Sets button

to start defining new B-Number Sets or managing an existing one. The following image shows the B-Number Set definition dialog:

Figure 34: Creating a Call Forward B-Number Set

92

The Sipwise C5 PRO Handbook mr6.5.11 93 / 601

You will need to fill in the Name field first, the Mode: whitelist or blacklist, the is_regex flag and finally in the B-Number field

you can enter:

• A simple phone number in E.164 format

• A pattern, in order to define a range of numbers. You can use "*" (matches a string of 0 to any number of characters), "?"

(matches any single character), "[abc]" (matches a single character that is part of the explicitly listed set: a, b or c) and "[0-9]"

(matches a single character that falls in the range 0 to 9) as wildcards, as usual in shell patterns. Examples:

– "431*" (all numbers from Vienna / Austria)

– "49176[0-5]77*" (German numbers containing fixed digits and a variable digit in 0-5 range in position 6)

– "43130120??" (numbers from Vienna with fixed prefix and 2 digits variable at the end)

• A perl compatible regular expressions (only if is_regex if set). Capturing groups can be formed using parentheses and

referenced in the Destination Set via \\1, \\2,. . .

You can add more patterns to the B-Number Set by pressing the Add another B-Number button. When you finished adding all

patterns, press the Save button. You will then see the below depicted list of B-Number Sets:

Figure 35: List of Call Forward B-Number Sets

6.3.4.5 Finalizing the call forward definition

As additional step you can define a Destination Set as described in Destination Sets Section 6.3.4.1 subchapter. For our example,

we have defined the following Destination Set:

93

The Sipwise C5 PRO Handbook mr6.5.11 94 / 601

Figure 36: List of Call Forward Destination Sets

A final step of defining the call forward settings is selecting a Destination, a Time Set, a Source Set and a B-Number Set, as

shown in the image below. Please note that there is no specific Time Set selected in our example, that means the call forward rule

is valid (as shown) <always>.

Figure 37: Definition of a Call Forward with Source and Destination Sets

94

The Sipwise C5 PRO Handbook mr6.5.11 95 / 601

Once all the settings have been defined and the changes are saved, you will see the call forward entry (in our example: Call

Forward Unconditional), with the names of the selected Destination, Time Set, Source Sets and B-Number Set provided, at

SubscriberPreferences→ Call Forwards location on the web interface:

Figure 38: List of Call Forward with Source and Destination Sets

6.4 Call Forking by Q value

The Sipwise C5 platform allows you to register multiple devices under the same subscriber. By the default, the maximum number

of the device you can register is 5. This value is configurable via kamailio→proxy→max_registrations_per_subscriber preference

in config.yml.

If a customer registers multiple devices, Sipwise C5 – once receives a call for that user – just send the call to all the registered

devices, in parallel. All the devices will ring at the same time. This is called Parallel Forking, and this is the default behavior.

The Sipwise C5 can also do the so-called Serial Forking, which means let ring one device first, then after a timeout let ring

the next device, and so on and so forth. The Serial Forking feature can be activated setting subscriber/domain preference

serial_forking_by_q_value.

6.4.1 How it works

Serial Forking is based on SIP Contact’s parameter called Q value, which is basically a priority number, set by the clients during

their Registration. The q value is a floating point number in a range 0 to 1.0 specified as a parameter in the Contact header

field. The higher the q value number, the more priority that device has. Contacts with q value 1.0 have maximum priority, so such

contacts will be always tried first in serial forking. Contacts with q value 0 have the lowest priority and they will be tried after all

other contacts with higher priority. In case two or more contacts have the same q value, then they are tried in parallel. This allow

to create Parallel forking calls even if serial_forking_by_q_value preference is set.

In case the client doesn’t set the q value Sipwise C5 just set a default value of q=-1 in the database, which means that it’s not

going to use it and it’s not going to perform any serial forking.

95

The Sipwise C5 PRO Handbook mr6.5.11 96 / 601

Q value can be also specified during the creation of a subscriber’s permanent registration (Details→Registered Devices→Create

Permanent Registration).

6.4.2 Additional Information

If a subscriber with Serial Forking enabled receives a call, Sipwise C5 calls the registered devices one after the another. The

forking is stopped only in the following cases:

• there are no more devices to try to contact

• one of the ringing devices answers the call

• one of the ringing devices replies with the SIP code 600, 603, 604 or 606.

• a Call Forward on Timeout is set and the ringtimeout is reached.

6.5 Local Number Porting

The Sipwise C5 platform comes with two ways of accomplishing local number porting (LNP):

• one is populating the integrated LNP database with porting data,

• the other is accessing external LNP databases via the Sipwise LNP daemon using the LNP API.

Note

Accessing external LNP databases is available for PRO and CARRIER products only.

6.5.1 Local LNP Database

The local LNP database provides the possibility to define LNP Carriers (the owners of certain ported numbers or number blocks)

and their corresponding LNP Numbers belonging to those carriers. It can be configured on the admin panel in Settings→Number

Porting or via the API. The LNP configuration can be populated individually or via CSV import/export both on the panel and the

API.

6.5.1.1 LNP Carriers

LNP Carriers are defined by an arbitrary Name for proper identification (e.g. British Telecom) and contain a Prefix which can be

used as routing prefix in LNP Rewrite Rules and subsequently in Peering Rules to route calls to the proper carriers. The LNP

prefix is written to CDRs to identify the selected carrier for post processing and analytics purposes of CDRs. LNP Carrier entries

also have an Authoritative flag indicating that the numbers in this block belong to the carrier operating Sipwise C5 . This is useful

to define your own number blocks, and in case of calls to those numbers reject the calls if the numbers are not assigned to local

subscribers (otherwise they would be routed to a peer, which might cause call loops). Finally the Skip Rewrite flag skips executing

of LNP Rewrite Rules if no number manipulation is desired for an LNP carrier.

96

The Sipwise C5 PRO Handbook mr6.5.11 97 / 601

6.5.1.2 LNP Numbers

LNP Carriers contain one or more LNP Numbers. Those LNP Numbers are defined by a Number entry in E164 format (<cc><ac><sn>)

used to match a number against the LNP database. Number matching is performed on a longest match, so you can define number

blocks without specifying the full subscriber number (e.g. a called party number 431999123 is going to match an entry 431999 in

the LNP Numbers).

For an LNP Numbers entry, an optional Routing Number can be defined. This is useful to translate e.g. premium 900 or toll-free

800 numbers to actual routing numbers. If a Routing Number is defined, the called party number is implicitly replaced by the

Routing Number and the call processing is continued with the latter. For external billing purposes, the optional Type tag of a

matched LNP number is recorded in CDRs.

An optional Start Date and End Date allows one to schedule porting work-flows up-front by populating the LNP database with

certain dates, and the entries are only going to become active with those dates. Empty values for start indicate a start date in

the past, while empty values for end indicate an end time in the future during processing of a call, allowing to define infinite date

ranges. As intervals can overlap, the LNP number record with a start time closest to the current time is selected.

6.5.1.3 Enabling local LNP support

In order to activate Local LNP during routing, the feature must be activated in config.yml. Set kamailio→proxy→lnp→enable to

yes and kamailio→proxy→lnp→type to local.

6.5.1.4 LNP Routing Procedure

Calls to non-authoritative Carriers

When a call arrives at the system, the calling and called party numbers are first normalized using the Inbound Rewrite Rules for

Caller and Inbound Rewrite Rules for Callee within the rewrite rule set assigned to the calling party (a local subscriber or a peer).

If the called party number is not assigned to a local subscriber, or if the called party is a local subscriber and has the subscriber/-

domain preference lnp_for_local_sub set, the LNP lookup logic is engaged, otherwise the call proceeds without LNP lookup. The

further steps assume that LNP is engaged.

If the call originated from a peer, and the peer preference caller_lnp_lookup is set for this peer, then an LNP lookup is performed

using the normalized calling party number. The purpose for that is to find the LNP prefix of the calling peer, which is then stored as

source_lnp_prefix in the CDR, together with the selected LNP number’s type tag (source_lnp_type). If the LNP lookup does not

return a result (e.g. the calling party number is not populated in the local LNP database), but the peer preference default_lnp_prefix

is set for the originating peer, then the value of this preference is stored in source_lnp_prefix of the CDR.

Next, an LNP lookup is performed using the normalized called party number. If no number is found (using a longest match), no

further manipulation is performed.

If an LNP number entry is found, and the Routing Number is set, the called party number is replaced by the routing number. Also,

if the Authoritative flag is set in the corresponding LNP Carrier, and the called party number is not assigned to a local subscriber,

the call is rejected. This ensures that numbers allocated to the system but not assigned to subscribers are dropped instead of

routed to a peer.

97

The Sipwise C5 PRO Handbook mr6.5.11 98 / 601

Important

If the system is serving a local subscriber with only the routing number assigned (but not e.g. the premium number

mapping to this routing number), the subscriber will not be found and the call will either be rejected if the called party

premium number is within an authoritative carrier, or the call will be routed to a peer. This is due to the fact that the

subscriber lookup is performed with the dialled number, but not the routing number fetched during LNP. So make sure

to assign e.g. the premium number to the local subscriber (optionally in addition to the routing number if necessary

using alias numbers) and do not use the LNP routing number mechanism for number mapping to local subscribers.

Next, if the LNP carrier does not have the Skip Rewriting option set, the LNP Rewrite Rules for Callee are engaged. The rewrite

rule set used is the one assigned to the originating peer or subscriber/domain via the rewrite_rule_set preference. The variables

available in the match and replace part are, beside the standard variables for rewrite rules:

• ${callee_lnp_prefix}: The prefix stored in the LNP Carrier

• ${callee_lnp_basenumber}: The actual number entry causing the match (may be shorter than the called party number

due to longest match)

Typically, you would create a rewrite rule to prefix the called party number with the callee_lnp_prefix by matching ˆ([0-9]+)$

and replacing it by ${callee_lnp_prefix}\1.

Once the LNP processing is completed, the system checks for further preferences to finalize the number manipulation. If the

originating local subscriber or peer has the preference lnp_add_npdi set, the Request URI user-part is suffixed with ;npdi.

Next, if the preference lnp_to_rn is set, the Request URI user-part is suffixed with ;rn=LNP_ROUTING_NUMBER, where

LNP_ROUTING_NUMBER is the Routing Number stored for the number entry in the LNP database, and the originally called

number is kept in place. For example, if lnp_to_rn is set and the number 1800123 is called, and this number has a routing number

1555123 in the LNP database, the resulting Request-URI is sip:1800123;rn=1555123@example.org.

Finally, the destination_lnp_prefix in the CDR table is populated either by the prefix defined in the Carrier of the LNP database if

a match was found, or by the default_lnp_prefix prefrence of the destination peer or subscriber/domain.

6.5.1.5 Blocking Calls Using LNP Data

The Sipwise C5 provides means to allow or block calls towards ported numbers that are hosted by particular LNP carriers. Please

visit Section 6.2.2.2 in the handbook to learn how this can be achieved.

6.5.1.6 Transit Calls using LNP

If a call originated from a peer and the peer preference force_outbound_calls_to_peer is set to force_nonlocal_lnp (the if callee is

not local and is ported selection in the panel), the call is routed back to a peer selected via the peering rules.

This ensures that if a number once belonged to your system and is ported out, but other carriers are still sending calls to you (e.g.

selecting you as an anchor network), the affected calls can be routed to the carrier the number got ported to.

98

The Sipwise C5 PRO Handbook mr6.5.11 99 / 601

6.5.1.7 CSV Format

The LNP database can be exported to CSV, and in the same format imported back to the system. On import, you can decide

whether to drop existing data prior to applying the data from the CSV.

The CSV file format contains the fields in the following order:

carrier_name carrier_prefix number routing_number start end authoritative skip_rewrite

Table 2: LNP CSV Format

Name Description

Carrier Name The Name in the LNP Carriers table (string, e.g. My

Carrier)

Carrier Prefix The Prefix in the LNP Carriers table (string, e.g. DD55)

Number The Number in the LNP Numbers table (E164 number, e.g.

1800666)

Routing Number The Routing Number in the LNP Numbers table (E164

number or empty, e.g. 1555666)

Start The Start in the LNP Numbers table (YYYY-MM-DD or

empty, e.g. 2016-01-01)

End The End in the LNP Numbers table (YYYY-MM-DD or

empty, e.g. 2016-12-30)

Authoritative The Authoritative flag in the LNP Carriers table (0 or 1)

Skip Rewrite The Skip Rewrite flag in the LNP Carriers table (0 or 1)

Type The Type tag in the LNP Numbers table (alphanumeric

string, e.g. mobile)

6.5.1.8 Local LNP returned values

If a match in the local LNP table is found corresponding LNP Carrier code will be stored in CDR data.

Additionally two dedicated headers can be added to the outgoing SIP message:

• P-NGCP-LNP-Number: The returned LNP number, if any

• P-NGCP-LNP-Status: The LNP query return code (200 if successful, 404 if no entry found)

This feature is not enabled by default, but can be activated with the following parameters:

• kamailio→proxy→lnp→add_reply_headers→enable : no

• kamailio→proxy→lnp→add_reply_headers→number : P-NGCP-LNP-Number

• kamailio→proxy→lnp→add_reply_headers→status : P-NGCP-LNP-Status

99

The Sipwise C5 PRO Handbook mr6.5.11 100 / 601

6.5.2 External LNP via LNP API

External LNP relies on the Sipwise LNP Daemon (lnpd) which kamailio-proxy is talking to via a defined JSONRPC protocol. The

proxy sends the A and B number to lnpd, which in the current release translates it to a SIP Message sent to an external server

(typically a Squire SIP-to-INAP gateway). This external gateway is performing an SS7 INAP request to fetch the LNP result, which

is passed back as a binary blob in a 3xx response to the lnpd. The lnpd extracts the TCAP body of the response and returns the

information back to the proxy.

6.5.2.1 Enabling LNP lookup via API

In order to activate LNP lookup via API during call routing, the feature must be activated in /etc/ngcp-config/config.

yml. Set these parameters:

• kamailio→proxy→lnp→enable : yes

• kamailio→proxy→lnp→type : api

• lnpd→enable : yes

There is a possibility to explicitly allow (whitelist) or deny (blacklist) certain number ranges for which an LNP lookup may be done.

The relevant configuration parameters are at kamailio→proxy→lnp→lnp_request_whitelist and kamailio→
proxy→lnp→lnp_request_blacklist. For each entry in the list a POSIX regex expression may be used, see the

following example:

lnp:

lnp_request_whitelist:

- ’^9’

- ’^800’

lnp_request_blacklist:

- ’^1’

- ’^900’

- ’^110’

- ’^112’

Interpretation of the above lists (that are based on numbers represented in national format):

• whitelist: do LNP lookup for any called number that starts with 9 or 800

• blacklist: do not perform LNP lookup for any called number that starts with 1, 900, 110 or 112

Important

If both whitelist and blacklist are defined, the LNP lookup is only performed when the called number matches any of the

whitelist patterns and does not match any of the blacklist patterns.

100

The Sipwise C5 PRO Handbook mr6.5.11 101 / 601

6.5.2.2 Refine LNP and FCI decoding

Preconfigured parameters should already allow to correctly decode the LNP number and FCI code contained in the received TCAP

body. If the external server replies with a non-standard TCAP body, it is possible to fine tune the information extraction. Edit the

following parameters in order to point to the correct fields:

• kamailio→proxy→lnp→api→tcap_field_lnp : ConnectArg.destinationRoutingAddress.0

• kamailio→proxy→lnp→api→tcap_field_opcode : end.components.0.invoke.opCode

• kamailio→proxy→lnp→api→tcap_field_fci : end.components.0.invoke.parameter

6.5.2.3 The Redundancy Feature

It is possible to set up LNP daemon to provide a kind of redundant service to the Proxy. This means the LNP daemon will send its

LNP query to more LNP serving nodes that are predefined in a list. (See Configuration of LNP daemon Section 6.5.2.4 chapter

for details.) The LNP query may happen in 2 ways:

• round-robin: LNP daemon sends the query to one of the serving nodes then waits for the response for a configurable timeout.

If it does not get the response in time, it sends the LNP query to the next serving node.

• parallel: LNP daemon sends the query to all of the serving nodes then waits for the response, and will accept the first response

that it receives.

6.5.2.4 Configuration of Sipwise LNP Daemon

LNP daemon takes its active configuration from /etc/ngcp-lnpd/config.yml file. The file is generated automatically —

when a new Sipwise C5 configuration is applied (ngcpcfg apply...) — from the main Sipwise C5 configuration file: /etc/

ngcp-config/config.yml and a template: /etc/ngcp-config/template/etc/ngcp-lnpd/config.yml.

tt2. System administrators are only expected to modify the lnpd.config section of main configuration file /etc/ngcp-

config/config.yml.

A sample LNP daemon configuration file (/etc/ngcp-lnpd/config.yml) looks like:

daemon:

json-rpc:

ports:

- 54321

- 12345

interfaces:

- 127.0.0.1

- 192.168.1.90

- ::1

sip:

port: 5095

address: 0.0.0.0

101

The Sipwise C5 PRO Handbook mr6.5.11 102 / 601

threads: 4

foreground: false

pidfile: /tmp/lnpd.pid

loglevel: 7

instances:

default:

module: sigtran

destination: 192.168.1.99

from-domain: test.example.com

headers:

- header: INAP-Service-Key

value: 2

reply:

tcap: raw-tcap

redundant:

module: sigtran

destinations:

- 192.168.1.99

- 192.168.1.95

- 192.168.1.90

mechanism: round-robin

retry-time: 30

timeout: 5

from-domain: test.example.com

headers:

- header: INAP-Service-Key

value: 2

reply:

tcap: raw-tcap

parallel:

module: sigtran

destinations:

- 192.168.1.99

- 192.168.1.95

- 192.168.1.90

mechanism: parallel

retry-time: 30

timeout: 10

from-domain: test.example.com

headers:

- header: INAP-Service-Key

value: 2

reply:

tcap: raw-tcap

mock1:

module: mock-tcap

102

The Sipwise C5 PRO Handbook mr6.5.11 103 / 601

numbers:

- number: ’4311003’

routing-number: ’4318881003’

reply:

tcap: raw-tcap

The corresponding Sipwise C5 main configuration file contains:

daemon:

foreground: ’false’

json-rpc:

ports:

- ’54321’

- ’12345’

loglevel: ’7’

sip:

port: ’5095’

threads: ’4’

instances:

<< These are the same entries as in /etc/ngcp-lnpd/config.yml file >>

Description of configuration parameters in /etc/ngcp-config/config.yml file

• daemon section:

– foreground: determines if the LNP daemon runs as foreground or background process

– json-rpc.ports: port numbers where LNP daemon listens for incoming JSONRPC requests from Sipwise C5 Proxy

– loglevel: how detailed information LNP daemon writes in its log file

– sip.port: listening port number used for SIP sessions with LNP serving nodes; LNP daemon will listen on first available

(shared) IP address that is taken from /etc/ngcp-config/network.yml file

– threads: number of threads LNP daemon will use internally; this value determines how many requests the daemon can

serve in parallel

• instances section: at least one default instance must be defined here. Others are also useful for providing redundancy,

please check redundant and parallel entries above.

– module: only sigtran is used for normal operations

Important

The module mock-tcap is only meant for developers. In this case the LNP daemon does not produce a SIP

request that it sends to LNP serving nodes, but instead it uses the numbers parameter to match a called number

with a routing number. The numbers parameter contains a list of number — routing-number pairs and is used as

a database for number lookups. Finally LNP daemon returns the routing number as a response on LNP query.

– destinations: list of nodes to which LNP daemon sends the LNP query

– mechanism: either parallel or round-robin, defining the method of redundant queries

103

The Sipwise C5 PRO Handbook mr6.5.11 104 / 601

– retry-time: a period of time in seconds while LNP daemon considers an LNP serving node being unreachable after an

LNP query timeout

– timeout: the period of time while LNP daemon waits for a response on an LNP query from one of the LNP serving nodes

PLEASE NOTE : retry-time and timeout are used with both the parallel and the round-robin redundancy methods

– from-domain: the domain that will be used in SIP From header when LNP daemon sends the LNP query

– headers: this is a list of header name —value pairs; these custom headers will be included in SIP request that LNP

daemon sends to an LNP serving node

– reply.tcap: determines the format of reply sent to Sipwise C5 Proxy; currently only raw-tcap is supported, which

means LNP daemon will not decode the TCAP response it gets from an LNP serving node but it forwards the raw TCAP

message body

6.5.2.5 Selection of Sipwise LNP Daemon Instances

By default the instance with name default is used for all the lnp queries. To dynamically select which instance use, or to

completely skip the lnp query for a particular call, the lnp api module is looking into the SIP message for the header with name

P-NGCP-Lnpd_Instance:

• if present and not empty, the instance with the name equal to the header content is used

• if present but empty, the lnp api lookup is skipped

• if not present, the default instance is used

6.5.2.6 LNP API returned values

As for Local LNP, the LNP number and the FCI code are stored in CDR data.

Additionally two dedicated headers can be added to the outgoing SIP message:

• P-NGCP-LNP-Number: The returned LNP number, if any

• P-NGCP-LNP-Status: The LNP query return code (200 if successful, 404 if no entry found, 408 in case of connection

timeout or 500 if another general error happens)

This feature is not enabled by default, but can be activated with the following parameters:

• kamailio→proxy→lnp→add_reply_headers→enable : no

• kamailio→proxy→lnp→add_reply_headers→number : P-NGCP-LNP-Number

• kamailio→proxy→lnp→add_reply_headers→status : P-NGCP-LNP-Status

104

The Sipwise C5 PRO Handbook mr6.5.11 105 / 601

6.6 Emergency Mapping

As opposed to the Simple Emergency Number Handling Section 5.7.5.1 solution, Sipwise C5 supports an advanced emergency

call handling method, called emergency mapping. The main idea is: instead of obtaining a statically assigned emergency prefix /

suffix from subscriber preferences, Sipwise C5 retrieves an emergency routing prefix from a central emergency call routing table,

according to the current location of the calling subscriber.

The following figure shows the overview of emergency call processing when using emergency mapping feature:

Figure 39: Emergency Call Handling with Mapping

6.6.1 Emergency Mapping Description

Emergency numbers per geographic location are mapped to different routing prefixes not deriveable from an area code or the

emergency number itself. This is why a global emergency mapping table related to resellers is introduced, allowing to map

emergency numbers to their geographically dependent routing numbers.

105

The Sipwise C5 PRO Handbook mr6.5.11 106 / 601

The geographic location is referenced by a location ID, which has to be populated by a north-bound provisioning system. No

towns, areas or similar location data is stored on Sipwise C5 platform. The locations are called Emergency Containers on NGCP.

The actual emergency number mapping is done per location (per Emergency Container), using the so-called Emergency Mapping

entries. An Emergency Mapping entry assigns a routing prefix, valid only in a geographic area, to a generic emergency number

(for example 112 in Europe, 911 in the U.S.A.) or a country specific one (for example 133).

Note

As of mr4.5 version, Sipwise C5 performs an exact match on the emergency number in the emergency routing table.

Emergency Containers may be assigned to various levels of the client hierarchy within NGCP. The following list shows such levels

with each level overriding the settings of the previous one:

1. Customer or Domain

2. Customer Location, which is a territory representing a subset of the customer’s subscribers, defined as one or more IP

subnets.

3. Subscriber

Note

Please be aware that Customer Location is not necessarily identical to the "location" identified through an Emergency Container.

Once the emergency routing prefix has been retrieved from the emergency mapping table, call processing continues in the same

way as in case of simple emergency call handling.

6.6.2 Emergency Mapping Configuration

The administrative web panel of Sipwise C5 provides the configuration interface for emergency mapping. Please navigate to

Settings→ Emergency Mapping menu item first, in order to start configuring the mapping.

An Emergency Container must be created, before the mapping entries can be defined. Press Create Emergency Container to

start this. An example of a container is shown here:

106

The Sipwise C5 PRO Handbook mr6.5.11 107 / 601

Figure 40: Creating an Emergency Container

You have to select a Reseller that this container belongs to, and enter a Name for the container, which is an arbitrary text.

Tip

The platform administrator has to create as many containers as the number of different geographic areas (locations) the

subscribers are expected to be in.

As the second step of emergency mapping provisioning, the Emergency Mapping entries must be created. Press Create Emer-

gency Mapping to start this step. An example is shown here:

107

The Sipwise C5 PRO Handbook mr6.5.11 108 / 601

Figure 41: Creating an Emergency Mapping Entry

The following parameters must be set:

• Container: select an emergency mapping container (i.e. a location ID)

• Code: the emergency number that subscribers will dial

• Prefix: the routing prefix that belongs to the particular emergency service within the selected location

Once all the necessary emergency mappings have been defined, the platform administrator will see a list of containers and

mapping entries:

108

The Sipwise C5 PRO Handbook mr6.5.11 109 / 601

Figure 42: Emergency Mapping List

The emergency number mapping is now defined. As the next step, the platform administrator has to assign the emergency

containers to Customers / Domains / Customer Locations or Subscribers. We’ll take an example with a Customer : select the

customer, then navigate to Details→ Preferences→ Number Manipulations. In order to assign a container, press the Edit button

and then select one container from the drop-down list:

109

The Sipwise C5 PRO Handbook mr6.5.11 110 / 601

Figure 43: Assigning an Emergency Mapping Container

Rewrite Rules for Emergency Mapping

Once emergency containers and emergency mapping entries are defined, Sipwise C5 administrator has to ensure that the proper

number manipulation takes place, before initiating any emergency call towards peers.

Important

Please don’t forget to define the rewrite rules for peers — particularly: Outbound Rewrite Rules for Callee — as de-

scribed in Normalize Emergency Calls for Peers Section 5.7.5.3 section of the handbook.

6.6.2.1 Emergency Calls Not Allowed

There is a special case when the dialed number is recognized as an emergency number, but the emergency number is not

available for the geographic area the calling party is located in.

In such a case the emergency mapping lookup will return an emergency prefix, but the value of this will be NULL. Therefore the

call is rejected and an announcement is played. The announcement is a newly defined sound file referred as emergency_geo

_unavailable.

It is possible to configure the rejection code and reason in /etc/ngcp-config/config.yml file, the parameters are:

kamailio.proxy.early_rejects.emergency_invalid.announce_code and kamailio.proxy.early_r

ejects.emergency_invalid.announce_reason.

110

The Sipwise C5 PRO Handbook mr6.5.11 111 / 601

6.6.2.2 Bulk Upload or Download of Emergency Mapping Entries

The Sipwise C5 offers the possibility to upload / download emergency mapping entries in form of CSV files. This operation is

available for each reseller, and is very useful if a reseller has many mapping entries.

Downloading Emergency Mapping List

One has to navigate to Settings→ Emergency Mapping menu and then press the Download CSV button to get the list of mapping

entries in a CSV file. First the reseller must be selected, then the Download button must be pressed. As an example, the entries

shown in "Emergency Mapping List" picture above would be written in the file like here below:

EmergCont_1,133,E1_133_

EmergCont_1,144,E1_144_

EmergCont_2,133,E2_133_

The CSV file has a plain text format, each line representing a mapping entry, and contains the following fields:

• Container name, as defined in Emergency Containers

• Emergency Number

• Emergency Prefix

Uploading Emergency Mapping List

Uploading a CSV file with emergency mapping entries may be started after pressing the Upload CSV button. The following data

must be provided:

• Reseller: selected from the list

• Upload mapping: the CSV file must be selected after pressing the Choose File button

• Purge existing: an option to purge existing emergency mapping entries that belong to the selected reseller, before popu-

lating the new mapping data from the file

111

The Sipwise C5 PRO Handbook mr6.5.11 112 / 601

Figure 44: Uploading Emergency Mapping Data

The CSV file for the upload has the same format as the one used for download.

6.7 Emergency Priorization

The Sipwise C5 can potentially host privileged subscribers that offer emergency or at least prioritized services (civil defence,

police etc.). In case of an emergency, the platform has to be free’d from any SIP flows (calls, registrations, presence events etc.)

which do not involve those privileged subscribers.

Such an exceptional condition is called emergency mode and it can be activated for all domains on the system, or only for

selected domains.

Once emergency mode is activated, Sipwise C5 will immediately apply the following restrictions on new SIP requests or existing

calls:

• Any SIP requests (calls, registrations etc.) from subscribers within the affected domains, who are not marked as privileged, are

rejected.

• Any calls from peers not targeting privileged subscribers are rejected.

112

The Sipwise C5 PRO Handbook mr6.5.11 113 / 601

• Any active calls which do not have a privileged subscriber involved are terminated.

Calls from non-privileged subscribers to emergency numbers are still allowed.

6.7.1 Call-Flow with Emergency Mode Enabled

Typical call-flows of emergency mode will be shown in this section of the handbook. We have the following assumptions:

• Emergency priorization has been enabled on system-level

• There is a domain for which the emergency mode has been activated

• There is a privileged subscriber in that domain

• A generic peering connection has been configured for non-emergency calls

• A dedicated peering connection has been configured for emergency calls

The examples do not show details of SIP messages, but rather give a high-level overview of the call-flows.

1. A non-privileged subscriber makes a call to another non-privileged subscriber. Result: the call will be rejected.

Figure 45: Call-flow in Emergency Mode 1. (Std to Std)

2. A non-privileged subscriber makes a call to an external subscriber (via peer). Result: the call will be rejected.

113

The Sipwise C5 PRO Handbook mr6.5.11 114 / 601

Figure 46: Call-flow in Emergency Mode 2. (Std to Peer)

3. A non-privileged subscriber makes a call to a privileged subscriber. Result: the call will be accepted.

Figure 47: Call-flow in Emergency Mode 3. (Std to Priv)

114

The Sipwise C5 PRO Handbook mr6.5.11 115 / 601

4. A non-privileged subscriber makes a call to an emergency number. Result: the call will be accepted.

Figure 48: Call-flow in Emergency Mode 4. (Std to Emerg)

5. A privileged subscriber makes a call to a non-privileged subscriber. Result: the call will be accepted.

Figure 49: Call-flow in Emergency Mode 5. (Priv to Std)

115

The Sipwise C5 PRO Handbook mr6.5.11 116 / 601

6. A privileged subscriber makes a call to an external subscriber (via peer). Result: the call will be accepted.

Figure 50: Call-flow in Emergency Mode 6. (Priv To Peer)

6.7.2 Configuration of Emergency Mode

The platform operator has to perform 2 steps of configuration so that the emergency mode can be activated. After the configuration

is completed it is necessary to explicitly activate emergency mode, which can be accomplished as described in Section 6.7.3 later.

1. System-level Configuration

The emergency priorization function must be enabled for the whole system, otherwise emergency mode can not be activated. The

platform operator has to set kamailio.proxy.emergency_priorization.enabled configuration parameter value to

"yes" in the main configuration file /etc/ngcp-config/config.yml. Afterwards changes have to be applied in the usual

way, with the command: ngcpcfg apply "Enabled emergency priorization"

In order to learn about other parameters related to emergency priorization please refer to Section B.1.14 part of the handbook.

2. Subscriber-level Configuration

The platform operator (or any administrator user) has the capability to declare a subscriber privileged, so that the subscriber can

initiate and receive calls when emergency mode has been activated on the NGCP. In order to do that the administrator has to

navigate to Settings → Subscribers → select the subscriber → Details → Preferences → Internals → emergency_priorization

on the administrative web interface, and press the Edit button.

116

The Sipwise C5 PRO Handbook mr6.5.11 117 / 601

Figure 51: Emergency Priorization of Subscriber

The checkbox emergency_priorization has to be ticked and then press the Save button.

The same privilege can be added via the REST API for a subscriber: a HTTP PUT/PATCH request must be sent on /api/

subscriberpreferences/id resource and the emergency_priorization property must be set to "true".

6.7.3 Activating Emergency Mode

The platform operator can activate emergency mode for a single or multiple domains in 3 different ways:

• via the administrative web interface

• via the REST API

• via a command-line tool

Important

The interruption of ongoing calls is only possible with the command-line tool! Activating emergency mode for domains

via the web interface or REST API will only affect upcoming calls.

1. Activate emergency mode via web interface: this way of activation is more appropriate if only a single (or just a few) domain is

affected. Please navigate to Settings→ Domains→ select a domain→ Preferences→ Internals→ emergency_mode_enabled

→ Edit.

117

The Sipwise C5 PRO Handbook mr6.5.11 118 / 601

Figure 52: Activate Emergency Mode of Domain

The checkbox emergency_mode_enabled has to be ticked and then press the Save button.

2. Activate emergency mode via REST API: this way of activation is more appropriate if only a single (or just a few) domain is

affected.

For that purpose a HTTP PUT/PATCH request must be sent on /api/domainpreferences/id resource and the emerge

ncy_mode_enabled property must be set to "true".

3. Activate emergency mode using a command-line tool: Sipwise C5 provides a built-in script that may be used to enable/dis-

able emergency mode for some particular or all domains.

• Enable emergency mode:

> ngcp-emergency-mode enable <all|[domain1 domain2 ...]>

• Disable emergency mode:

> ngcp-emergency-mode disable <all|[domain1 domain2 ...]>

• Query the status of emergency mode:

> ngcp-emergency-mode status <all|[domain1 domain2 ...]>

6.8 Header Manipulation

6.8.1 Header Filtering

Adding additional SIP headers to the initial INVITEs relayed to the callee (second leg) is possible by modifying the following tem-

plate file: /etc/ngcp-config/templates/etc/ngcp-sems/etc/ngcp.sbcprofile.conf.customtt.tt2.

The following section can be changed:

header_filter=whitelist

header_list=[%IF kamailio.proxy.debug == "yes"%]P-NGCP-CFGTEST,[%END%]

P-R-Uri,P-D-Uri,P-Preferred-Identity,P-Asserted-Identity,Diversion,Privacy,

118

The Sipwise C5 PRO Handbook mr6.5.11 119 / 601

Allow,Supported,Require,RAck,RSeq,Rseq,User-Agent,History-Info,Call-Info

[%IF kamailio.proxy.presence.enable == "yes"%],Event,Expires,

Subscription-State,Accept[%END%][%IF kamailio.proxy.allow_refer_method

== "yes"%],Referred-By,Refer-To,Replaces[%END%]

By default the system will remove from the second leg all the SIP headers which are not in the above list. If you want to keep

some additional/custom SIP headers, coming from the first leg, into the second leg you just need to add them at the end of the

header_list= list. After that, as usual, you need to apply and push the changes. In this way the system will keep your headers in

the INVITE sent to the destination subscriber/peer.

Warning

DO NOT TOUCH the list if you don’t know what you are doing.

6.8.2 Codec Filtering

Sometimes you may need to filter some audio CODEC from the SDP payload, for example if you want to force your subscribers

to do not talk a certain codecs or force them to talk a particular one. To achieve that you just need to change the /etc/ngcp-

config/config.yml, in the following section:

sdp_filter:

codecs: PCMA,PCMU,telephone-event

enable: yes

mode: whitelist

In the example above, the system is removing all the audio CODECS from the initial INVITE except G711 alaw,ulaw and telephone-

event. In this way the callee will be notified that the caller is able to talk only PCMA. Another example is the blacklist mode:

sdp_filter:

codecs: G729,G722

enable: yes

mode: blacklist

In this way the G729 and G722 will be removed from the SDP payload. In order to apply the changes, run

ngcpcfg apply ’Enable CODEC filtering’

ngcpcfg push

6.8.3 Enable History and Diversion Headers

It may be useful and mandatory - specially with NGN interconnection - to enable SIP History header and/or Diversion header for

outbound requests to a peer or even for on-net calls. In order to do so, you should enable the following preferences in Domain’s

and Peer’s Preferences:

119

The Sipwise C5 PRO Handbook mr6.5.11 120 / 601

• Domain’s Prefererences: inbound_uprn = Forwarder’s NPN

• Peer’s Prefererences: outbound_history_info = UPRN

• Peer’s Prefererences: outbound_diversion = UPRN

• Domain’s Prefererences: outbound_history_info = UPRN (if you want to allow History Header for on-net call as well)

• Domain’s Prefererences: outbound_diversion = UPRN (if you want to allow Diversion Header for on-net call as well)

6.8.4 User Agent Filtering

It could be useful to filter the received REGISTER and INVITE messages based on the User Agent header, for example if you

want to force your subscribers to use certain types of devices. To achieve that configuration system wide you just need to change

the /etc/ngcp-config/config.yml, in the following section:

kamailio:

proxy:

block_useragents:

action: reject

enable: yes

mode: whitelist

ua_patterns:

- Yealink.*

In the example above, the system is allowing all the messages which have User Agent header starting with Yealink. All the others

will be rejected with a 403 Forbidden message. To silenty drop the received message it is possible to specify the drop action

instead of the default reject. Another example is the blacklist mode:

kamailio:

proxy:

block_useragents:

action: drop

enable: yes

mode: blacklist

ua_patterns:

- friendly-scanner

In this example the system will block all the messages which have User Agent header equal to friendly-scanner. Because of the

drop action this messages will be silenty dropped, without providing any feedback to the sender. As usual, in order to apply the

changes, run

ngcpcfg apply ’Enable User-Agent filtering’

ngcpcfg push

Regardless of the system-wide configuration (UA filtering enabled or not), it is possible to define a specific User Agent filtering for

each Domain or Subscriber. In order to do so, you should configure the following fields in Domain’s or Subscriber’s Preferences:

• ua_filter_list: Contains wildcard list of allowed or denied SIP User-Agents matched against the User-Agent header.

120

The Sipwise C5 PRO Handbook mr6.5.11 121 / 601

• ua_filter_mode: Specifies the operational mode of the SIP User-Agent Filter List: Blacklist or Whitelist.

• ua_reject_missing: Rejects any request if no User-Agent header is given.

In case of rejection a message with code kamailio.proxy.early_rejects.block_admin.announce_code and

reason kamailio.proxy.early_rejects.block_admin.announce_reason will be sent back to the subscriber.

6.9 SIP Trunking with SIPconnect

6.9.1 User provisioning

For the purpose of external SIP-PBX interconnect with Sipwise C5 the platform admin should create a subscriber with multiple

aliases representing the numbers and number ranges served by the SIP-PBX.

• Subscriber username - any SIP username that forms an "email-style" SIP URI.

• Subscriber Aliases - numbers in the global E.164 format without leading plus.

To configure the Subscriber, go to Settings→Subscribers and click Details on the row of your subscriber. There, click on the

Preferences button on top.

You should look into the Number Manipulations and Access Restrictions sections in particular, which control the calling and called

number presentation.

6.9.2 Inbound calls routing

Enable preference Number Manipulations→e164_to_ruri for routing inbound calls to SIP-PBX. This ensures that the Request-URI

will comprise a SIP-URI containing the dialed alias-number as user-part, instead of the user-part of the registered AOR (which is

normally a static value).

6.9.3 Number manipulations

The following sections describe the recommended configuration for correct call routing and CLI presentation according to the

SIPconnect 1.1 recommendation.

6.9.3.1 Rewrite rules

The SIP PBX by default inherits the domain dialplan which usually has rewrite rules applied to normal Class 5 subscribers with

inbound rewrite rules normalizing the dialed number to the E.164 standard. If most users of this domain are Class 5 subscribers the

dialplan may supply calling number in national format - see Section 5.7. While the SIP-PBX trunk configuration can be sometimes

amended it is a good idea in sense of SIPconnect recommendation to send only the global E.164 numbers.

Moreover, in mixed environments with Sipwise C5 Cloud PBX sharing the same domain with SIP trunking (SIP-PBX) customers

the subscribers may have different rewrite rules sets assigned to them. The difference is caused by the fact that the dialplan for

121

The Sipwise C5 PRO Handbook mr6.5.11 122 / 601

Cloud PBX is fundamentally different from the dialplan for SIP trunks due to extension dialing, where the Cloud PBX subscribers

use the break-out code (see Section 17.1.2) to dial numbers outside of this PBX.

The SIPconnect compliant numbering plan can be accommodated by assigning Rewrite Rules Set to the SIP-PBX subscriber.

Below is a sample Rewrite Rule Set for using the global E.164 numbers with plus required for the calling and called number format

compliant to the recommendation.

INBOUND REWRITE RULE FOR CALLER

• Match Pattern: ˆ(00|\+)([1-9][0-9]+)$

• Replacement Pattern: \2

• Description: International to E.164

• Direction: Inbound

• Field: Caller

INBOUND REWRITE RULE FOR CALLEE

• Match Pattern: ˆ(00|\+)([1-9][0-9]+)$

• Replacement Pattern: \2

• Description: International to E.164

• Direction: Inbound

• Field: Callee

OUTBOUND REWRITE RULE FOR CALLER

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: +\1

• Description: For the calls to SIP-PBX add plus to E.164

• Direction: Outbound

• Field: Caller

OUTBOUND REWRITE RULE FOR CALLEE

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: +\1

• Description: For the calls to SIP-PBX add plus to E.164

• Direction: Outbound

122

The Sipwise C5 PRO Handbook mr6.5.11 123 / 601

• Field: Callee

Assign the aforementioned Rewrite Rule Set to the SIP-PBX subscribers.

Warning

Outbound Rewrite Rules for Callee shall NOT be applied to the calls to normal SIP UAs like IP phones since the number

with plus does not correspond to their SIP username.

6.9.3.2 User parameter

The following configuration is needed for your platform to populate the From and To headers and Request-URI of the INVITE

request with "user=phone" parameter as per RFC 3261 Section 19.1.1 (if the user part of the URI contains telephone number

formatted as a telephone-subscriber).

• Domain’s Prefererences: outbound_from_user_is_phone = Y

• Domain’s Prefererences: outbound_to_user_is_phone = Y

6.9.3.3 Forwarding number

The following is our common configuration that covers the calling number presentation in a variety of use-cases, including the

incoming calls, on-net calls and Call Forward by the platform:

• Domain’s Preferences: inbound_uprn = Forwarder’s NPN

• Domain’s Preferences: outbound_from_user = UPRN (if set) or User-Provided Number

• Domain’s Preferences: outbound_pai_user = UPRN (if set) or Network-Provided Number

• Domain’s Preferences: outbound_history_info = UPRN (if the called user expects History-Info header)

• Domain’s Preferences: outbound_diversion = UPRN (if the called user expects Diversion header)

• Domain’s Preferences: outbound_to_user = Original (Forwarding) called user if the callee expects the number of the sub-

scriber forwarding the call, otherwise leave default.

The above parameters can be tuned to operator specifics as required. You can of course override these settings in the Subscriber

Preferences if particular subscribers need special settings.

Tip

On outgoing call from SIP-PBX subscriber the Network-Provided Number (NPN) is set to the cli preference prefilled with main

E.164 number. In order to have the full alias number as NPN on outgoing call set preference extension_in_npn = Y.

Externally forwarded call If the call forward takes place inside the SIP-PBX it can use one of the following specification for

signaling the diversion number to the platform:

123

The Sipwise C5 PRO Handbook mr6.5.11 124 / 601

• using Diversion method (RFC 5806): configure Subscriber’s Prefererences: inbound_uprn = Forwarder’s NPN / Received

Diversion

• using History-Info method (RFC 7044): Sipwise C5 platform extends the History-Info header received from the PBX by adding

another level of indexing according to the specification RFC 7044.

6.9.3.4 Allowed CLIs

• For correct calling number presentation on outgoing calls, you should include the pattern matching all the alias numbers of

SIP-PBX or each individual alias number under the allowed_clis preference.

• If the signalling calling number (usually taken from From user-part, see inbound_upn preferences) does not match the al-

lowed_clis pattern, the user_cli or cli preference (Network-Provided Number) will be used for calling number presentation.

6.9.4 Registration

SIP-PBX can use either Static or Registration Mode. While SIPconnect 1.1 continues to require TLS support at MUST strength,

one should note that using TLS for signaling does not require the use of the SIPS URI scheme. SIPS URI scheme is obsolete for

this purpose.

Static Mode While SIPconnect 1.1 allows the use of Static mode, this poses additional maintenance overhead on the operator.

The administrator should create a static registration for the SIP-PBX: go to Susbcribers, Details→Registered Devices→Create

Permanent Registration and put address of the SIP-PBX in the following format: sip:username@ipaddress:5060 where user-

name=username portion of SIP URI and ipaddress = IP address of the device.

Registration Mode It is recommended to use the Registration mode with SIP credentials defined for the SIP-PBX subscriber.

Important

The use of RFC 6140 style "bulk number registration" is discouraged. The SIP-PBX should register one AOR with

email-style SIP URI. The Sipwise C5 will take care of routing the aliases to the AOR with e164_to_ruri preference.

6.9.4.1 Trusted Sources

If a SIP-PBX cannot perform the digest authentication, you can authenticate it by its source IP address in Sipwise C5. To configure

the IP-based authentication, go to the subscriber’s preferences (Details→ Preferences→Trusted Sources) and specify the IP

address of the SIP-PBX in the Source IP field.

To authenticate multiple subscribers from the same IP address, use theFrom field to distinguish these subscribers.

When this feature is configured for a subscriber, Sipwise C5 authenticates all calls that arrive from the specified IP address without

challenging them.

124

The Sipwise C5 PRO Handbook mr6.5.11 125 / 601

Important

If the same IP address and the FROM field are mistakenly specified as trusted for different subscribers, Sipwise C5 will

not know which subscriber to charge for the call and will randomly select one.

6.10 Trusted Subscribers

In some cases, when you have a device that cannot authenticate itself against Sipwise C5, you may need to create a Trusted

Subscriber. Trusted Subscribers use IP-based authentication and they have a Permanent SIP Registration URI in order to receive

messages from Sipwise C5.

In order to make a regular subscriber trusted, perform the following extra steps:

• Create a permanent registration via (Subscribers→Details→ Registered Devices→Create Permanent Registration)

• Add the IP address of the device as Trusted Source in your subscriber’s preferences (Details→Preferences→Trusted Sources).

This way, all SIP messages coming from the device IP will be considered trusted (and get authenticated just by the source IP). All

the SIP messages forwarded to the devices will be sent to the SIP URI specified in the subscriber’s permanent registration.

6.11 Peer Probing

The basic way of selecting the appropriate peering server, where an outbound call can be routed to, has already been described

in Section 5.6.2.3 of the handbook.

This chapter provides information on the peer probing feature of Sipwise C5 that is available since mr5.4.1 release.

6.11.1 Introduction to Peer Probing Feature

The Sipwise C5 provides web admin panel and API capabilities to configure peering servers in order to terminate calls to non-local

subscribers. Those peering servers may become temporarily unavailable due to overloading or networking issues. The Sipwise

C5 will fail over to another peering server (matching the corresponding peering rules) after a timeout configured at system level

(see sems.sbc.outbound_timeout configuration parameter; 6 sec by default), if no provisional response (a response with

a code in the range of 100 to 199) is received for the outbound INVITE request.

Even if this timer is set much lower, like 3 sec, the call setup time is increased significantly. This is even more true if multiple

peering servers fail at the same time, which will sum up the individual timeouts, finally causing call setup times reach the order of

tens of seconds.

To optimize the call setup time in such scenarios, a new feature is implemented to continuously probe peering servers via SIP

messages, and mark them as unavailable on timeout or when receiving unexpected response codes. Appropriate SIP response

codes from the peering servers will mark them as available again.

Peering servers marked as unavailable are then skipped during call routing in the peering selection process, which significantly

shortens the call setup times if peering servers fail.

125

The Sipwise C5 PRO Handbook mr6.5.11 126 / 601

6.11.2 Configuration of Peer Probing

The system administrator has to configure the peer probing feature in 2 steps:

1. System-level configuration enables the peer probing feature in general on the Sipwise C5 and determines the operational

parameters, such as timeouts, the SIP method used for probing requests, etc.

2. Peering server configuration will add / remove a peering server to the list of probed endpoints.

6.11.2.1 System-level Configuration

The parameters of peer probing are found in the main system configuration file /etc/ngcp-config/config.yml. You can

see the complete list of configuration parameters in Section B.1.14 of the handbook, while the most significant ones are discussed

here.

Enabling peer probing system-wide happens through the kamailio.proxy.peer_probe.enable parameter. If it is set

to yes (which is the default value) then Sipwise C5 will consider probing of individual peering servers based on their settings.

Timeout of a single probing request can be defined through kamailio.proxy.peer_probe.timeout parameter. This is

a value interpreted as seconds while Sipwise C5 will wait for a SIP response from the peering server. Default is 5 seconds.

The probing interval can be set through the kamailio.proxy.peer_probe.interval parameter. This is the time

period in seconds that determines how often a probing request is sent to the peering servers. Default is 10 seconds.

The SIP method used for probing requests can be defined through kamailio.proxy.peer_probe.method parameter.

Allowed values are: OPTIONS (default) and INFO.

Tip

The system administrator, in most of the cases, will not need to modify the default configuration values other than that of timeout

and interval.

If no available peering server is found, the call is rejected with the response code and reason configured in kamailio.

proxy.early_rejects.peering_unavailable.announce_code and kamailio.proxy.early_rejects.

peering_unavailable.announce_reason. If a sound file is configured within the system sound set assigned to the

calling party, an announcement is played as early media before the rejection.

6.11.2.2 Individual Peering Server Configuration

When the peer probing feature is enabled on system-level, it is possible to add each individual peering server to the list of probed

endpoints. You can change the probed status of a server in two ways:

Enable probing of a peering server via the admin web interface

1. Open the properties panel of a peering server: Peerings→ select a peering group→ Details→ select a peering server→
Edit

126

The Sipwise C5 PRO Handbook mr6.5.11 127 / 601

2. Tick the checkbox Enable Probing

3. Save changes

Figure 53: Enable Probing of Peering Server

Enable probing of a peering server via the REST API

• when you create a new peering server you will use an HTTP POST request and the target URL:

https://<IP_of_NGCP>:1443/api/peeringservers

• when you update an existing peering server you will use an HTTP PUT or PATCH request and the target URL:

https://<IP_of_NGCP>:1443/api/peeringservers/id

In all cases you have to set the probe property to true in order to enable probing, and to false in order to disable probing.

Default value is false and this property may be omitted in a create/update request, which ensures backward compatibility of the

/api/peeringservers API resource.

127

https://<IP_of_NGCP>:1443/api/peeringservers
https://<IP_of_NGCP>:1443/api/peeringservers/id

The Sipwise C5 PRO Handbook mr6.5.11 128 / 601

6.11.3 Monitoring of Peer Probing

Peering server states, such as "reachable" / "unreachable", are continuously stored in a time-series database (InfluxDB type) by

Sipwise C5 Proxy nodes. It is possible to graphically represent the state of peering servers on NGCP’s admin web interface,

just like other system variables (like CPU and memory usage, number of registered subscribers, etc.). However this is not available

by default and must be configured by Sipwise.

State changes of peering servers are also reported by means of SNMP traps. Each time the reachable state of one of the

monitored peering servers changes, Sipwise C5 will send an SNMP trap, raising or clearing the alarm.

The Sipwise MIB is extended by a table of peers per proxy, containing the peer ID and the peer name, along with the peer probe

status. An external monitoring system can poll the peers table via SNMP to gather the peer status from each proxy’s point of

view.

The peer status can be obtained through the following route / OID:

...enterprises.sipwise.ngcp.ngcpObjects.ngcpMonitor.ngcpMonitorPeering.psTable.psEntry. ←↩
psPeerStatus

.1.3.6.1.4.1.34274.1.1.2.40.2.1.7

Value of psPeerStatus can be:

• 0: unknown

• 1: administratively down

• 2: administratively up

• 3: probed, pending

• 4: probed, down

• 5: probed, up

6.11.4 Further Details for Advanced Users

Tip

This subchapter of the handbook is targeted on advanced system operators and Sipwise engineers and is not necessary to

read in order to properly manage peer probing feature of NGCP.

6.11.4.1 Behaviour of Kamailio Proxy Instances

Each kamailio-proxy instance on the proxy nodes performs the probing individually for performance reasons. Each proxy holds its

result in its cache to avoid central storage and replication of the probing results. Each proxy will send an SNMP trap if it detects

a state change for a peering server, because proxies might be geographically distributed along with their load-balancers and can

therefore experience different probing results.

128

The Sipwise C5 PRO Handbook mr6.5.11 129 / 601

Each peering server is cross-checked against the hash table filled during outbound probing requests and is skipped by call routing

logic, if a match is found.

On start or restart of the kamailio-proxy instance, the probing will start after the first interval, and NOT immediately after start. In

the first probing interval the proxy will always try to send call traffic to peering servers until the first probing round is finished, and

will only then start to skip unavailable peering servers.

6.11.4.2 Changes to Kamailio Proxy Configuration

A new configuration template: /etc/ngcp/config/templates/etc/kamailio/proxy/probe.cfg.tt2 is intro-

duced to handle outbound probing requests.

6.11.4.3 Database Changes

A new DB column: provisioning.voip_peer_hosts.probewith type TINYINT(1) (boolean) is added to the DB schema.

A peer status change will populate the kamailio.dispatcher table, inserting the SIP URI in format sip:$ip:$port;

transport=$transport in dispatcher group 100, which defines the probing group for peering servers.

Also the kamailio.dispatcher.attrs column is populated with a parameter peerid=$id. This ID is used during

probing to load the peer preferences: outbound_socket and lbrtp_set, that are required to properly route the probing

request.

6.12 Fax Server

There is a Fax Server included in Sipwise C5 . The following sections describe its architecture.

The Fax Server is included on the platform and requires no additional hardware. It supports both T38 and G711 codecs and

provides a cost-effective paper-free office solution.

For the details of Fax Server configuration options, please see Faxserver Configuration Appendix C chapter in this handbook.

6.12.1 Fax2Mail Architecture

To receive faxes via email, a phone call from a sender is connected to the fax application module (Asterisk + Sipwise C5 Fax

Server) on Sipwise C5 . The received fax document is converted to the format the receiver has configured (either PS, PDF or

TIFF) via the components outlined in the figure below. The email is delivered to one or more configured addresses.

129

The Sipwise C5 PRO Handbook mr6.5.11 130 / 601

6.12.2 Sendfax and Mail2Fax Architecture

To send faxes via Sipwise C5 a sender can use any email client or an interface such as Webfax or REST API.

Currently, supported formats are TXT, PS, TIFF and PDF.

The document is sent to Sipwise C5 Fax Server instance on Sipwise C5 . Once successfully queued by the fax server, it is

converted to an internal TIFF format and is sent via the components outlined in the below figure to the specified phone number.

Of course, a fax device that can receive the document must be connected on the destination side.

130

The Sipwise C5 PRO Handbook mr6.5.11 131 / 601

6.13 Voicemail System

6.13.1 Accessing the IVR Menu

For a subscriber to manage his voicebox via IVR, there are two ways to access the voicebox. One is to call the URI voicebox@

yourdomain from the subscriber itself, allowing password-less access to the IVR, as the authentication is already done on SIP

level. The second is to call the URI voiceboxpass@yourdomain from any number, causing the system to prompt for a

mailbox and the PIN. The PIN can be set in the Voicemail and Voicebox section of the Subscriber Preferences.

6.13.1.1 Mapping numbers and codes to IVR access

Since access might need to be provided from external networks like PSTN/Mobile, and since certain SIP phones do not support

calling alphanumeric numbers to dial voicebox, you can map any number to the voicebox URIs using rewrite rules.

To do so, you can provision a match pattern e.g. ˆ(00|\+)12345$ with a replace pattern voicebox or voiceboxpass to

map a number to either password-less or password-based IVR access respectively. Create a new rewrite rule with the Inbound

direction and the Callee field in the corresponging rewrite rule set.

For inbound calls from external networks, assign this rewrite rule set to the corresponding incoming peer. If you also need to map

numbers for on-net calls, assign the rewrite rule set to subscribers or the whole SIP domain.

6.13.1.2 External IVR access

When reaching voiceboxpass, the subscriber is prompted for her mailbox number and a password. All numbers assigned to

a subscriber are valid input (primary number and any alias number). By default, the required format is in E.164, so the subscriber

needs to enter the full number including country code, for example 4912345 if she got assigned a German number.

You can globally configure a rewrite rule in config.yml using asterisk.voicemail.normalize_match and aster

131

The Sipwise C5 PRO Handbook mr6.5.11 132 / 601

isk.voicemail.normalize_replace, allowing you to customize the format a subscriber can enter, e.g. having ˆ0([1-

9][0-9]+)$ as match part and 49$1 as replace part to accept German national format.

6.13.2 IVR Menu Structure

The following list shows you how the voicebox menu is structured.

• 1 Read voicemail messages

– 3 Advanced options

* 3 To Hear messages Envelope

* * Return to the main menu

– 4 Play previous message

– 5 Repeat current message

– 6 Play next message

– 7 Delete current message

– 9 Save message in a folder

* 0 Save in new Messages

* 1 Save in old Messages

* 2 Save in Work Messages

* 3 Save in Family Messages

* 4 Save in Friends Messages

* # Return to the main menu

• 2 Change folders

– 0 Switch to new Messages

– 1 Switch to old Messages

– 2 Switch to Work Messages

– 3 Switch to Family Messages

– 4 Switch to Friends Messages

– # Get Back

• 3 Advanced Options

– * To return to the main menu

• 0 Mailbox options

– 1 Record your unavailable message

* 1 accept it

* 2 Listen to it

132

The Sipwise C5 PRO Handbook mr6.5.11 133 / 601

* 3 Rerecord it

– 2 Record your busy message

* 1 accept it

* 2 Listen to it

* 3 Rerecord it

– 3 Record your name

* 1 accept it

* 2 Listen to it

* 3 Rerecord it

– 4 Record your temporary greetings

* 1 accept it / or re-record if one already exist

* 2 Listen to it / or delete if one already exist

* 3 Rerecord it

– 5 Change your password

– * To return to the main menu

• * Help

• # Exit

6.13.3 Type Of Messages

A message/greeting is a short message that plays before the caller is allowed to record a message. The message is intended to

let the caller know that you are not able to answer their call. It can also be used to convey other information like when you will be

available, other methods to contact you, or other options that the caller can use to receive assistance.

The IVR menu has three types of greetings.

6.13.3.1 Unavailable Message

The standard voice mail greeting is the "unavailable" greeting. This is used if you don’t answer the phone and so the call is directed

to your voice mailbox.

• You can record a custom unavailable greeting.

• If you have not recorded your unavailable greeting but have recorded your name, the system will play a generic message like:

"Recorded name is unavailable."

• If you have not recorded your unavailable greeting, the phone system will play a generic message like: "Digits-of-num

ber-dialed is unavailable".

133

The Sipwise C5 PRO Handbook mr6.5.11 134 / 601

6.13.3.2 Busy Message

If you wish, you can record a custom greeting used when someone calls you and you are currently on the phone. This is called

your "Busy" greeting.

• You can record a custom busy greeting.

• If you have not recorded your busy greeting but have recorded your name, the phone system will play a generic message:

"Recorded name is busy."

• If you have not recorded your busy greeting and have not recorded your name (see below), the phone system will play a generic

message: "Digits-of-number-dialed is busy."

6.13.3.3 Temporary Greeting

You can also record a temporary greeting. If it exists, a temporary greeting will always be played instead of your "busy" or

"unavailable" greetings. This could be used, for example, if you are going on vacation or will be out of the office for a while and

want to inform people not to expect a return call anytime soon. Using a temporary greeting avoids having to change your normal

unavailable greeting when you leave and when you come back.

6.13.4 Folders

The Voicemail system allows you to save and organize your messages into folders. There can be up to ten folders.

6.13.4.1 The Default Folder List

• 0 - New Messages

• 1 - Old Messages

• 2 - Work Messages

• 3 - Family Messages

• 4 - Friends Messages

When a caller leaves a message for you,the system will put the message into the "New Messages" folder. If you listen to the

message, but do not delete the message or save the message to a different folder, it will automatically move the message to

the "Old Messages" folder. When you first log into your mailbox, the Voicemail System will make the "New Messages" folder the

current folder if you have any new messages. If you do not have any new messages the it will make the "Old Messages" folder the

current folder.

6.13.5 Voicemail Languages Configuration

To add a new language or to change the pronunciation for an existing one, ensure that mode=new is defined in /etc/ngcp-

config/templates/etc/asterisk/say.conf.tt2. Adjust the configuration in the same file using the manual in the beginning. Then, as

usual, make the new configuration active.

134

The Sipwise C5 PRO Handbook mr6.5.11 135 / 601

6.13.6 Flowcharts with Voice Prompts

This section shows flowcharts of calls to the voicemail system. Flowcharts contain the name of prompts as they are identified

among Asterisk voice prompts.

135

The Sipwise C5 PRO Handbook mr6.5.11 136 / 601

6.13.6.1 Listening to New Messages

Figure 54: Flowchart of Listening to New Messages

136

The Sipwise C5 PRO Handbook mr6.5.11 137 / 601

6.13.6.2 Changing Voicemail Folders

Figure 55: Flowchart of Changing Voicemail Folders

137

The Sipwise C5 PRO Handbook mr6.5.11 138 / 601

6.13.6.3 Mailbox Options

Figure 56: Flowchart of Changing Mailbox Options

138

The Sipwise C5 PRO Handbook mr6.5.11 139 / 601

6.13.6.4 Leaving a Message

Figure 57: Flowchart of Leaving a Voice Message

139

The Sipwise C5 PRO Handbook mr6.5.11 140 / 601

6.14 Configuring Subscriber IVR Language

The language for the Voicemail system IVR or Vertical Service Codes (VSC) IVRs may be set using the subscriber or domain

preference language.

The Sipwise C5 provides the pre-installed prompts for the Voicemail in the English, Spanish, French and Italian languages and

the pre-installed prompts for the Vertical Service Codes IVRs in English only.

The other IVRs such as the Conference system and the error announcements use the Sound Sets configured in Sipwise C5 Panel

and uploaded by the administrator in his language of choice.

6.15 Sound Sets

The Sipwise C5 provides the administrator with ability to upload the voice prompts such as conference prompts or call error

announcements on the Sound Sets page. There is a preference sound_set in the NAT and Media Flow Control section on

Domain and Subscriber levels to link subscribers to the sound set that they should hear (as usual the subscriber preference

overrides the domain one). Sound Sets can be defined in Settings→Sound Sets. To create a new Sound Set, click Create Sound

Set. Then click the Files button.

140

The Sipwise C5 PRO Handbook mr6.5.11 141 / 601

Note

You may use 8 or 16 bit mono WAV audio files for all of the voice prompts.

6.15.1 Configuring Early Reject Sound Sets

The call error announcements are grouped under Early Rejects section. Unfold the section and click Upload next to the sound

handles (Names) that you want to use. Choose a WAV file from your file system, and click the Loopplay setting if you want to play

the file in a loop instead of just once. Click Save to upload the file.

141

The Sipwise C5 PRO Handbook mr6.5.11 142 / 601

The call error announcements are played to the user in early media hence the name "Early Reject". If you don’t provide the sound

files for any handles they will not be used and Sipwise C5 will fallback to sending the error response code back to the user.

The exact error status code and text are configurable in the /etc/ngcp-config/config.yml file, in kamailio.proxy.

early_rejects section. Please look for the announcement handle listed in below table in order to find it in the configuration

file.

Table 3: Early Reject Announcements

Handle Description Message played

announce_before_cf This is an announcement that the calling party

hears before the call is being forwarded

(Unconditional and Not Available cases) to the

destination. The feature can be activated with

Applications /

play_announce_before_cf domain or

subscriber preference.

N/A (custom message,

no default)

block_in This is what the calling party hears when a call

is made from a number that is blocked by the

incoming block list (adm_block_in_list,

block_in_list customer/subscriber

preferences)

Your call is blocked by

the number you are

trying to reach.

142

The Sipwise C5 PRO Handbook mr6.5.11 143 / 601

Table 3: (continued)

Handle Description Message played

block_out This is what the calling party hears when a call

is made to a number that is blocked by the

outgoing block list (adm_block_out_list,

block_out_list customer/subscriber

preferences)

Your call to the number

you are trying to reach

is blocked.

block_ncos This is what the calling party hears when a call

is made to a number that is blocked by the

NCOS level assigned to the subscriber or

domain (the NCOS level chosen in ncos and

adm_ncos preferences). PLEASE NOTE: It is

not possible to configure the status code and

text.

Your call to the number

you are trying to reach

is not permitted.

block_override_pin_wrong Announcement played to calling party if it

used wrong PIN code to override the outgoing

user block list or the NCOS level for this call

(the PIN set by block_out_override_pin and

adm_block_out_override_pin preferences)

The PIN code you have

entered is not correct.

callee_busy Announcement played on incoming call to the

subscriber which is currently busy (486

response from the UAS)

The number you are

trying to reach is

currently busy. Please

try again later.

callee_offline Announcement played on incoming call to the

subscriber which is currently not registered

The number you are

trying to reach is

currently not available.

Please try again later.

callee_tmp_unavailable Announcement played on incoming call to the

subscriber which is currently unavailable (408,

other 4xx or no response code or 30x with

malformed contact)

The number you are

trying to reach is

currently not available.

Please try again later.

callee_unknown Announcement that is played on call to

unknown or invalid number (not associated

with any of our subscribers/hunt groups)

The number you are

trying to reach is not in

use.

cf_loop Announcement played when the called

subscriber has the call forwarding configured

to itself

The number you are

trying to reach is

forwarded to an invalid

destination.

143

The Sipwise C5 PRO Handbook mr6.5.11 144 / 601

Table 3: (continued)

Handle Description Message played

emergency_geo_unavailable Announcement played when emergency

destination is dialed but the destination is not

provisioned for the location of the user.

PLEASE NOTE: The configuration entry for

this case in /etc/ngcp-config/

config.yml file is

emergency_invalid.

The emergency

number you have

dialed is not available

in your region.

emergency_unsupported Announcement played when emergency

destination is dialed but the emergency calls

are administratively prohibited for this user or

domain (reject_emergency preference is

enabled)

You are not allowed to

place emergency calls

from this line. Please

use a different phone.

error_please_try_later Announcement played when the call is

handled by 3rd party call control (PCC) and

there was an error during call processing.

PLEASE NOTE: This announcement may be

configured in the sound set in

voucher_recharge section.

An error has occurred.

Please try again later.

invalid_speeddial This is what the calling party hears when it

calls an empty speed-dial slot

The speed dial slot you

are trying to use is not

available.

locked_in Announcement played on incoming call to

a subscriber that is locked for incoming calls

The number you are

trying to reach is

currently not permitted

to receive calls.

locked_out Announcement played on outgoing call

to subscriber that is locked for outgoing calls

You are currently not

allowed to place

outbound calls.

max_calls_in Announcement played on incoming call to a

subscriber who has exceeded

the concurrent_max limit by sum of incoming

and outgoing calls or whose customer has

exceeded the concurrent_max_per_account

limit by sum of incoming and outgoing calls

The number you are

trying to reach is

currently busy. Please

try again later.

max_calls_out Announcement played on outgoing call to

a subscriber who has exceeded

the concurrent_max (total limit) or

concurrent_max_out (limit on number of

outbound calls) or whose customer has

exceeded the concurrent_max_per_account

or concurrent_max_out_per_account limit

All outgoing lines are

currently in use.

Please try again later.

144

The Sipwise C5 PRO Handbook mr6.5.11 145 / 601

Table 3: (continued)

Handle Description Message played

max_calls_peer Announcement played on calls from the

peering if that peer has reached the maximum

number of concurrent calls (configured by

admin in concurrent_max preference of

peering server). PLEASE NOTE: There is no

configuration option of the status code and

text in config.yml file for this case.

The network you are

trying to reach is

currently busy. Please

try again later.

no_credit Announcement played when prepaid account

has insufficient balance to make a call to this

destination

You don’t have

sufficient credit

balance for the number

you are trying to reach.

peering_unavailable Announcement played in case of

outgoing off-net call when there is no peering

rule matching this destination and/or source

The network you are

trying to reach is not

available.

reject_vsc When the VSC (Vertical Service Code) service

is disabled in domain or subscriber

preferences (Access Restrictions /

reject_vsc is set to TRUE) and a

subscriber tries to make a call with VSC, an

announcement is played.

N/A (custom message,

no default)

relaying_denied Announcement played on inbound call from

trusted IP (e.g. external PBX) with non-local

Request-URI domain

The network you are

trying to reach is not

available.

unauth_caller_ip This is what the calling party hears when it

tries to make a call from unauthorized IP

address or network (allowed_ips,

man_allowed_ips preferences)

You are not allowed to

place calls from your

current network

location.

voicebox_unavailable PLEASE NOTE: This announcement is

already obsolete, as of Sipwise C5 version

mr5.3

The voicemail of the

number you are trying

to reach is currently

not available. Please

try again later.

There are some early reject scenarios when either no voice announcement is played, or a fixed announcement is played. In

either case a SIP error status message is sent from Sipwise C5 to the calling party. It is possible to configure the exact status code

and text for such cases in the /etc/ngcp-config/config.yml file, in kamailio.proxy.early_rejects section.

The below table gives an overview of those early reject cases.

145

The Sipwise C5 PRO Handbook mr6.5.11 146 / 601

Table 4: Additional Early Reject Reason Codes

Handle Description

block_admin Caller blocked by adm_block_in_list,

adm_block_in_clir and callee blocked

by adm_block_out_list (customer or

subscriber preference)

block_callee Callee blocked by subscriber preference

block_out_list

block_caller Caller blocked by subscriber preference

block_in_list, block_in_clir

block_contract Caller blocked by customer preference

block_in_list, block_in_clir and

callee blocked by customer preference

block_out_list

callee_tmp_unavailable_gp Callee is a PBX group with 0 members.

Announcement

callee_tmp_unavailable is played;

status code and text can be configured.

callee_tmp_unavailable_tm Callee is a PBX group and we have a timeout

(i.e. no group member could be reached).

Announcement

callee_tmp_unavailable is played;

status code and text can be configured.

emergency_invalid PLEASE NOTE: This handle refers to the

same early reject case as

emergency_geo_unavailable, but is

labeled differently in the configuration file.

6.16 Conference System

The Sipwise C5 provides the simple pin-protected conferencing service built using the SEMS DSM scripting language. Hence it is

open for all kinds of modifications and extensions.

Template files for the sems conference scripts stored in /etc/ngcp-config/templates/etc/ngcp-sems/ :

• IVR script: /etc/ngcp-config/templates/etc/ngcp-sems/dsm/confpin.dsm.tt2

• Config: /etc/ngcp-config/templates/etc/ngcp-sems/dsm/confpin.conf.tt2

146

The Sipwise C5 PRO Handbook mr6.5.11 147 / 601

6.16.1 Configuring Call Forward to Conference

Go to your Subscriber Preferences and click Edit on the Call Forward Type you want to set (e.g. Call Forward Unconditional).

You should select Conference option in the Destination field and leave the URI/Number empty. The timeout defines for how long

this destination should be tried to ring.

6.16.2 Configuring Conference Sound Sets

Sound Sets can be defined in Settings→Sound Sets. To create a new Sound Set, click Create Sound Set. Then click the Files

button.

147

The Sipwise C5 PRO Handbook mr6.5.11 148 / 601

Upload the following files:

Table 5: Conference Sound Sets

Handle Message played

conference_greeting Welcome to the conferencing service.

conference_pin Please enter your PIN, followed by the pound key.

conference_pin_wrong You have entered an invalid PIN number. Please try again.

conference_joined You will be placed into the conference.

conference_first You are the first person in the conference.

conference_join A person has joined the conference.

conference_leave A person has left the conference.

conference_max_participants All conference lines are currently in use. Please try again

later.

conference_waiting_music . . . waiting music. . .

goodbye Goodbye.

Note

You may use 8 or 16 bit mono WAV audio files.

Then set the preference sound_set on the Domain or Subscriber level in order to assign the Sound Set you have just created to

the subscriber (as usual the subscriber preference overrides the domain one).

148

The Sipwise C5 PRO Handbook mr6.5.11 149 / 601

6.16.3 Joining the Conference

There are 2 ways of joining a conference: with or without PIN code. The actual way of joining the conference depends on

Subscriber settings. A subscriber who has activated the conference through call forwarding may set a PIN in order to protect the

conference from unauthorized access. To activate the PIN one has to enter a value in Subscriber→ Details→ Preferences→
Internals→ conference_pin field.

Figure 58: Setting Conference PIN

In case the PIN protection for the conference is activated, when someone calls the subscriber who has enabled the conference, the

caller is prompted to enter the PIN of the conference. Upon the successful entry of the PIN the caller hears the announcement that

he is going to be placed into the conference and at the same time this is announced to all participants already in the conference.

6.16.4 Conference Flowchart with Voice Prompts

The following 2 sections show flowcharts with voice prompts that are played to a caller when he dials the conference.

149

The Sipwise C5 PRO Handbook mr6.5.11 150 / 601

6.16.4.1 Conference Flowchart with PIN Validation

Figure 59: Flowchart of Conference with PIN Validation

150

The Sipwise C5 PRO Handbook mr6.5.11 151 / 601

6.16.4.2 Conference Flowchart without PIN

Figure 60: Flowchart of Conference without PIN

6.17 Malicious Call Identification (MCID)

MCID feature allows customers to report unwanted calls to the platform operator.

6.17.1 Setup

To enable the feature first edit config.yml and enable there apps: malicious_call: yes and kamailio: st

ore_recentcalls: yes. The latter option enables kamailio to store recent calls per subscrbriber UUID in the redis DB

(the amount of stored recent calls will not exceed the amount of provisionined subscribers).

Next step is to create a system sound set for the feature. In Settings→Sound Sets either use your already existing Sound Set or

create a new Sound Set and then assign it to your domain or subscribers. In the Sound Set there is a fileset malicious_call_identification→mailicious_call_report

for that purpose.

Once the Sound Set is created the Subscriber’s Preferences Malicious Call Identification must be enabled under Subcriber →
Preferences→ Applications menu. The same parameter can be set in the Customer’s preferences to enable this feature for all its

subscribers.

The final step is to create a new Rewrite Rule and to route calls to, for instance *123 → MCID application. For that you

create a Calee Inbound rewrite rule ˆ(*123)$→ malicious_call

Finaly you run ngcpcfg apply "Enabling MCID" to recreate the templates and automatically restart depended services.

151

The Sipwise C5 PRO Handbook mr6.5.11 152 / 601

6.17.2 Usage

As a subscriber, to report a malicious call you call to either malicious_call or to your custom number assigned for that purpose.

Please note that you can report only your last received call. You will hear the media reply from the Sound Set you have previosuly

configured.

To check reported malicious calls as the plafrom operator open Settings→Malicious Calls tab where you will see a list of registered

calls. You can selectively delete records from the list and alternatively you can manage the reported calls by using the REST API.

6.17.3 Advanced configuration

By default the expiration time for the most recent call per subscriber is 3600 seconds (1 hour). If you wish to prolong or shorten

the expiration time open constants.yml and set there recentcalls: expire: 3600 to a new value, and issue

ngcpcfg apply "Enabling MCID" afterwards.

6.18 Subscriber Profiles

The preferences a subscriber can provision by himself via the CSC can be limited via profiles within profile sets assigned to

subscribers.

6.18.1 Subscriber Profile Sets

Profile sets define containers for profiles. The idea is to define profile sets with different profiles by the administrator (or the reseller,

if he is permitted to do so). Then, a subscriber with administrative privileges can re-assign profiles within his profile sets for the

subscribers of his customer account.

Profile Sets can be defined in Settings→Subscriber Profiles. To create a new Profile Set, click Create Subscriber Profile Set.

152

The Sipwise C5 PRO Handbook mr6.5.11 153 / 601

You need to provide a reseller, name and description.

To create Profiles within a Profile Set, hover over the Profile Set and click the Profiles button.

Profiles within a Profile Set can be created by clicking the Create Subscriber Profile button.

153

The Sipwise C5 PRO Handbook mr6.5.11 154 / 601

Checking the Default Profile option causes this profile to get assigned automatically to all subscribers, who have the profile set

assigned. Other options define the user preferences which should be made available to the subscriber.

Note

When the platform administrator selects Preferences of the Subscriber Profile he will get an empty page like in the picture

below, if none or only certain options are selected in the Subscriber Profile.

Some of the options, like ncos (NCOS level), will enable the definition of that preference within the Subscriber Profile Preferences.

Thus all subscribers who have this profile assigned to will have the preference activated by default. The below picture shows the

preferences linked to the sample Subscriber Profile:

154

The Sipwise C5 PRO Handbook mr6.5.11 155 / 601

6.19 SIP Loop Detection

In order to detect a SIP loop (incoming call as a response for a call request) Sipwise C5 checks the combination of SIP-URI, To

and From headers.

This check can be enabled in config.yml by setting kamailio.proxy.loop_detection.enable: ’yes’. The system tolerates kamailio.proxy.loop_detection.max

loops within kamailio.proxy.loop_detection.expire seconds. Higher occurrence of loops will be reported with a SIP 482 "Loop De-

tected" error message

6.20 Call-Through Application

Call-through allows telephony client to dial into an IVR system and specify (in two-stage dialing fashion) a new destination number

which is then dialed by Sipwise C5 to connect the client to the destination. As the call-through system needs to be protected from

unauthorized use, a list of CLIs which are allowed to use the call-through system is stored in Sipwise C5 platform.

Table 6: Call-Through Mappings

Column Description

uuid The internal UUID of the call-through subscriber

auth_key Authentication key (CLI)

source_uuid The internal UUID of the subscriber that is authorized for

outgoing call leg (same as uuid in call-through scenario)

155

The Sipwise C5 PRO Handbook mr6.5.11 156 / 601

6.20.1 Administrative Configuration

6.20.1.1 Subscriber provisioning

In order to manage the call-through CLIs for subscriber, navigate to Settings→Subscribers, search for the subscriber you want to

edit, press Details and then Preferences, scroll down to the Callthrough CLIs section and press Edit Callthrough CLIs button.

Using Sipwise C5 Panel the user then creates Call Forward to destination Call Through.

6.20.1.2 Forward to local user

If the subscriber has a Call Forward to the call-through application but caller’s CLI is not in the authorized CLIs list for call-through,

sems responds with error back to proxy and proxy advances to the next number in the Call Forward destinations set. User can

enter special destination Local Subscriber as next target after Call Through in the destinations set in order to terminate the call to

the subscriber as if the subscriber didn’t exist. This way the user may reach the call-through application from his authorized CLI

(e.g. mobile number) and all other callers would reach the SIP subscriber’s registered phone as usual.

156

The Sipwise C5 PRO Handbook mr6.5.11 157 / 601

6.20.1.3 Sound Set provisioning

In order for the Callthrough application to work a Sound Set must be created and associated with the Domain or Subscriber.

Sound Sets can be defined in Settings→Sound Sets. To create a new Sound Set, click Create Sound Set. Then click the Files

button. Administrator can upload the default sounds in one of supported languages or uploaded by the administrator manually in

his language of choice.

There is a preference sound_set on Domain and Subscriber levels to link subscribers to the sound set that they should hear (as

usual the subscriber preference overrides the domain one).

157

The Sipwise C5 PRO Handbook mr6.5.11 158 / 601

Note

You may use 8 or 16 bit mono WAV audio files for all of the voice prompts.

6.20.2 Call Flow

The call arrives at sems application server with Request-URI user callthrough.

6.20.2.1 Internal Header Parameters

The INVITE contains an extra SIP header P-App-Param with the following parameters:

Table 7: SIP Header parameters for call-through application

Name Meaning

uuid The internal UUID of the call-through subscriber

158

The Sipwise C5 PRO Handbook mr6.5.11 159 / 601

Table 7: (continued)

Name Meaning

srcnumber Caller’s CLI for the authentication

outgoing_cli New CLI to be used by sems application for the outgoing

call leg

6.20.2.2 Caller authorization

Caller is authorized using mapping shown in table above: select source_uuid from provisioning.voip_cc_ma

pping where uuid=$uuid and auth_key=$srcnumber;

If the check fails return the configured error response code. Then proceed with the call setup as follows.

6.20.2.3 Outgoing call

Sems requests the user to enter destination and starts digit collection. Digit collection process is terminated after 5 seconds

(configurable in sems config file) or by pressing the # key. User can start entering destination while the voice prompt is being

played.

Sems sends INVITE to the proxy with Request-URI: sip:$number@$outboundproxy;sw_domain=$subscriber.

domain

From: $outgoing_cli

On receiving the 401 or 407 response from the proxy the application authenticates using the digest credentials retrieved for the call-

through subscriber from the voip_subscribers table:select s.username, s.password, d.domain from pr

ovisioning.voip_subscribers s, provisioning.voip_domains d where s.uuid=$source_uuid a

nd s.domain_id=d.id;

If the call setup fails the application plays back the "could_not_connect" sound file. If successful the application acts transparently

and does not provide any voice announcements or DTMF detection.

6.20.2.4 CLI configuration

The CLI on the outgoing call from the call-through module is set to the Network-Provided Number (NPN) of the call-through

subscriber. There is nothing to configure.

6.21 Calling Card Application

Calling card application uses a similar concept to call-through except that authorization process operates on the PIN code entered

by user using DTMF instead of the CLI. The Sipwise C5 maps incoming UUID of the pilot subscriber to the list of PINs for calling

159

The Sipwise C5 PRO Handbook mr6.5.11 160 / 601

card application with their corresponding subscriber UUIDs for outbound call leg using table provisioning.voip_cc_map

ping table {"uuid", "auth_key", "source_uuid"}

Table 8: Calling Cards

Column Description

uuid The internal UUID of the pilot subscriber

auth_key Authentication key (PIN)

source_uuid The internal UUID of the subscriber that is authorized for

outgoing call leg

6.21.1 Administrative Configuration

6.21.1.1 Subscriber provisioning

In order to use the calling cards service the user creates a Call Forward to destination Calling Card for the designated subscriber

that will be used as access number for this service.

6.21.1.2 Sound Set provisioning

In order for the Calling Card application to work a Sound Set must be created and associated with the Domain or Subscriber.

Sound Sets can be defined in Settings→Sound Sets. To create a new Sound Set, click Create Sound Set. Then click the Files

button. Administrator can upload the default sounds in one of supported languages or uploaded by the administrator manually in

his language of choice.

There is a preference sound_set on Domain and Subscriber levels to link subscribers to the sound set that they should hear (as

usual the subscriber preference overrides the domain one).

160

The Sipwise C5 PRO Handbook mr6.5.11 161 / 601

Note

You may use 8 or 16 bit mono WAV audio files for all of the voice prompts.

6.21.1.3 CLI configuration

The CLI on the outgoing call from the calling card app can be configured in one of the following ways using subscriber preferences:

1) Show original caller’s CLI: the calling card subscriber shall have allowed_clis: * (any). Sems application sends the

original caller’s CLI in the From header, it is validated by the SIP proxy and sent to outside.

2) Show number of the pilot (calling card) subscriber: the calling card subscriber shall have an empty allowed_clis and

desired number set as value of user_cli preference. The SIP proxy overrides the original caller’s CLI in UPN with the value

of the user_cli preference. The peer must have set outbound_from_user, outbound_from_display: User-

Provided Number (UPN).

161

The Sipwise C5 PRO Handbook mr6.5.11 162 / 601

6.21.2 Call Flow

The call arrives at sems application server with Request-URI user callingcard.

6.21.2.1 Internal Header Parameters

The INVITE contains an extra SIP header P-App-Param with the following parameters:

Table 9: SIP Header parameters for calling card application

Name Meaning

uuid The internal UUID of the pilot subscriber

outgoing_cli New CLI to be used by sems application for the outgoing

call leg

6.21.2.2 Caller authorization

• Sems requests the user to enter PIN and starts digit collection. Digit collection process is terminated after 5 seconds (con-

figurable in sems config file) or by pressing the # key. User can start entering destination while the voice prompt is being

played.

• Sems checks that PIN is valid and belongs to the pilot subscriber using mapping as shown in the table. It fetches UUID of

the subscriber to be used for outgoing call leg: select source_uuid from provisioning.voip_cc_mapping

where uuid=$uuid and auth_key=$pin;

• If the check fails sems will request the user to re-enter PIN up to the configured number of times.

• If successful proceed with the call setup making call on behalf of subscriber determined by the source_uuid key as follows.

6.21.2.3 Outgoing call

Sems application plays back the available balance of the customer. Sems requests the user to enter destination and starts digit

collection. Digit collection process is terminated after 5 seconds (configurable in sems config file) or by pressing the # key. User

can start entering destination while the voice prompt is being played.

Sems sends INVITE to the proxy with Request-URI: sip:$number@$outboundproxy;sw_domain=$subscriber.

domain

From: $outgoing_cli

On receiving the 401 or 407 response from the proxy the application authenticates using the digest credentials retrieved for the sub-

scriber for outgoing call leg from the voip_subscribers table: select s.username, s.password, d.domain f

rom provisioning.voip_subscribers s, provisioning.voip_domains d where s.uuid=$source_

uuid and s.domain_id=d.id;

162

The Sipwise C5 PRO Handbook mr6.5.11 163 / 601

6.21.2.4 Voucher recharge

During the destination collection phase in calling card application user can enter special code *1*<pin># (configurable in sems

config file) to transfer balance from other calling card customer to the currently authorized customer. Sems transfers all remaining

balance from that customer to the current customer.

6.21.2.5 Billing

The call via calling card application as well as call-through generates three CDRs:

• A to B: The incoming call from any source to the call-through subscriber.

• B to callingcard@app.local or callthrough@app.local: The call forward to the sems application.

• B to C: The outgoing call to the final destination. The three CDRs are handled by the billing process as usual, exported and

shown in all call lists. .

6.22 Invoices and Invoice Templates

Content and vision of the invoices are customizable by invoice templates Section 6.22.3.

Note

The Sipwise C5 generates invoices in pdf format.

6.22.1 Invoices Management

Invoices can be requested for generation, searched, downloaded and deleted on the administrative web interface. Navigate to

Settings→ Invoices menu and you get a list of all invoices currently stored in the database.

Tip

The system operator or a third party application can also generate, list, retrieve and delete invoices via the REST API. Please

read further details here Section 6.22.2.

163

The Sipwise C5 PRO Handbook mr6.5.11 164 / 601

To request invoice generation for the particular customer and period press "Create invoice" button. On the invoice creation form

following parameters are available for selection:

• Template: any of existent invoice template can be selected for the invoice generation.

• Customer: owner of the billing account, recipient of the invoice.

• Invoice period: billing period. Can be specified only as one calendar month. Calls with start time between first and last second

of the period will be considered for the invoice

All form fields are mandatory.

164

The Sipwise C5 PRO Handbook mr6.5.11 165 / 601

Generated invoice can be downloaded as pdf file.

To do it press button "Download" against invoice in the invoice management interface.

Respectively press on the button "Delete" to delete invoice.

6.22.2 Invoice Management via REST API

Besides managing invoices on the admin web interface of NGCP, the system administrator (or a third party system) has the

opportunity to request generation and retrieval of invoices via the REST API.

165

The Sipwise C5 PRO Handbook mr6.5.11 166 / 601

The subsequent sections describe the available operations for invoice management with API requests in details. All operations

work on the Invoices resource and use the /api/invoices base path. The authentication method is username/password in

the examples given below, however it is recommended to use a TLS client certificate for authentication on the REST API.

Note

The full API documentation is always available at the location: https://<IP_of_NGCP_web_panel>:1443/api

6.22.2.1 Generate a New Invoice

The prerequisite for generating a new invoice is that the customer has to have an invoice template assigned to him.

The following example shows a CURL command that will request generation of an invoice:

• for customer with ID "79"

• for the time period of November 2017

• based on the invoice template with ID "1"

curl -i -X POST -H ’Connection: close’ -H ’Content-Type: application/json’ \

--user adminuser:adminpwd -k ’https://127.0.0.1:1443/api/invoices/’ \

--data-binary ’{ "customer_id" : "79", "template_id" : "1", \

"period_start": "2017-11-01 00:00:00", "period_end": "2017-11-30 23:59:59" }’

Please note that in this operation we used the /api/invoices path (the invoices collection) and a POST request on it to

create a new invoice item.

In case of a successful operation, Sipwise C5 will reply with 201 Created HTTP status and send the ID of the invoice in

Location header. In our example the new invoice item may be directly referred as /api/invoices/3 (ID = 3).

HTTP/1.1 201 Created

Server: nginx

Date: Tue, 14 Nov 2017 13:38:40 GMT

Content-Length: 0

Connection: close

Location: /api/invoices/3

Set-Cookie: ngcp_panel_session=d5e4a8dd003fd7cac646653a6b5aefa703cf3e66; path=/; expires= ←↩
Tue, 14-Nov-2017 14:38:38 GMT; HttpOnly

X-Catalyst: 5.90114

Strict-Transport-Security: max-age=15768000

In case of a failed operation, e.g. when we request an invoicing period that is invalid for the customer, Sipwise C5 will reply with

422 Unprocessable Entity or 500 Internal Server Error HTTP status.

6.22.2.2 Download Invoice Data

You can download properties / data of a specific invoice by selecting the item by its ID, using an HTTP GET request.

166

The Sipwise C5 PRO Handbook mr6.5.11 167 / 601

curl -i -X GET -H ’Connection: close’ --user adminuser:adminpwd -k \

’https://127.0.0.1:1443/api/invoices/3’

The above request will return a JSON data structure containing invoice properties:

HTTP/1.1 200 OK

Server: nginx

Date: Wed, 15 Nov 2017 12:13:04 GMT

Content-Type: application/hal+json; profile="http://purl.org/sipwise/ngcp-api/"; charset= ←↩
utf-8

Content-Length: 759

Connection: close

Link: </api/invoices/>; rel=collection

Link: <http://purl.org/sipwise/ngcp-api/>; rel=profile

Link: </api/invoices/3>; rel="item self"

Link: </api/invoices/3>; rel="item http://purl.org/sipwise/ngcp-api/#rel-invoices"

Link: </api/customers/79>; rel="item http://purl.org/sipwise/ngcp-api/#rel-customers"

Set-Cookie: ngcp_panel_session=219feccbee4fa936defd1ee511c84efe7b5a6d6a; path=/; expires= ←↩
Wed, 15-Nov-2017 13:13:03 GMT; HttpOnly

Strict-Transport-Security: max-age=15768000

{

"_links" : {

"collection" : {

"href" : "/api/invoices/"

},

"curies" : {

"href" : "http://purl.org/sipwise/ngcp-api/#rel-{rel}",

"name" : "ngcp",

"templated" : true

},

"ngcp:customers" : {

"href" : "/api/customers/79"

},

"ngcp:invoices" : {

"href" : "/api/invoices/3"

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcp-api/"

},

"self" : {

"href" : "/api/invoices/3"

}

},

"amount_net" : 0,

"amount_total" : 0,

"amount_vat" : 0,

167

The Sipwise C5 PRO Handbook mr6.5.11 168 / 601

"id" : 3,

"period_end" : "2017-11-30T23:59:59+00:00",

"period_start" : "2017-11-01T00:00:00+00:00",

"sent_date" : null,

"serial" : "INV2017110000003"

}

It is also possible to query the complete invoices collection and use a filter (e.g. invoicing period, customer ID, etc.) to get the

desired invoice item. In the example below we request all available invoices that belong to the customer with ID "79".

curl -i -X GET -H ’Connection: close’ --user adminuser:adminpwd -k \

’https://127.0.0.1:1443/api/invoices/?customer_id=79’

The returned dataset is now slightly different because it is represented as an array of items, although in our example the array

consist of only 1 item:

{

"_embedded" : {

"ngcp:invoices" : [

{

"_links" : {

"collection" : {

"href" : "/api/invoices/"

},

"curies" : {

"href" : "http://purl.org/sipwise/ngcp-api/#rel-{rel}",

"name" : "ngcp",

"templated" : true

},

"ngcp:customers" : {

"href" : "/api/customers/79"

},

"ngcp:invoices" : {

"href" : "/api/invoices/3"

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcp-api/"

},

"self" : {

"href" : "/api/invoices/3"

}

},

"amount_net" : 0,

"amount_total" : 0,

"amount_vat" : 0,

"id" : 3,

"period_end" : "2017-11-30T23:59:59+00:00",

"period_start" : "2017-11-01T00:00:00+00:00",

168

The Sipwise C5 PRO Handbook mr6.5.11 169 / 601

"sent_date" : null,

"serial" : "INV2017110000003"

}

]

},

"_links" : {

"curies" : {

"href" : "http://purl.org/sipwise/ngcp-api/#rel-{rel}",

"name" : "ngcp",

"templated" : true

},

"ngcp:invoices" : {

"href" : "/api/invoices/3"

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcp-api/"

},

"self" : {

"href" : "/api/invoices/?page=1&rows=10"

}

},

"total_count" : 1

}

6.22.2.3 Download Invoice as PDF File

You can download a specific invoice as a PDF file in the following way:

• selecting the item by its ID (as in our example, but you can also use a filter and query the complete invoices collection)

• using an HTTP GET request

• adding "Accept: application/pdf" header to the request

curl -X GET -H ’Connection: close’ -H ’Accept: application/pdf’ \

--user adminuser:adminpwd -k ’https://127.0.0.1:1443/api/invoices/3’ > result.pdf

Please note that in the example above we do not add the "-i" option that would also include the headers of the HTTP response

in the output file. The output of the CURL command, i.e. the PDF file, is saved as "result.pdf" locally.

6.22.2.4 Delete an Invoice

In order to delete an invoice item you have to send a DELETE request on the specific item:

curl -i -X DELETE -H ’Connection: close’ --user adminuser:adminpwd -k \

’https://127.0.0.1:1443/api/invoices/3’

169

The Sipwise C5 PRO Handbook mr6.5.11 170 / 601

In case of successful deletion Sipwise C5 should send HTTP status 204 No Content as a response:

HTTP/1.1 204 No Content

Server: nginx

Date: Wed, 15 Nov 2017 13:42:42 GMT

Connection: close

Set-Cookie: ngcp_panel_session=10b66a6baf25a09739c2bb2377c70ecceee78387; path=/; expires= ←↩
Wed, 15-Nov-2017 14:42:42 GMT; HttpOnly

X-Catalyst: 5.90114

Strict-Transport-Security: max-age=15768000

6.22.3 Invoice Templates

Invoice template defines structure and look of the generated invoices. The Sipwise C5 makes it possible to create some invoice

templates. Multiple invoice templates can be used to send invoices to the different customers using different languages.

Important

At least one invoice template should be created to enable invoice generation. Each customer has to be associated to

one of the existent invoice template, otherwise invoices will be not generated for this customer.

Customer can be linked to the invoice template in the customer interface.

6.22.3.1 Invoice Templates Management

Invoice templates can be searched, created, edited and deleted in the invoice templates management interface.

170

The Sipwise C5 PRO Handbook mr6.5.11 171 / 601

Invoice template creation is separated on two steps:

• Register new invoice template meta information.

• Edit content (template itself) of the invoice template.

To register new invoice template press "Create Invoice Template" button.

On the invoice template meta information form following parameters can be specified:

• Reseller: reseller who owns this invoice template. Please note, that it doesn’t mean that the template will be used for the reseller

customers by default. After creation, invoice template still need to be linked to the reseller customers.

• Name: unique invoice template name to differentiate invoice templates if there are some.

• Type: currently Sipwise C5 supports only svg format of the invoice templates.

All form fields are mandatory.

After registering new invoice template you can change invoice template structure in WYSIWYG SVG editor and preview result of

the invoice generation based on the template.

6.22.3.2 Invoice Template Content

Invoice template is a XML SVG source, which describes content, look and position of the text lines, images or other invoice

template elements. The Sipwise C5 provides embedded WYSIWYG SVG editor svg-edit 2.6 to customize default template. The

Sipwise C5 svg-edit has some changes in layers management, image edit, user interface, but this basic introduction still may be

useful.

171

http://ehmdunque.altervista.org/i-informatica/manuali/SVG-edit/SVG-Edit_2.6/Short_intro_SVG-edit.html

The Sipwise C5 PRO Handbook mr6.5.11 172 / 601

Template refers to the owner reseller contact ("rescontact"), customer contract ("customer"), customer contact ("custcontact"),

billing profile ("billprof"), invoice ("invoice") data as variables in the "[%%]" mark-up with detailed information accessed as field

name after point e.g. [%invoice.serial%]. During invoice generation all variables or other special tokens in the "[% %]" mark-ups

will be replaced by their database values.

Press on "Show variables" button on invoice template content page to see full list of variables with the fields:

You can add/change/remove embedded variables references directly in main svg-edit window. To edit text line in svg-edit main

window double click on the text and place cursor on desired position in the text.

After implementation of the desired template changes, invoice template should be saved Section 6.22.3.3.

To return to Sipwise C5 invoice template default content you can press on the "Discard changes" button.

Important

"Discard changes" operation can’t be undone.

Layers

Default template contains three groups elements (<g/>), which can be thinked of as pages, or in terms of svg-edit - layers. Layers

are:

• Background: special layer, which will be repeated as background for every other page of the invoice.

• Summary: page with a invoice summary.

• CallList: page with calls made in a invoice period. Is invisible by default.

172

The Sipwise C5 PRO Handbook mr6.5.11 173 / 601

To see all invoice template layers, press on "Layers" vertical sign on right side of the svg-edit interface:

Side panel with layers list will be shown.

173

The Sipwise C5 PRO Handbook mr6.5.11 174 / 601

One of the layers is active, and its element can be edited in the main svg-edit window. Currently active layer’s name is bold in the

layers list. The layers may be visible or invisible. Visible layers have "eye" icon left of their names in the layers list.

To make a layer active, click on its name in the layers list. If the layer was invisible, its elements became visible on activation. Thus

you can see mixed elements of some layers, then you can switch off visibility of other layers by click on their "eye" icons. It is good

idea to keep visibility of the "Background" layer on, so look of the generated page will be seen.

Edit SVG XML source

Sometimes it may be convenient to edit svg source directly and svg-edit makes it possible to do it. After press on the <svg> icon

in the top left corner of the svg-edit interface:

174

The Sipwise C5 PRO Handbook mr6.5.11 175 / 601

SVG XML source of the invoice template will be shown.

SVG source can be edited in place or just copy-pasted as usual text.

Note

Template keeps sizes and distances in pixels.

Important

When edit svg xml source, please change very carefully and thinkfully things inside special comment mark-up "<!--{

}-→". Otherwise invoice generation may be broken. Please be sure that document structure repeats default invoice

template: has the same groups (<g/>) elements on the top level, text inside special comments mark-up "<!--{ }-→"

preserved or changed appropriately, svg xml structure is correct.

To save your changes in the svg xml source, first press "OK" button on the top left corner of the source page:

175

The Sipwise C5 PRO Handbook mr6.5.11 176 / 601

And then save invoice template changes Section 6.22.3.3.

Note

You can copy and keep the svg source of your template as a file on the disk before start experimenting with the template. Later

you will be able to return to this version replacing svg source.

Change logo image

• Make sure that "Select tool" is active.

• Select default logo, clicking on the logo image.

• Press "Change image" button, which should appear on the top toolbar.

176

The Sipwise C5 PRO Handbook mr6.5.11 177 / 601

After image uploaded save invoice template changes Section 6.22.3.3.

6.22.3.3 Save and preview invoice template content

To save invoice template content changes press button "Save SVG".

You will see message about successfully saved template. You can preview your invoice look in PDF format. Press on "Preview as

PDF" button.

177

The Sipwise C5 PRO Handbook mr6.5.11 178 / 601

Invoice preview will be opened in the new window.

Note

Example fake data will be used for preview generation.

178

The Sipwise C5 PRO Handbook mr6.5.11 179 / 601

6.23 Email Reports and Notifications

6.23.1 Email events

The Sipwise C5 makes it possible to customize content of the emails sent on the following actions:

• Web password reset requested. Email will be sent to the subscriber, whom password was requested for resetting. If the

subscriber doesn’t have own email, letter will be sent to the customer, who owns the subscriber.

• New subscriber created. Email will be sent to the newly created subscriber or to the customer, who owns new subscriber.

• Letter with the invoice. Letter will be sent to the customer.

6.23.2 Initial template values and template variables

Default email templates for each of the email events are inserted on the initial Sipwise C5 database creation. Content of the default

template is described in the corresponding sections. Default email templates aren’t linked to any reseller and can’t be changed

through Sipwise C5 Panel. They will be used to initialize default templates for the newly created reseller.

Each email template refers to the values from the database using special mark-ups "[%" and "%]". Each email template has fixed

set of the variables. Variables can’t be added or changed without changes in Sipwise C5 Panel code.

6.23.3 Password reset email template

Email will be sent after subscriber or subscriber administrator requested password reset for the subscriber account. Letter will be

sent to the subscriber. If subscriber doesn’t have own email, letter will be sent to the customer owning the subscriber.

Default content of the password reset email template is:

Template name passreset_default_email

From default@sipwise.com

Subject Password reset email

Body

Dear Customer,

Please go to [%url%] to set your password and log into your self-care ←↩
interface.

Your faithful Sipwise system

--

This is an automatically generated message. Do not reply.

Following variables will be provided to the email template:

179

mailto:default@sipwise.com

The Sipwise C5 PRO Handbook mr6.5.11 180 / 601

• [%url%]: specially generated url where subscriber can define his new password.

• [%subscriber%]: username@domain of the subscriber, which password was requested for reset.

6.23.4 New subscriber notification email template

Email will be sent on the new subscriber creation. Letter will be sent to the newly created subscriber if it has an email. Otherwise,

letter will be sent to the customer who owns the subscriber.

Note

By default email content template is addressed to the customer. Please consider this when create the subscriber with an email.

Template name subscriber_default_email

From default@sipwise.com

Subject Subscriber created

Body

Dear Customer,

A new subscriber [%subscriber%] has been created for you.

Your faithful Sipwise system

--

This is an automatically generated message. Do not reply.

Following variables will be provided to the email template:

• [%url%]: specially generated url where subscriber can define his new password.

• [%subscriber%]: username@domain of the subscriber, which password was requested for reset.

6.23.5 Invoice email template

Template name invoice_default_email

From default@sipwise.com

Subject Invoice #[%invoice.serial%] from [%invoice.period_start_obj.ymd%] to

[%invoice.period_end_obj.ymd%]

180

mailto:username@domain
mailto:default@sipwise.com
mailto:username@domain
mailto:default@sipwise.com

The Sipwise C5 PRO Handbook mr6.5.11 181 / 601

Body

Dear Customer,

Please find your invoice #[%invoice.serial%] for [%invoice. ←↩
period_start_obj.month_name%], [%invoice.period_start_obj.year%] in attachment of this ←↩
letter.

Your faithful Sipwise system

--

This is an automatically generated message. Do not reply.

Variables passed to the email template:

• [%invoice%]: container variable for the invoice information.

Invoice fields

• [%invoice.serial%]

• [%invoice.amount_net%]

• [%invoice.amount_vat%]

• [%invoice.amount_total%]

• [%invoice.period_start_obj%]

• [%invoice.period_end_obj%]

The fields [%invoice.period_start_obj%] and [%invoice.period_end_obj%] provide methods of the perl package DateTime for

the invoice start date and end date. Further information about DateTime can be obtained from the package documentation:

man DateTime

• [%provider%]: container variable for the reseller contact. All database contact values will be available.

• [%client%]: container variable for the customer contact.

181

The Sipwise C5 PRO Handbook mr6.5.11 182 / 601

Contact fields example for the "provider". Replace "provider" to client to access proper "customer" contact fields.

• [%provider.gender%]

• [%provider.firstname%]

• [%provider.lastname%]

• [%provider.comregnum%]

• [%provider.company%]

• [%provider.street%]

• [%provider.postcode%]

• [%provider.city%]

• [%provider.country%]

• [%provider.phonenumber%]

• [%provider.mobilenumber%]

• [%provider.email%]

• [%provider.newsletter%]

• [%provider.faxnumber%]

• [%provider.iban%]

• [%provider.bic%]

• [%provider.vatnum%]

• [%provider.bankname%]

• [%provider.gpp0 - provider.gpp9%]

6.23.6 Email templates management

Email templates linked to the resellers can be customized in the email templates management interface. For the administrative

account email templates of all the resellers will be shown. Respectively for the reseller account only owned email templates will

be shown.

182

The Sipwise C5 PRO Handbook mr6.5.11 183 / 601

To create new email template press button "Create Email Template".

On the email template form all fields are mandatory:

• Reseller: reseller who owns this email template.

• Name: currently only email template with the following names will be considered by Sipwise C5 on the appropriate event

Section 6.23.1 :

– passreset_default_email;

– subscriber_default_email;

183

The Sipwise C5 PRO Handbook mr6.5.11 184 / 601

– invoice_default_email;

• From Email Address: email address which will be used in the From field in the letter sent by Sipwise C5 .

• Subject: Template of the email subject. Subject will be processed with the same template variables as the email body.

• Body: Email text template. Will be processed with appropriate template variables.

6.24 The Vertical Service Code Interface

Vertical Service Codes (VSC) are codes a user can dial on his phone to provision specific features for his subscriber account. The

format is *<code>*<value> to activate a specific feature, and #<code> or #<code># to deactivate it. The code parameter

is a two-digit code, e.g. 72. The value parameter is the value being set for the corresponding feature.

Important

The value user input is normalized using the Rewrite Rules Sets assigned to domain as described in Section 5.7.

By default, the following codes are configured for setting features. The examples below assume that there is a domain rewrite rule

normalizing the number format 0<ac><sn> to <cc><ac><sn> using 43 as country code.

• 72 - enable Call Forward Unconditional e.g. to 431000 by dialing *72*01000, and disable it by dialing #72.

• 90 - enable Call Forward on Busy e.g. to 431000 by dialing *90*01000, and disable it by dialing #90.

• 92 - enable Call Forward on Timeout e.g. after 30 seconds of ringing to 431000 by dialing *92*30*01000, and disable it by

dialing #92.

• 93 - enable Call Forward on Not Available e.g. to 431000 by dialing *93*01000, and disable it by dialing #93.

• 50 - set Speed Dial Slot, e.g. set slot 1 to 431000 by dialing *50*101000, which then can be used by dialing *1. There is no

code to disable a speed dial slot. When a slot is no longer necessary, it can be ultimately removed using the web interface or

can be just ignored, because it is not impacting the calls from and to this subscriber.

• 55 - set One-Shot Reminder Call e.g. to 08:30 by dialing *55*0830.

• 31 - set Calling Line Identification Restriction for one call, e.g. to call 431000 anonymously dial *31*01000.

• 32 - enable Block Incoming Anonymous Calls by dialing *32*, and disable it by dialing #32.

• 80 - call using Call Block Override PIN, number should be prefixed with a block override PIN configured in admin panel to

disable the outgoing user/admin block list and NCOS level for a call. For example, when override PIN is set to 7890, dial

*80*789001000 to call 431000 bypassing block lists.

184

The Sipwise C5 PRO Handbook mr6.5.11 185 / 601

6.24.1 Vertical Service Codes for PBX customers

Subscribers under the same PBX customer can enjoy some PBX-specific features by means of special VSCs.

Sipwise C5 provides the following PBX-specific VSCs:

• 97 - Call Parking: during a conversation the subscriber can park the call with his phone to a "parking slot" and later on continue

the conversation from another phone. To do that, a destination must be dialled as follows: *97*3; this will park the call to slot

no. 3.

PLEASE NOTE:

– Cisco IP phones provide a softkey for Call Parking, that means the subscriber must only dial the parking slot number after

pressing "Park" softkey on the phone.

– Other IP phones can perform Call Parking as a blind transfer, where the destination of the transfer must be dialled in the

format described above.

– Both the caller and the callee can park the call.

• 98 - Call Unparking: if a call has been parked, a subscriber may continue the conversation from any extension (phone) under

the same PBX customer. To do that, the subscriber must dial the following sequence: *98*3; this will pick up the call that was

parked at slot no. 3.

• 99 - Directed Call Pickup: if a subscriber’s phone is ringing (e.g. extension 23) and another subscriber wants to answer the call

instead of the original callee, he may pick up the call by dialling *99*23 on his phone.

6.24.2 Configuration of Vertical Service Codes

You can change any of the codes (but not the format) in /etc/ngcp-config/config.yml in the section sems→vsc. After the changes,

execute ngcpcfg apply "changed VSC codes".

Caution

If you have the EMTAs under your control, make sure that the specified VSCs don’t overlap with EMTA-internal VSCs,

because the VSC calls must be sent to Sipwise C5 via SIP like normal telephone calls.

6.24.3 Voice Prompts for Vertical Service Code Configuration

Table 10: VSC Voice Prompts

Prompt Handle Related VSC Message

vsc_error any An error has occurred. Please try

again later.

vsc_invalid wrong code Invalid feature code.

reject_vsc any Vertical service codes are disabled for

this line.

185

The Sipwise C5 PRO Handbook mr6.5.11 186 / 601

Table 10: (continued)

Prompt Handle Related VSC Message

vsc_cfu_on 72 (Call Forward Unconditional) Your unconditional call forward has

successfully been activated.

vsc_cfu_off 72 (Call Forward Unconditional) Your unconditional call forward has

successfully been deactivated.

vsc_cfb_on 90 (Call Forward Busy) Your call forward on busy has

successfully been activated.

vsc_cfb_off 90 (Call Forward Busy) Your call forward on busy has

successfully been deactivated.

vsc_cft_on 92 (Call Forward on Timeout) Your call forward on ring timeout has

successfully been activated.

vsc_cft_off 92 (Call Forward on Timeout) Your call forward on ring timeout has

successfully been deactivated.

vsc_cfna_on 93 (Call Forward on Not Available) Your call forward while not reachable

has successfully been activated.

vsc_cfna_off 93 (Call Forward on Not Available) Your call forward while not reachable

has successfully been deactivated.

vsc_speeddial 50 (Speed Dial Slot) Your speed dial slot has successfully

been stored.

vsc_reminder_on 55 (One-Shot Reminder Call) Your reminder has successfully been

activated.

vsc_reminder_off 55 (One-Shot Reminder Call) Your reminder has successfully been

deactivated.

vsc_blockinclir_on 32 (Block Incoming Anonymous Calls) Your rejection of anonymous calls has

successfully been activated.

vsc_blockinclir_off 32 (Block Incoming Anonymous Calls) Your rejection of anonymous calls has

successfully been deactivated.

6.25 Handling WebRTC Clients

WebRTC is an open project prroviding browsers and mobile applications with Real-Time Communications (RTC) capabilities.

Configuring your platform to offer WebRTC is quite easy and straightforward. This allows you to have a SIP-WebRTC bridge in

place and make audio/video call towards normal SIP users from WebRTC clients and vice versa. Sipwise C5 listens, by default,

on the following WebSockets and WebSocket Secure: ws://your-ip:5060/ws, wss://your-ip:5061/ws and wss:

//your-ip:1443/wss/sip/.

The WebRTC subscriber is just a normal subscriber which has just a different configuration in his Preferences. You need to change

the following preferences under Subscribers→Details→Preferences→NAT and Media Flow Control :

186

The Sipwise C5 PRO Handbook mr6.5.11 187 / 601

• use_rtpproxy: Always with rtpproxy as additional ICE candidate

• transport_protocol: RTP/SAVPF (encrypted SRTP with RTCP feedback)

The transport_protocol setting may change, depending on your WebRTC client/browser configuration. Supported proto-

cols are the following:

• Transparent (Pass through using the client’s transport protocol)

• RTP/AVP (Plain RTP)

• RTP/SAVP (encrypted SRTP)

• RTP/AVPF (RTP with RTCP feedback)

• RTP/SAVPF (encrypted SRTP with RTCP feedback)

• UDP/TLS/RTP/SAVP (Encrypted SRTP using DTLS)

• UDP/TLS/RTP/SAVPF (Encrypted SRTP using DTLS with RTCP feedback)

Warning

The belowr configuration is enough to handle a WebRTC client/browser. As mentioned, you may need to tune a little

bit your transport_protocol configuration, depending on your client/browser settings.

In order to have a bridge between normal SIP clients (using plain RTP for example) and WebRTC client, the normal SIP clients’

preferences have to have the following configuration:

transport_protocol: RTP/AVP (Plain RTP)

This will teach Sipwise C5 to translate between Plain RTP and RTP/SAVPF when you have calls between normal SIP clients and

WebRTC clients.

6.26 XMPP and Instant Messaging

Instant Messaging (IM) based on XMPP comes with Sipwise C5 out of the box. Sipwise C5 uses prosody as internal XMPP

server. Each subscriber created on the platform have assigned a XMPP user, reachable already - out of the box - by using the

same SIP credentials. You can easily open an XMPP client (e.g. Pidgin) and login with your SIP username@domain and your

SIP password. Then, using the XMPP client options, you can create your buddy list by adding your buddies in the format user@

domain.

6.27 Call Recording

6.27.1 Introduction to Call Recording Function

Sipwise C5 provides an opportunity to record call media content and store that in files. This function is available since mr5.3.1

version of Sipwise C5 .

187

The Sipwise C5 PRO Handbook mr6.5.11 188 / 601

Some characteristics of the Call Recording:

• Call Recording function can store both unidirectional (originating either from caller, or from callee) or bidirectional (combined)

streams from calls, resulting in 1, 2 or 3 physical files as output

• The location and format of the files is configurable.

• File storage is planned to occur on an NFS shared folder.

• Activation of call recording may happen generally for a Domain / Peer / Subscriber through Sipwise C5 admin web interface.

Important

NGCP’s Call Recording function is not meant for individual call interception purpose! Sipwise provides its Lawful

Interception solution for that use case.

• Querying or deletion of existing recordings may happen through the REST API.

• Listing recordings of a subscriber is possible on NGCP’s admin web interface.

The Call Recording function is implemented using NGCP’s rtpengine module.

Note

There are 2 rtpengine daemons employed when call recording is enabled and active. The main rtpengine takes care of

forwarding media packets between caller and callee, as usual, while the secondary rtpengine (recording) daemon is responsible

for storing call data streams in the file system.

Call Recording is disabled by default. Enabling and configuration of Call Recording takes place in 2 steps:

1. Enabling the feature on Sipwise C5 by setting configuration parameters in the main config.yml configuration file.

2. Activating the feature for a Domain / Peer / Subscriber.

6.27.2 Information on Files and Directories

NGCP’s Call Recording function uses an NFS shared folder to save recorded streams.

Important

Since call data amount may be huge (depending, of course, on the number and duration of calls), it is strongly not

recommended to store recorded streams on NGCP’s local disks. However if you have to store recorded streams

as files in the local filesystem, please contact Sipwise Support team in order to get the proper configuration of Call

Recording function.

188

The Sipwise C5 PRO Handbook mr6.5.11 189 / 601

The NFS share gets mounted during startup of the recording daemon. If the NFS share cannot be mounted for some reason, the

recording daemon will not start.

Filenames have the format: <call_ID>-<random>-<SSRC>.<extension>, where:

• call_ID: SIP Call-ID of the call being recorded

• random: is a string of random characters, unique for each recorded call. It’s purpose is to avoid possible filename collisions if

a Call-ID ever gets reused.

• SSRC: is the RTP SSRC for unidirectional recordings, or “mix” for the bidirectional (combined) audio.

• extension: is either “mp3” or “wav”, depending on the configuration (rtpproxy.recording.output_format)

There might be 1, 2 or 3 files produced as recorded streams. The number of files depends on the configuration:

1. rtpproxy.recording.output_mixed = ‘yes’ (combined stream required)

rtpproxy.recording.output_single = ‘no’ (unidirectional streams not required)

2. rtpproxy.recording.output_mixed = ‘no’ (combined stream not required)

rtpproxy.recording.output_single = ‘yes’ (unidirectional streams required)

3. rtpproxy.recording.output_mixed = ‘yes’ (combined stream required)

rtpproxy.recording.output_single = ‘yes’ (unidirectional streams required)

6.27.3 Configuration

The Call Recording function can be enabled and configured on Sipwise C5 by changing the following configuration parameters in

config.yml file:

rtpproxy:

...

recording:

enable: no

mp3_bitrate: ’48000’

nfs_host: 192.168.1.1

nfs_remote_path: /var/recordings

output_dir: /var/lib/rtpengine-recording

output_format: wav

output_mixed: yes

output_single: yes

resample: no

resample_to: ’16000’

spool_dir: /var/spool/rtpengine

189

The Sipwise C5 PRO Handbook mr6.5.11 190 / 601

6.27.3.1 Enabling Call Recording

Enabling the function requires changing the value of rtpproxy.recording.enable parameter to “yes”. In order to make

the new configuration active, it’s necessary to do:

ngcpcfg apply ’Activated call recording’

Description of configuration parameters:

• enable: when set to “yes” Call Recording function is enabled; default: “no”

• mp3_bitrate: the bitrate used when recording happens in MP3 format; default: "48000"

• nfs_host: IP address of the NFS host that provides storage space for recorded streams; default: "192.168.1.1"

• nfs_remote_path: the remote path (folder) where files of recorded streams are stored on the NFS share; default: "/var/record-

ings"

• output_dir: is the local mount point for the NFS share, and thus where the final audio files will be written; default: "/var/lib/rtpengine-

recording"

Caution

Normally you don’t need to change the default setting. If you do change the value, please be aware that recorded

files will be written by root user in that directory.

• output_format: possible values are “wav” (Wave) or “mp3” (MP3); default: “wav”

• output_mixed: “yes” means that there is a file that contains a mixed stream of caller and callee voice data; default: "yes"

• output_single: “yes” means that there is a separate file for each stream direction, i.e. for the streams originating from caller and

callee; default: "yes"

• resample: when set to “yes” the call data stream will be resampled before storing it in the file; default: “no”

• resample_to: the sample rate used for resampling output; default: "16000"

• spool_dir: is the place for temporary metadata files that are used by the recording daemon and the main rtpengine daemon for

their communication; default: "/var/spool/rtpengine"

Caution

You should not change the default setting unless you have a good reason to do so! Sipwise has thoroughly tested

the Call Recording function with the default setting.

If Call Recording is enabled you can see 2 rtpengine processes running when checking Sipwise C5 system state with ngcp-service

tool:

190

The Sipwise C5 PRO Handbook mr6.5.11 191 / 601

root@sp1:/etc/ngcp-config# ngcp-service summary

...

lb managed by-monit active

rtpengine managed by-monit active

rtpengine-recording managed by-monit active

voisniff-ng managed by-monit active

...

6.27.3.2 Activating Call Recording

Activating Call Recording for e.g. a Subscriber: please use NGCP’s admin web interface for this purpose. On the web interface

one has to navigate as follows: Settings → Subscribers → select subscriber Details → Preferences → NAT and Media Flow

Control. Afterwards the record_call option has to be enabled by pressing the Edit button and ticking the checkbox.

Figure 61: Activating Call Recording

191

The Sipwise C5 PRO Handbook mr6.5.11 192 / 601

Note

The call recording function may be activated for a single Subscriber, a Domain and a Peer server in the same way: Preferences

→ NAT and Media Flow Control→ record_call. When activating call recording for a Domain or Peer this effectively activates

the function for all subscribers that belong to the selected domain, and for all calls with a local endpoint going through the

selected peer server, respectively.

It is possible to list existing call recordings of a Subscriber through the admin web interface of NGCP. In order to do so, please

navigate to: Settings→ Subscribers→ select subscriber Details→ Call Recordings

Figure 62: Listing Call Recordings

If you select an item in the list, besides the main properties such as the time of call and the SIP Call-ID, you can retrieve the

details of the related call (press the Call Details button), get the list of recorded files (press the Recorded Files button) or Delete

the recorded call.

When selecting Call Details you will see the most important accounting data of the call. Furthermore you can see the SIP Call

Flow or the complete Call Details if you press the respective buttons.

192

The Sipwise C5 PRO Handbook mr6.5.11 193 / 601

Figure 63: Listing Call Details for a Recording

When navigating to Recorded Files of a call you will be presented with a list of files. For each file item:

• type of stream is shown, that can be either "mixed" (combined voice data), or "single" (voice data of caller or callee)

• file format is shown, that can be either "wav", or "mp3"

• you can download the file by pressing the Play button

Figure 64: Listing Files for a Recording

6.27.4 REST API

The Sipwise C5 REST API provides methods for querying and deletion of existing recording data. The full documentation of the

available API methods is available on the admin web interface of the NGCP, as usual.

The following API methods are provided for managing Call Recordings:

193

The Sipwise C5 PRO Handbook mr6.5.11 194 / 601

• CallRecordings:

– Provides information about the calls recorded in the system; can also be used to delete a recording entry

– accessible by the path: /api/callrecordings (collection) or /api/callrecordings/id (single item)

– Supported HTTP methods: OPTIONS, GET, DELETE

• CallRecordingStreams:

– Provides information about recorded streams, such as start time, end time, format, mixed/single type, etc.; can also be used

to delete a recorded stream

– accessible by the path: /api/callrecordingstreams (collection) or /api/callrecordingstreams/id (sin-

gle item)

– Supported HTTP methods: OPTIONS, GET, DELETE

• CallRecordingFiles:

– Provides information about recorded streams, such as start time, end time, format, mixed/single type, etc.; additionally returns

the file content too

– accessible by the path: /api/callrecordingfiles (collection) or /api/callrecordingfiles/id (single item)

– Supported HTTP methods: OPTIONS, GET

6.28 Media Transcoding

6.28.1 Overview

Starting with version mr6.2.1, Sipwise C5 offers the capability to convert RTP media between several supported codecs, a feature

known as transcoding. While this feature is always available on Sipwise C5, it’s engaged only when a subscriber, peer, or domain

is explicitly configured for it. By default, Sipwise C5 lets RTP endpoints negotiate the codec to use among themselves without

interfering.

Important

Media transcoding is a relatively CPU-intensive feature. As such, each individual node of a Sipwise C5 performing

media transcoding can only support a limited number of concurrent calls for which transcoding is active.

6.28.2 Supported Codecs

The following audio codecs, which are commonly found in use by SIP/RTP clients, are currently supported for transcoding.

• G.711 (µ-Law and a-Law)

• G.722

• G.723.1

194

The Sipwise C5 PRO Handbook mr6.5.11 195 / 601

• G.729

• GSM

• AMR (narrowband and wideband, the latter also known as AMR-WB)

• Opus

• Speex

Some codecs operate at different sampling rates than other codecs. If transcoding happens between two such codecs, the audio

will be resampled as necessary. Similarly, if transcoding happens between a mono (1-channel) and a stereo (2-channel) codec,

the audio will be up-mixed and down-mixed as necessary.

6.28.3 Configuration

Transcoding can be engaged for individual subscribers, peers, or domains on their respective preferences page in the Sipwise C5

admin web interface.

Figure 65: Transcoding Configuration

Setting any of the transcoding options for a domain makes it affect all the subscribers in this domain.

Individual options are described below.

6.28.3.1 ptime

Packetisation time in milliseconds. Normally Sipwise C5 lets the RTP endpoints select and negotiate the packetisation time they

want to use. Setting this option to anything other than unchanged will engage the transcoding engine towards this subscriber or

195

The Sipwise C5 PRO Handbook mr6.5.11 196 / 601

peer even if none of the other transcoding options are set, in which case the media will simply be repacketised.

For example, setting this to 40 ms would mean that each RTP packet sent towards this subscriber or peer would contain 40

milliseconds worth of audio, even if the other side of the call sends media that is packetised differently. It would also make Sipwise

C5 indicate towards this subscriber or peer that it would prefer to receive audio in 40 millisecond packets (through the a=ptime

SDP attribute).

6.28.3.2 transcode_. . .

Enabling one of these options adds the selected codecs to the list of codecs offered to this subscriber or peer, even if the original

list of offered codecs did not include it. If this additional codec ends up being accepted by this subscriber or peer, then it will be

transcoding to the first supported codec that was originally offered.

For example, if a calling RTP client A indicates support for PCMA (G.711 a-Law) as well as G.722, and calls a subscriber B that

is configured for transcoding to G.729, then subscriber B would be offered PCMA, G.722, and G.729 by Sipwise C5. If subscriber

B then accepts G.729 and starts sending G.729, Sipwise C5 would engage its transcoding engine and transcode the audio to

PCMA (because PCMA and not G.722 was the codec preferred by A) before forwarding it to A. Vice versa, PCMA arriving from A

would be transcoded to G.729 before being sent to B. (If B were to reject G.729 and instead starts to send PCMA or G.722, no

transcoding would happen.)

Notes on individual codecs:

• AMR is available in both narrowband (AMR operating at 8 kHz) and wideband (AMR-WB operating at 16 kHz) variants. These

are distinct codecs and can be configured for transcoding separately or together.

• Opus always operates at 48 kHz, but is supported in both mono and stereo (1 and 2 audio channels respectively). Both can be

offered at the same time if so desired.

• Speex is supported at sampling rates of 8, 16, and 32 kHz. These can be configured separately for transcoding, or together.

6.28.3.3 . . . _bitrate

Some codecs (Opus and G.723.1 in particular) can be configured for different bitrates, which would impact the amount of network

bandwidth they use, as well as the audio quality produced. For Opus, different bitrates can be selected for their mono and stereo

instances. Selecting a bitrate has no effect if transcoding to the respective codec is not engaged.

6.28.3.4 always_transcode

Setting this flag instructs Sipwise C5 to always engage transcoding to the first (preferred) codec indicated by an RTP endpoint, even

if another codec is available that is supported by both parties to a call. Enabling this flag can potentially engage the transcoding

engine for a call even if none of the other transcoding options are set.

For example: Subscriber A is calling subscriber B. Subscriber A is indicating support for PCMA and G.722. Subscriber B answers

the call, rejects PCMA but accepts G.722, and starts sending G.722 to A. Normally Sipwise C5 would not get involved and would

simply let G.722 pass between A and B. But if subscriber B has the always_transcode flag set, Sipwise C5 would now start

196

The Sipwise C5 PRO Handbook mr6.5.11 197 / 601

transcoding the G.722 sent by B into PCMA before forwarding it to A, because PCMA was indicated as the preferred codec by A.

Vice versa, PCMA arriving from A would be transcoded into G.722 and then forwarded to B.

6.29 SMS (Short Message Service) on Sipwise C5

Starting with its mr5.0.1 release, Sipwise C5 offers short messaging service to its local subscribers. The implementation is based

on a widely used software module: Kannel, and it needs to interact with a mobile operator’s SMSC in order to send and receive

SMs for the local subscribers. The data exchange with SMSC uses SMPP (Short Message Peer-to-Peer) protocol.

SMS directions:

• incoming / received: the destination of the SM is a local subscriber on the NGCP

• outgoing / sent: the SM is submitted by a local subscriber

Note

The Sipwise C5 behaves as a short message client towards the SMSC of a mobile operator. This means every outgoing SM

will be forwarded to the SMSC, and every incoming SM will reach Sipwise C5 through an SMSC.

The architecture of the SMS components of Sipwise C5 and their interaction with other elements is depicted below:

197

The Sipwise C5 PRO Handbook mr6.5.11 198 / 601

Figure 66: SMS Interaction

Note

For the Sipwise C5 CE and PRO installations: the Kannel components and the ngcp-panel all run on the same single node.

The description of SMS module will continue referring to a Sipwise C5 CARRIER installation in the handbook.

There are 2 components of the SMS module:

• SMS Box: this component takes care of handling the messages locally, that means:

– delivering them to subscribers (writing into database for later retrieval)

– picking up the submitted SMs from the database and forwarding them to the Bearer Box component

• Bearer Box: this component manages the transmission of SMs between Sipwise C5 and the mobile operator’s SMSC

198

The Sipwise C5 PRO Handbook mr6.5.11 199 / 601

6.29.1 Configuration

6.29.1.1 Main Parameters

The SMS functionality of Sipwise C5 is disabled by default. In order to enable SMS, change the value of configuration parameter

sms.enable to yes in the main configuration file (/etc/ngcp-config/config.yml).

The second step of configuration is related to the SMSC where Sipwise C5 will connect to. Set the following parameters:

• sms.smsc.host: IP address of the SMSC

• sms.smsc.port: Port number of the SMSC

• sms.smsc.username: Username for authentication on the SMSC

• sms.smsc.password: Password for authentication on the SMSC

Other parameters of the SMSC connection may also need to be changed from the default values, but this is specific to each

deployment.

Then, as usual, you have to make the new configuration active:

$ ngcpcfg apply ’Enabled SMS’

$ ngcpcfg push all

6.29.1.2 Configuration Files of Kannel

There are a few configuration files for the Kannel module, namely:

• /etc/default/ngcp-kannel: determines which components of Kannel will be started. This is auto-generated from /

etc/ngcp-config/templates/etc/default/ngcp-kannel.tt2 file when SMS is enabled.

• /etc/kannel/kannel.conf: contains detailed configuration of Kannel components. This is auto-generated from /etc/

ngcp-config/templates/etc/kannel/kannel.conf.tt2 file when SMS is enabled.

• /etc/logrotate.d/ngcp-kannel.conf: configuration of logrotate for Kannel log files. This is auto-generated from /

etc/ngcp-config/templates/etc/logrotate.d/ngcp-kannel.conf.tt2 file when SMS is enabled.

Caution

Please do not change settings in the above mentioned template files, unless you have to tailor Kannel settings to your

specific needs!

Finally: see the description of each configuration parameter in the appendix Section B.1.32.

199

The Sipwise C5 PRO Handbook mr6.5.11 200 / 601

6.29.1.3 Call Forwarding for SMS (CFS)

Any subscriber registered on Sipwise C5 can apply a call forwarding setting for short messages, referred to as "CFS" (Call Forward

- SMS). If the CFS feature is enabled, he can receive the SMs on his mobile phone, for example, instead of retrieving the SMs

through the REST API. This is much more convenient for users if they do not have an application on their smartphone or computer

that could manage the SMs through the REST API.

In order to enable CFS you have to set the forwarding as usual on the admin web interface, or through the REST API. Navigate to

Subscribers→ select one→ Details→ Preferences→ Call Forwards and press the Edit button.

Figure 67: Call Forward for SMS

6.29.2 Monitoring, troubleshooting

6.29.2.1 Bearer Box (LB node of NGCP)

On the LB node you can see a process named "bearerbox". This process has 2 listening ports assigned to it:

• 13000: this is the generic Kannel administration port, that belongs to the "core" component of Kannel.

• 13001: this is the communication port towards the SMS Box component running on PRX nodes of NGCP.

The ngcp-service tool also shows the bearerbox process in its summary information:

$ ngcp-service summary

...

kannel-bearerbox managed by-monit active

...

200

The Sipwise C5 PRO Handbook mr6.5.11 201 / 601

The following log files can provide information about the operation of Bearer Box :

• status messages and high level, short entries about sent and received messages: /var/log/ngcp/kannel/kannel.

log

...

2017-09-26 08:57:32 [15922] [10] DEBUG: boxc_receiver: heartbeat with load value 0 ←↩
received

...

2017-09-26 11:12:06 [15922] [10] DEBUG: boxc_receiver: sms received

2017-09-26 11:12:06 [15922] [10] DEBUG: send_msg: sending msg to box: <192.168.1.4>

2017-09-26 11:12:06 [15922] [11] DEBUG: send_msg: sending msg to box: <192.168.1.4>

2017-09-26 11:12:06 [15922] [11] DEBUG: boxc_sender: sent message to <192.168.1.4>

2017-09-26 11:12:06 [15922] [10] DEBUG: boxc_receiver: got ack

...

• detailed information and message content of sent and received messages, link enquiries: /var/log/kannel/smsc.log

Note

Sent and received message examples shown here do not contain the full phone number and content for confidentiality reason.

– Example received message:

...

2017-09-26 12:09:36 [15922] [6] DEBUG: SMPP[default_smsc]: Got PDU:

2017-09-26 12:09:36 [15922] [6] DEBUG: SMPP PDU 0x7f2274025070 dump:

2017-09-26 12:09:36 [15922] [6] DEBUG: type_name: deliver_sm

2017-09-26 12:09:36 [15922] [6] DEBUG: command_id: 5 = 0x00000005

2017-09-26 12:09:36 [15922] [6] DEBUG: command_status: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: sequence_number: 11867393 = 0x00b51501

2017-09-26 12:09:36 [15922] [6] DEBUG: service_type: NULL

2017-09-26 12:09:36 [15922] [6] DEBUG: source_addr_ton: 2 = 0x00000002

2017-09-26 12:09:36 [15922] [6] DEBUG: source_addr_npi: 1 = 0x00000001

2017-09-26 12:09:36 [15922] [6] DEBUG: source_addr: "0660......."

2017-09-26 12:09:36 [15922] [6] DEBUG: dest_addr_ton: 1 = 0x00000001

2017-09-26 12:09:36 [15922] [6] DEBUG: dest_addr_npi: 1 = 0x00000001

2017-09-26 12:09:36 [15922] [6] DEBUG: destination_addr: "43668......."

2017-09-26 12:09:36 [15922] [6] DEBUG: esm_class: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: protocol_id: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: priority_flag: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: schedule_delivery_time: NULL

2017-09-26 12:09:36 [15922] [6] DEBUG: validity_period: NULL

2017-09-26 12:09:36 [15922] [6] DEBUG: registered_delivery: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: replace_if_present_flag: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: data_coding: 3 = 0x00000003

2017-09-26 12:09:36 [15922] [6] DEBUG: sm_default_msg_id: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: sm_length: 158 = 0x0000009e

201

The Sipwise C5 PRO Handbook mr6.5.11 202 / 601

2017-09-26 12:09:36 [15922] [6] DEBUG: short_message:

2017-09-26 12:09:36 [15922] [6] DEBUG: Octet string at 0x7f2274000f80:

2017-09-26 12:09:36 [15922] [6] DEBUG: len: 158

2017-09-26 12:09:36 [15922] [6] DEBUG: size: 159

2017-09-26 12:09:36 [15922] [6] DEBUG: immutable: 0

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 5a <14 bytes> 46

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 72 <14 bytes> 68

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 61 <14 bytes> 67

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 20 <14 bytes> 57

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 65 <14 bytes> 63

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 68 <14 bytes> 73

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 2e <14 bytes> 61

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 6c <14 bytes> 73

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 3a <14 bytes> 73

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 4d <14 bytes> 6e

2017-09-26 12:09:36 [15922] [6] DEBUG: Octet string dump ends.

2017-09-26 12:09:36 [15922] [6] DEBUG: SMPP PDU dump ends.

2017-09-26 12:09:36 [15922] [6] DEBUG: SMPP[default_smsc]: Sending PDU:

2017-09-26 12:09:36 [15922] [6] DEBUG: SMPP PDU 0x7f2274020790 dump:

2017-09-26 12:09:36 [15922] [6] DEBUG: type_name: deliver_sm_resp

2017-09-26 12:09:36 [15922] [6] DEBUG: command_id: 2147483653 = 0x80000005

2017-09-26 12:09:36 [15922] [6] DEBUG: command_status: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: sequence_number: 11867393 = 0x00b51501

2017-09-26 12:09:36 [15922] [6] DEBUG: message_id: NULL

2017-09-26 12:09:36 [15922] [6] DEBUG: SMPP PDU dump ends.

2017-09-26 12:09:36 [15922] [6] DEBUG: SMPP[default_smsc]: throughput (0.00,5.00)

...

– Example sent message:

...

2017-09-26 12:04:08 [15922] [6] DEBUG: SMPP[default_smsc]: throughput (0.00,5.00)

2017-09-26 12:04:08 [15922] [6] DEBUG: SMPP[default_smsc]: Manually forced source addr ←↩
ton = 1, source add npi = 1

2017-09-26 12:04:08 [15922] [6] DEBUG: SMPP[default_smsc]: Manually forced dest addr ton ←↩
= 1, dest add npi = 1

2017-09-26 12:04:08 [15922] [6] DEBUG: SMPP[default_smsc]: Sending PDU:

2017-09-26 12:04:08 [15922] [6] DEBUG: SMPP PDU 0x7f2274025070 dump:

2017-09-26 12:04:08 [15922] [6] DEBUG: type_name: submit_sm

2017-09-26 12:04:08 [15922] [6] DEBUG: command_id: 4 = 0x00000004

2017-09-26 12:04:08 [15922] [6] DEBUG: command_status: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: sequence_number: 98163 = 0x00017f73

2017-09-26 12:04:08 [15922] [6] DEBUG: service_type: NULL

2017-09-26 12:04:08 [15922] [6] DEBUG: source_addr_ton: 5 = 0x00000005

2017-09-26 12:04:08 [15922] [6] DEBUG: source_addr_npi: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: source_addr: "any"

2017-09-26 12:04:08 [15922] [6] DEBUG: dest_addr_ton: 1 = 0x00000001

2017-09-26 12:04:08 [15922] [6] DEBUG: dest_addr_npi: 1 = 0x00000001

202

The Sipwise C5 PRO Handbook mr6.5.11 203 / 601

2017-09-26 12:04:08 [15922] [6] DEBUG: destination_addr: "43676......."

2017-09-26 12:04:08 [15922] [6] DEBUG: esm_class: 3 = 0x00000003

2017-09-26 12:04:08 [15922] [6] DEBUG: protocol_id: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: priority_flag: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: schedule_delivery_time: NULL

2017-09-26 12:04:08 [15922] [6] DEBUG: validity_period: NULL

2017-09-26 12:04:08 [15922] [6] DEBUG: registered_delivery: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: replace_if_present_flag: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: data_coding: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: sm_default_msg_id: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: sm_length: 23 = 0x00000017

2017-09-26 12:04:08 [15922] [6] DEBUG: short_message:

2017-09-26 12:04:08 [15922] [6] DEBUG: Octet string at 0x7f227400c460:

2017-09-26 12:04:08 [15922] [6] DEBUG: len: 23

2017-09-26 12:04:08 [15922] [6] DEBUG: size: 24

2017-09-26 12:04:08 [15922] [6] DEBUG: immutable: 0

2017-09-26 12:04:08 [15922] [6] DEBUG: data: 44 <14 bytes> 73

2017-09-26 12:04:08 [15922] [6] DEBUG: data: 74 <5 bytes> 39

2017-09-26 12:04:08 [15922] [6] DEBUG: Octet string dump ends.

2017-09-26 12:04:08 [15922] [6] DEBUG: SMPP PDU dump ends.

2017-09-26 12:04:08 [15922] [6] DEBUG: SMPP[default_smsc]: throughput (1.00,5.00)

...

– Example link enquiry:

...

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP[default_smsc]: throughput (0.00,5.00)

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP[default_smsc]: Got PDU:

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP PDU 0x7f2274020790 dump:

2017-09-26 12:13:38 [15922] [6] DEBUG: type_name: enquire_link

2017-09-26 12:13:38 [15922] [6] DEBUG: command_id: 21 = 0x00000015

2017-09-26 12:13:38 [15922] [6] DEBUG: command_status: 0 = 0x00000000

2017-09-26 12:13:38 [15922] [6] DEBUG: sequence_number: 90764 = 0x0001628c

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP PDU dump ends.

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP[default_smsc]: Sending PDU:

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP PDU 0x7f2274025070 dump:

2017-09-26 12:13:38 [15922] [6] DEBUG: type_name: enquire_link_resp

2017-09-26 12:13:38 [15922] [6] DEBUG: command_id: 2147483669 = 0x80000015

2017-09-26 12:13:38 [15922] [6] DEBUG: command_status: 0 = 0x00000000

2017-09-26 12:13:38 [15922] [6] DEBUG: sequence_number: 90764 = 0x0001628c

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP PDU dump ends.

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP[default_smsc]: throughput (0.00,5.00)

...

203

The Sipwise C5 PRO Handbook mr6.5.11 204 / 601

6.29.2.2 SMS Box (PRX node of NGCP)

On the PRX node you can see a process named "smsbox". This process has a listening port assigned to it: 13002, that is the

communication port towards the Bearer Box component running on LB nodes.

The ngcp-service tool also shows the smsbox process in its summary information:

$ ngcp-service summary

...

kannel-smsbox managed by-monit active

...

The following log files can provide information about the operation of SMS Box :

• sent and received messages using the API of WEB node: /var/log/kannel/smsbox.log

Note

Sent and received message examples shown here do not contain the full phone number and content for confidentiality reason.

– Example sent message:

...

2017-09-26 12:16:42 [22763] [2] DEBUG: HTTP: Creating HTTPClient for ‘192.168.1.2’.

2017-09-26 12:16:42 [22763] [2] DEBUG: HTTP: Created HTTPClient area 0x7f5dcc000ad0.

2017-09-26 12:16:42 [22763] [3] INFO: smsbox: Got HTTP request </cgi-bin/sendsms> from ←↩
<192.168.1.3>

2017-09-26 12:16:42 [22763] [3] INFO: sendsms used by <sipwise>

2017-09-26 12:16:42 [22763] [3] INFO: sendsms sender:<sipwise:43668.......> ←↩
(192.168.1.3) to:<43676.......> msg:<...>

2017-09-26 12:16:42 [22763] [3] DEBUG: Stored UUID ab95eb45-1ec0-4932-9863-1a95609a025f

2017-09-26 12:16:42 [22763] [3] DEBUG: message length 52, sending 1 messages

2017-09-26 12:16:42 [22763] [3] DEBUG: Status: 202 Answer: <Sent.>

2017-09-26 12:16:42 [22763] [3] DEBUG: Delayed reply - wait for bearerbox

2017-09-26 12:16:42 [22763] [0] DEBUG: Got ACK (0) of ab95eb45-1ec0-4932-9863-1 ←↩
a95609a025f

2017-09-26 12:16:42 [22763] [0] DEBUG: HTTP: Destroying HTTPClient area 0x7f5dcc000ad0.

2017-09-26 12:16:42 [22763] [0] DEBUG: HTTP: Destroying HTTPClient for ‘192.168.1.3’.

...

– Example received message:

...

2017-09-26 11:59:45 [22763] [5] INFO: Starting to service <...message content...> from ←↩
<+43676-------> to <+43668------->

2017-09-26 11:59:45 [22763] [10] DEBUG: Queue contains 0 pending requests.

2017-09-26 11:59:45 [22763] [10] DEBUG: HTTPS URL; Using SSL for the connection

2017-09-26 11:59:45 [22763] [10] DEBUG: Parsing URL ‘https://192.168.1.2:1443/ ←↩
internalsms/receive?auth_token=fNLosMgwdNUrKvEfFMm9

204

The Sipwise C5 PRO Handbook mr6.5.11 205 / 601

×tamp=2017-09-26+09:59:45&from=%2B43676-------&to=%2B43668-------&charset=UTF-8& ←↩
coding=0&text=...’:

2017-09-26 11:59:45 [22763] [10] DEBUG: Scheme: https://

2017-09-26 11:59:45 [22763] [10] DEBUG: Host: 192.168.1.2

2017-09-26 11:59:45 [22763] [10] DEBUG: Port: 1443

2017-09-26 11:59:45 [22763] [10] DEBUG: Username: (null)

2017-09-26 11:59:45 [22763] [10] DEBUG: Password: (null)

2017-09-26 11:59:45 [22763] [10] DEBUG: Path: /internalsms/receive

2017-09-26 11:59:45 [22763] [10] DEBUG: Query: auth_token=fNLosMgwdNUrKvEfFMm9& ←↩
timestamp=2017-09-26+09:59:45&from=%2B43676-------

&to=%2B43668-------&charset=UTF-8&coding=0&text=...

2017-09-26 11:59:45 [22763] [10] DEBUG: Fragment: (null)

2017-09-26 11:59:45 [22763] [10] DEBUG: Connecting nonblocking to <192.168.1.2>

2017-09-26 11:59:45 [22763] [10] DEBUG: HTTP: Opening connection to ‘192.168.1.2:1443’ (←↩
fd=31).

2017-09-26 11:59:45 [22763] [10] DEBUG: Socket connecting

2017-09-26 11:59:45 [22763] [9] DEBUG: Get info about connecting socket

2017-09-26 11:59:45 [22763] [9] DEBUG: HTTP: Sending request:

2017-09-26 11:59:45 [22763] [9] DEBUG: Octet string at 0x7f5dbc00f470:

2017-09-26 11:59:45 [22763] [9] DEBUG: len: 382

2017-09-26 11:59:45 [22763] [9] DEBUG: size: 1024

2017-09-26 11:59:45 [22763] [9] DEBUG: immutable: 0

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 47 45 54 20 2f 69 6e 74 65 72 6e 61 6c 73 ←↩
6d 73 GET /internalsms

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 2f 72 65 63 65 69 76 65 3f 61 75 74 68 5f ←↩
74 6f /receive?auth_to

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 6b 65 6e 3d ... ←↩
ken=

... 20 48 54 54 50 2f 31 2e 31 ←↩
0d 0a HTTP/1.1..

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 43 6f 6e 6e 65 63 74 69 6f 6e 3a 20 6b 65 ←↩
65 70 Connection: keep

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 2d 61 6c 69 76 65 0d 0a 55 73 65 72 2d 41 ←↩
67 65 -alive..User-Age

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 6e 74 3a 20 4b 61 6e 6e 65 6c 2f 31 2e 34 ←↩
2e 34 nt: Kannel/1.4.4

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 0d 0a 48 6f 73 74 3a 20 31 39 32 2e 31 36 ←↩
38 2e ..Host: 192.168.

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 31 2e 32 3a 31 34 34 33 0d 0a 0d 0a ←↩
1.2:1443....

2017-09-26 11:59:45 [22763] [9] DEBUG: Octet string dump ends.

2017-09-26 11:59:45 [22763] [9] DEBUG: HTTP: Status line: <HTTP/1.1 200 OK>

2017-09-26 11:59:45 [22763] [9] DEBUG: HTTP: Received response:

2017-09-26 11:59:45 [22763] [9] DEBUG: Octet string at 0x7f5dbc006970:

2017-09-26 11:59:45 [22763] [9] DEBUG: len: 333

2017-09-26 11:59:45 [22763] [9] DEBUG: size: 1024

2017-09-26 11:59:45 [22763] [9] DEBUG: immutable: 0

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 53 65 72 76 65 72 3a 20 6e 67 69 6e 78 0d ←↩

205

The Sipwise C5 PRO Handbook mr6.5.11 206 / 601

0a 44 Server: nginx..D

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 61 74 65 3a 20 54 75 65 2c 20 32 36 20 53 ←↩
65 70 ate: Tue, 26 Sep

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 20 32 30 31 37 20 30 39 3a 35 39 3a 34 35 ←↩
20 47 2017 09:59:45 G

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 4d 54 0d 0a 43 6f 6e 74 65 6e 74 2d 54 79 ←↩
70 65 MT..Content-Type

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 3a 20 74 65 78 74 2f 68 74 6d 6c 3b 20 63 ←↩
68 61 : text/html; cha

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 72 73 65 74 3d 75 74 66 2d 38 0d 0a 43 6f ←↩
6e 74 rset=utf-8..Cont

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 65 6e 74 2d 4c 65 6e 67 74 68 3a 20 30 0d ←↩
0a 43 ent-Length: 0..C

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 6f 6e 6e 65 63 74 69 6f 6e 3a 20 6b 65 65 ←↩
70 2d onnection: keep-

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 61 6c 69 76 65 0d 0a 53 65 74 2d 43 6f 6f ←↩
6b 69 alive..Set-Cooki

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 65 3a 20 6e 67 63 70 5f 70 61 6e 65 6c 5f ←↩
73 65 e: ngcp_panel_se

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 73 73 69 6f 6e 3d 34 35 30 32 64 64 66 65 ←↩
31 62 ssion=4502ddfe1b

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 63 31 65 33 39 30 65 30 64 36 66 39 64 34 ←↩
37 30 c1e390e0d6f9d470

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 35 30 37 62 64 64 33 61 65 32 36 62 64 63 ←↩
3b 20 507bdd3ae26bdc;

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 70 61 74 68 3d 2f 3b 20 65 78 70 69 72 65 ←↩
73 3d path=/; expires=

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 54 75 65 2c 20 32 36 2d 53 65 70 2d 32 30 ←↩
31 37 Tue, 26-Sep-2017

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 20 31 30 3a 35 39 3a 34 35 20 47 4d 54 3b ←↩
20 48 10:59:45 GMT; H

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 74 74 70 4f 6e 6c 79 0d 0a 58 2d 43 61 74 ←↩
61 6c ttpOnly..X-Catal

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 79 73 74 3a 20 35 2e 39 30 30 37 35 0d 0a ←↩
53 74 yst: 5.90075..St

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 72 69 63 74 2d 54 72 61 6e 73 70 6f 72 74 ←↩
2d 53 rict-Transport-S

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 65 63 75 72 69 74 79 3a 20 6d 61 78 2d 61 ←↩
67 65 ecurity: max-age

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 3d 31 35 37 36 38 30 30 30 0d 0a 0d 0a ←↩
=15768000....

2017-09-26 11:59:45 [22763] [9] DEBUG: Octet string dump ends.

2017-09-26 11:59:45 [22763] [6] WARNING: Tried to set Coding field, denied.

2017-09-26 11:59:45 [22763] [6] INFO: No reply sent, denied.

2017-09-26 11:59:55 [22763] [9] DEBUG: HTTP: Server closed connection, destroying it ←↩
<192.168.1.2:1443:1::><0x7f5db0000b20><fd:31>.

...

206

The Sipwise C5 PRO Handbook mr6.5.11 207 / 601

• short log of sent/received messages: /var/log/kannel/smsbox-access.log

...

2017-09-26 12:39:18 SMS HTTP-request sender:+43680------- request: ’’ url: ’https ←↩
://192.168.1.2:1443/internalsms/receive?

auth_token=fNLosMgwdNUrKvEfFMm9×tamp=2017-09-26+10:39:18&from=%2B43680-------&to=%2 ←↩
B43668-------&charset=UTF-8&coding=0

&text=<...message content...>’ reply: 200 ’<< successful >>’

...

2017-09-26 12:41:54 send-SMS request added - sender:sipwise:43668------- 192.168.1.3 ←↩
target:43680-------- request: ’<...message content...>’

...

6.29.3 REST API

Handling of short messages from the user perspective happens with the help of NGCP’s REST API. There is a dedicated resource:

https://<IP of WEB node>:1443/api/sms that allows you to:

• Get a list of sent and received messages. This is achieved by sending a GET request on the /api/sms collection, as in the

following example:

curl -i -X GET -H ’Connection: close’ --cert NGCP-API-client-certificate.pem \

--cacert ca-cert.pem ’https://example.org:1443/api/sms/?page=1&rows=10’

• Retrieve an SM (both sent and received). This is achieved by sending a GET request for a specific /api/sms/id item, as in

the following example:

curl -i -X GET -H ’Connection: close’ --cert NGCP-API-client-certificate.pem \

--cacert ca-cert.pem ’https://example.org:1443/api/sms/1’

• Send a new message from a local subscriber. This is achieved by sending a POST request for the /api/sms collection, as

in the following example:

curl -i -X POST -H ’Connection: close’ -H ’Content-Type: application/json’ \

--cert NGCP-API-client-certificate.pem --cacert ca-cert.pem \

’https://example.org:1443/api/sms/’ --data-binary ’{"callee" : "43555666777", \

"subscriber_id" : 4, "text" : "test"}’

As always, the full documentation of the REST API resources is available on the admin web interface of NGCP: https://<IP

of WEB node>:1443/api/#sms

207

The Sipwise C5 PRO Handbook mr6.5.11 208 / 601

7 Customer Self-Care Interface and Menus

There are two ways for end users to maintain their subscriber settings: via the Customer Self-Care Web Interface and via Vertical

Service Codes using their SIP phones.

7.1 The Customer Self-Care Web Interface

The Sipwise C5 provides a web panel for end users (CSC panel) to maintain their subscriber accounts, which is running on

https://<ngcp-ip>. Every subscriber can log in there, change subscriber feature settings, view their call lists, retrieve voicemail

messages and trigger calls using the click-to-dial feature.

7.1.1 Login Procedure

To log into the CSC panel, the end user has to provide his full web username (e.g. user1@1.2.3.4) and the web password

defined in Section 5.3. Once logged in, he can change his web password in the Account section. This will NOT change his SIP

password, so if you control the end user devices, you can auto-provision the SIP password into the device and keep it secret, and

just hand over the web password to the customer. This way, the end user will only be able to place calls with this auto-provisioned

device and not with an arbitrary soft-phone, but can nonetheless manage his account via the CSC panel.

7.1.2 Site Customization

As an operator (as well as a Reseller), you can change the branding logo of the Customer Self-Care (CSC) panel and the available

languages on the CSC panel. This is possible via the admin web interface.

7.1.2.1 Changing the Logo

For changing the branding logo on a reseller’s admin web page and on the CSC panel you just need to access the web interface

as Administrator and navigate to Reseller menu. Once there click on the Details button for your selected reseller, finally select

Branding.

In order to do the same as Reseller, login on the admin web interface with the reseller’s web credentials, then access the Panel

Branding menu.

The web panel customisation happens as follows:

1. Press the Edit Branding button to start the customisation process.

2. Press the Browse button to select an image for the new logo:

208

The Sipwise C5 PRO Handbook mr6.5.11 209 / 601

Figure 68: CSC Customisation Step 1: Select an image

3. Press the Save button to save changes.

4. Select and copy the auto-generated CSS code from the text box below the uploaded image:

209

The Sipwise C5 PRO Handbook mr6.5.11 210 / 601

Figure 69: CSC Customisation Step 2: Copy CSS code

5. Press the Edit Branding button again.

6. Paste the CSS code into CSS text box and Save the changes:

210

The Sipwise C5 PRO Handbook mr6.5.11 211 / 601

Figure 70: CSC Customisation Step 3: Paste CSS code

7. Now the new logo is already visible on the admin / CSC panel. If you want to hide the Sipwise copyright notice at the bottom

of the web panels, add a line of CSS code as shown here:

211

The Sipwise C5 PRO Handbook mr6.5.11 212 / 601

Figure 71: CSC Customisation: Hide copyright notice

8. The final branding data is shown on the admin web panel:

212

The Sipwise C5 PRO Handbook mr6.5.11 213 / 601

Figure 72: CSC Customisation: Custom data on panel

7.1.2.2 Other Website Customisations

The layout and style of NGCP’s admin and CSC web panel is determined by a single CSS file: /usr/share/ngcp-panel/

static/css/application.css

More complex changes, like replacing colour of some web panel components, is possible via the modification of the CSS file.

Warning

Only experienced users with profound CSS knowledge are advised to change web panel properties in the main CSS

file. Sipwise does not recommend and also does not support the modification of the main CSS file.

7.1.2.3 Selecting Available Languages

You can also enable/disable specific languages a user can choose from in the CSC panel. Currently, English (en), German (de),

Italian (it), Spanish (es) and Russian (ru) are supported, and the default language is the same as the browser’s preferred one.

You can select the default language provided by CSC by changing the parameter www_admin.force_language in /etc/

ngcp-config/config.yml file. An example to set the English language as default: force_language: en

213

The Sipwise C5 PRO Handbook mr6.5.11 214 / 601

7.2 The Voicemail Menu

Sipwise C5 offers several ways to access the Voicemail box.

The CSC panel allows your users to listen to voicemail messages from the web browser, delete them and call back the user who

left the voice message. User can setup voicemail forwarding to the external email and the PIN code needed to access the voicebox

from any telephone also from the CSC panel.

To manage the voice messages from SIP phone: simply dial internal voicemail access number 2000.

To change the access number: look for the parameter voicemail_number in /etc/ngcp-config/config.yml in the section sems→vsc.

After the changes, execute ngcpcfg apply ’changed voicebox number’.

Tip

To let the callers leave a voice message when user is not available he should enable Call Forward to Voicebox. The Call

Forward can be provisioned from the CSC panel as well as by dialing Call Forward VSC with the voicemail number. E.g. when

parameter voicemail_number is set to 9999, a Call Forward on Not Available to the Voicebox is set if the user dials *93*9999.

As a result, all calls will be redirected to the Voicebox if SIP phone is not registered.

To manage the voice messages from any phone:

• As an operator, you can setup some DID number as external voicemail access number: for that, you should add a special rewrite

rule (Inbound Rewrite Rule for Callee, see Section 5.7.) on the incoming peer, to rewrite that DID to "voiceboxpass". Now when

user calls this number the call will be forwarded to the voicemail server and he will be prompted for mailbox and password. The

mailbox is the full E.164 number of the subscriber account and the password is the PIN set in the CSC panel.

• The user can also dial his own number from PSTN, if he setup Call Forward on Not Available to the Voicebox, and when reaching

the voicemail server he can interrupt the "user is unavailable" message by pressing * key and then be prompted for the PIN.

After entering PIN and confirming with # key he will enter own voicemail menu. PIN is random by default and must be kept

secret for that reason.

214

The Sipwise C5 PRO Handbook mr6.5.11 215 / 601

8 Billing Configuration

This chapter describes the steps necessary to rate calls and export rated CDRs (call detail records) to external systems.

8.1 Billing Profiles

Service billing on Sipwise C5 is based on billing profiles, which may be assigned to customers and SIP peerings. The design

focuses on a simple, yet flexible approach, to support arbitrary dial-plans without introducing administrative overhead for the

system administrators. The billing profiles may define a base fee and free time or free money per billing interval. Unused free time

or money automatically expires at the end of the billing interval.

Each profile may have call destinations (usually based on E.164 number prefix matching) with configurable fees attached. Call

destination fees each support individual intervals and rates, with a different duration and/or rate for the first interval. (e.g.: charge

the first minute when the call is opened, then every 30 seconds, or make it independent of the duration at all) It is also possible

to specify different durations and/or rates for peak and off-peak hours. Peak time may be specified based on weekdays, with

additional support for manually managed dates based on calendar days. The call destinations can finally be grouped for an

overview on user’s invoices by specifying a zone in two detail levels. (E.g.: national landline, national mobile, foreign 1, foreign 2,

etc.)

8.1.1 Creating Billing Profiles

The first step when setting up billing data is to create a billing profile, which will be the container for all other billing related data.

Go to Settings→Billing and click on Create Billing Profile.

215

The Sipwise C5 PRO Handbook mr6.5.11 216 / 601

The fields Reseller, Handle and Name are mandatory.

• Reseller: The reseller this billing profile belongs to.

• Handle: A unique, permanently fixed string which is used to attach the billing profile to a customer or SIP peering contract.

• Name: A free form string used to identify the billing profile in the Admin Panel. This may be changed at any time.

• Prepaid: Enables prepaid accounting for this profile as opposed to normal post-paid mode.

• Prepaid library: one of available prepaid libraries to use for the prepaid accounting

• Advice of charge: Enables Advice of Charge support to send call costs in the SIP INFO messages back to the caller. The

Billing Fees are used in the cost and interval calculations.

• Interval charge: A base fee for the billing interval, specifying a monetary amount (represented as a floating point number) in

whatever currency you want to use.

• Interval free time: If you want to include free calling time in your billing profile, you may specify the number of seconds that are

available every billing interval. See Creating Billing Fees below on how to select destinations which may be called using the free

time.

• Interval free cash: Same as for interval free time above, but specifies a monetary amount which may be spent on outgoing

calls. This may be used for example to implement a minimum turnover for a contract, by setting the interval charge and interval

free cash to the same values.

216

The Sipwise C5 PRO Handbook mr6.5.11 217 / 601

• Fraud monthly limit: The monthly fraud detection limit (in Cent) for accounts with this billing profile. If the call fees of an account

reach this limit within a billing interval, an action can be triggered.

• Fraud monthly lock: a choice of none, foreign, outgoing, incoming, global. Specifies a lock level which will be used to lock the

account and his subscribers when fraud monthly limit is exceeded.

• Fraud monthly notify: An email address or comma-separated list of email addresses that will receive notifications when fraud

monthly limit is exceeded.

• Fraud daily limit: The fraud detection limit (in Cent) for accounts with this billing profile. If the call fees of an account reach this

limit within a calendar day, an action can be triggered.

• Fraud daily lock: a choice of none, foreign, outgoing, incoming, global. Specifies a lock level which will be used to lock the

account and his subscribers when fraud daily limit is exceeded.

• Fraud daily notify: An email address or comma-separated list of email addresses that will receive notifications when fraud daily

limit is exceeded.

• Currency: The currency symbol for your currency. Any UTF-8 character may be used and will be printed in web interfaces.

• VAT rate: The percentage of value added tax for all fees in the billing profile. Currently for informational purpose only and not

used further.

• VAT included: Whether VAT is included in the fees entered in web forms or uploaded to the platform. Currently for informational

purpose only and not used further.

8.1.2 Creating Billing Fees

Each Billing Profile holds multiple Billing Fees.

To set up billing fees, click on the Fees button of the billing profile you want to configure. Billing fees may be uploaded using a

configurable CSV file format, or entered directly via the web interface by clicking Create Fee Entry. To configure the CSV field

order for the file upload, rearrange the entries in the www_admin→fees_csv→element_order array in /etc/ngcp-config/config.yml

and execute the command ngcpcfg apply changed fees element order. The following is an example of working

CSV file to upload (pay attention to double quotes):

".","^1",out,"EU","ZONE EU",5.37,60,5.37,60,5.37,60,5.37,60,0,0,regex_longest_pattern

"^01.+$","^02145.+$",out,"AT","ZONE Test",0.06250,1,0.06250,1,0.01755,1,0.01733,1,0, ←↩
regex_longest_pattern

For input via the web interface, just fill in the text fields accordingly.

217

The Sipwise C5 PRO Handbook mr6.5.11 218 / 601

A billing fee record essentially defines the rate per interval to charge the customer when calling a particular destination number.

The properties below outline supported options in detail:

• Zone: A zone for a group of fees. May be used to group fees for simplified display, e.g. on invoices. (e.g. foreign zone 1)

• Match Mode: The mode for matching a fee’s source and destination patterns against a CDR’s source fields (the caller given

by <source_cli>@<source_domain> or <source_cli> only) and destination fields (the callee given by <destin

ation_user_in>@<destination_domain> or <destination_user_in> only). Each of the currently supported

modes below provide different flexibility and speed:

1. Exact string (destination): The destination string has to match the destination from the CDR exactly. Fastest, O(log(#fees)).

In csv files, this match mode is specified by exact_destination.

2. Prefix string: The fee‘s source/destination represent strings which both the source/destination from the CDR have to start

with. The fee with the longest destination prefix is picked. If there are multiple, the one with the longest source prefix is

picked. In contrast to regular-expression based match modes, this algorithm uses database index lookups instead of SQL

REGEXP table scans. The performance boundary is O(length(cdr src) * length(cdr dest) * log(#fees)), hence this will be

the preferred mode for tens of thousands of fees in place or high throughput (LCR, rating peer-to-peer calls). In csv files,

this match mode is specified by prefix.

3. Regular expression - longest match: The fee‘s source/destination patterns represent PCREs which both have to match

the source/destination from the CDR. The fee with the longest match within the destination string is picked. If there are

multiple, the one with the longest match within the source string is picked. In csv files, this match mode is specified by

regex_longest_match.

218

The Sipwise C5 PRO Handbook mr6.5.11 219 / 601

4. Regular expression - longest pattern: The fee‘s source/destination represent PCREs which both have to match the

source/destination from the CDR. The fee with the longest (most distinctive) destination pattern is picked. If there are

multiple, the one with the longest (most distinctive) source pattern is picked. In csv files, this match mode is specified by

regex_longest_pattern.

If fees with different match mode are in place and matching, the precedence is given by above order. When ommitted in file

uploads, the legacy default regex_longest_pattern is used.

• Source: The source pattern (prefix ie. 123 or regular expression ˆ123someone@sip\.sipwise\.com$). The legacy

default "." regular expression (matching everything) will be set implicitly.

• Destination: The destination pattern (string ie. 456somebody@sip.sipwise.com, prefix ie. 456 or regular expression

ˆ456somebody@sip\.sipwise\.com$). This field must be set.

– To specify a special fixed rate for any ported number in the local LNP tables belonging to an LNP provider, a fee with

exact_destination match mode and destination lnp:<lnp provider ID> can be set up.

– To specify an FCI (Furnished Charging Info) destination for cases when the FCI data is retreived from the LNP lookup, use a

format fci=10050 where "10050" is the FCI data.

• Direction: Outbound for standard origination fees (applies to callers placing a call and getting billed for that) or Inbound for

termination fees (applies to callees if you want to charge them for receiving various calls, e.g. for 800-numbers). If in doubt, use

Outbound. If you upload fees via CSV files, use out or in, respectively.

Important

The {match mode, source, destination, direction} combination needs to be unique for a billing profile. The system will

return an error if such a set is specified twice via web interface/ or /api, or skipped when processing the file upload.

Important

There are several internal services (vsc, conference, voicebox, fax2mail) which will need a specific destination entry

with a domain-based destination. If you don’t want to charge the same (or nothing) for those services, add a fee for

destination \.local$ there. If you want to charge different amounts for those services, break it down into separate fee

entries for @fax2mail\.local$, @vsc\.local$, @conference\.local$ and @voicebox\.local$

with the according fees. NOT CREATING EITHER THE CATCH-ALL FEE OR THE SEPARATE FEES FOR THE .

local DOMAIN WILL BREAK YOUR RATING PROCESS!

• Onpeak init rate: The rate for the first rating interval in cent (of whatever currency, represented as a floating point number) per

second. Applicable to calls during onpeak hours.

• Onpeak init interval: The duration of the first billing interval, in seconds. Applicable to calls during onpeak hours.

• Onpeak follow rate: The rate for subsequent rating intervals in cent (of whatever currency, represented as a floating point

number) per second. Applicable to calls during onpeak hours. Defaults to onpeak init rate.

• Onpeak follow interval: The duration of subsequent billing intervals, in seconds. Applicable to calls during onpeak hours.

Defaults to onpeak init interval.

219

The Sipwise C5 PRO Handbook mr6.5.11 220 / 601

• Offpeak init rate: The rate for the first rating interval in cent (of whatever currency, represented as a floating point number) per

second. Applicable to calls during off-peak hours. Defaults to onpeak init rate.

• Offpeak init interval: The duration of the first billing interval, in seconds. Applicable to calls during off-peak hours. Defaults to

onpeak init interval.

• Offpeak follow rate: The rate for subsequent rating intervals in cent (of whatever currency, represented as a floating point

number) per second. Applicable to calls during off-peak hours. Defaults to offpeak init rate if that one is specified, or to onpeak

follow rate otherwise.

• Offpeak follow interval: The duration of subsequent billing intervals, in seconds. Applicable to calls during off-peak hours.

Defaults to offpeak init interval if that one is specified, or to onpeak follow interval otherwise.

• Use free time: Specifies whether free time minutes may be used when calling this destination. May be specified in the file

upload as 0, n[o], f[alse] and 1, y[es], t[rue] respectively.

8.1.3 Creating Off-Peak Times

To be able to differentiate between on-peak and off-peak calls, the platform stores off-peak times for every billing profile based

on weekdays and/or calendar days. To edit the settings for a billing profile, go to Settings→Billing and press the Off-Peaktimes

button on the billing profile you want to configure.

To set off-peak times for a weekday, click on Edit next to the according weekday. You will be presented with two input fields which

both receive a timestamp in the form of hh:mm:ss specifying a time of day for the start and end of the off-peak period. If any of

the fields is left empty, the system will automatically insert 00:00:00 (start field) or 23:59:59 (end field). Click on Add to store

the setting in the database. You may create more than one off-peak period per weekday. To delete a range, just click Delete next

to the entry. Click the close icon when done.

220

The Sipwise C5 PRO Handbook mr6.5.11 221 / 601

To specify off-peak ranges based on calendar dates, click on Create Special Off-Peak Date. Enter a date in the form of YYYY-

MM-DD hh:mm:ss into the Start Date/Time input field and End Date/Time input field to define a range for the off-peak period.

221

The Sipwise C5 PRO Handbook mr6.5.11 222 / 601

8.2 Peak Time Call Rating Modes

8.2.1 Introduction to Call Rating Modes

The call rating engine component (rate-o-mat) supports two different modes to consider configured off-peak/on-peak periods when

calculating call costs:

• Split-Peak-Parts mode: CDRs reflecting calls which cross an off-peak/on-peak period transition will be split into two CDR frag-

ments. This way it is possible for each fragment to exactly mark it as either on-peak or off-peak, and the CDR’s frag_carrier_onpeak,

frag_reseller_onpeak and frag_customer_onpeak fields can be populated accordingly.

CDRs that are entirely within either on-peak or off-peak periods are not split and show a value of 0 for their is_fragmented field.

CDR fragments are marked by the is_fragmented field showing a value of 1. If the call is crossing n transitions, (n+1) fragments

are created.

Apart from is_fragmented, *_onpeak and *_cost fields, each fragment is a copy of the original CDR, except for start_time and

durations fields. The sum of durations of fragments is equal to the duration of the original CDR. Fragments are adjacent, so the

start_time of a fragment is equal to the end time (start_time + duration) of the previous fragment.

• Regular mode: In regular mode, the costs are calculated by summing up init/follow interval ticks, and selecting on-peak or

off-peak rates of the billing fee per tick. Resulting call costs will be identical to the sum of the costs of fragmented CDRs in

Split-Peak-Parts mode, but now comprised of both on-peak an off-peak rates in a single value. Hence frag_carrier_onpeak,

frag_reseller_onpeak and frag_customer_onpeak CDR fields cannot be provided.

222

The Sipwise C5 PRO Handbook mr6.5.11 223 / 601

8.2.2 Typical Use Cases for Call Rating Modes

The CDR fragmentation produced by Split-Peak-Parts mode can be useful when implementing:

• End-customer invoicing to separate call listings or costs by off-peak and on-peak

• Reports to compare sums of carrier and customer costs when fees with different metering (given by the fees’ init and follow

interval) are in effect

The process of the regular mode does not create additional CDRs, which has advantages in other situations:

• It is easy to re-rate CDRs, as there is no need to revert fragmentation.

• The concept of one-CDR-per-call-leg is kept, which simplifies external rating, reporting, call-flow visualisation etc.

8.2.3 Configuration of Call Rating Modes

The regular mode is enabled by default. To enable Split-Peak-Parts mode, set rateomat.splitpeakparts to 1 in /etc/

ngcp-config/config.yml file.

8.3 Prepaid Accounting

In a normal post-paid accounting scenario, each customer accumulates debt in their billing account, which at the end of the billing

interval is then billed to the customer. A prepaid billing profile reverses this sequence: the customer first has to provide credit to

their account balance, and the costs for all calls are then deducted from that account balance. Once the balance reaches zero, no

further calls from this customer are accepted, with the exception of free calls. Additionally, if the balance drops to zero while any

calls are currently active, Sipwise C5 will disconnect those calls as soon as that happens.

With prepaid billing enabled, all details of the billing profile and all details of the billing fees behave as they normally do, including

interval free time. If any interval free time is given, the free time will be used before the account’s credit is.

Important

For technical reasons, the system can make the distinction between on-peak and off-peak times only at call establish-

ment time. In other words, if the currently active call fee at the moment when the call is established is an off-peak fee,

then the same off-peak fee will remain active for the whole length of this call, even if the call actually transitions into an

on-peak fee (and vice versa).

Important

For technical reasons, prepaid billing can’t charge local endpoint calls to Voicebox, VSC calls or calls to a Conference

Room.

The Sipwise C5 platform offers advanced billing features which are especially designed for pre-paid billing scenarios. For details

please visit Billing Customizations Section 8.5 section of the handbook.

223

The Sipwise C5 PRO Handbook mr6.5.11 224 / 601

8.4 Fraud Detection and Locking

The Sipwise C5 supports a fraud detection feature, which is designed to detect accounts causing unusually high customer costs,

and then to perform one of several actions upon those accounts. This feature can be enabled and configured through two sets

of billing profile options described in Section 8.1.1, namely the monthly (fraud monthly limit, fraud monthly lock and fraud monthly

notify) and daily limits (fraud daily limit, fraud daily lock and fraud daily notify). Either monthly/daily limits or both of them can be

active at the same time.

Monthly fraud limit check runs once a day, shortly after midnight local time and daily fraud limit check runs every 30min. A

background script (managed by cron daemon) automatically checks all accounts which are linked to a billing profile enabled for

fraud detection, and selects those which have caused a higher cost than the fraud monthly limit configured in the billing profile,

within the currently active billing interval (e.g. in the current month), or a higher cost than the fraud daily limit configured in the

billing profile, within the calendar day. It then proceeds to perform at least one of the following actions on those accounts:

• If fraud lock is set to anything other than none, it will lock the account accordingly (e.g. if fraud lock is set to outgoing, the

account will be locked for all outgoing calls).

• If anything is listed in fraud notify, an email will be sent to the email addresses configured. The email will contain information

about which account is affected, which subscribers within that account are affected, the current account balance and the con-

figured fraud limit, and also whether or not the account was locked in accordance with the fraud lock setting. It should be noted

that this email is meant for the administrators or accountants etc., and not for the customer.

8.4.1 Fraud Lock Levels

Fraud lock levels are various protection (and notification) settings that are applied to subscribers of a Customer, if fraud detection

is enabled in the currently active billing profile and the Customer’s daily or monthly fraud limit has been exceeded.

The following lock levels are available:

• none: no account locking will happen

• foreign calls: only calls within the subscriber’s own domain, and emergency calls, are allowed

• all outgoing calls: subscribers of the customer cannot place any calls, except calls to free and emergency destinations

• incoming and outgoing: subscribers of the customer cannot place and receive any calls, except calls to free and emer-

gency destinations

• global: same restrictions as at incoming and outgoing level, additionally subscribers are not allowed to access the

Customer Self Care (CSC) interface

• ported: only automatic call forwarding, due to number porting, is allowed

Important

You can override fraud detection and locking settings of a billing profile on a per-account basis via REST API or the

Admin interface.

224

The Sipwise C5 PRO Handbook mr6.5.11 225 / 601

Caution

Accounts that were automatically locked by the fraud detection feature will not be automatically unlocked when the

next billing interval starts. This has to be done manually through the administration panel or through the provisioning

interface.

Important

If fraud detection is configured to only send an email and not lock the affected accounts, it will continue to do so for

over-limit accounts every day. The accounts must either be locked in order to stop the emails (only currently active

accounts are considered when the script looks for over-limit accounts) or some other action to resolve the conflict must

be taken, such as disabling fraud detection for those accounts.

Note

It is possible to fetch the list of fraud events and thus get fraud status of Customers by using the REST API and referring to the

resource: /api/customerfraudevents.

Note

Apart from the daily fraud detection check service, Sipwise C5 also provides instant, "hard" locking for prepaid use cases, by

means of billing profile packages. See Billing Profile Packages Section 8.5.3 for reference.

8.5 Billing Customizations

The standard way of doing the billing — i.e. having fixed billing intervals of a calendar month, starting on the 1st day of month —

may not fit all billing profiles and intervals that Sipwise C5 platform operators would like to use.

The Sipwise C5 supports — starting from its mr4.2.1 version — alternate ways of defining billing profiles and intervals which are

especially worthy for pre-paid scenarios. New functionality is covered by the following titles:

1. Billing Networks Section 8.5.1

2. Profile Mappings Schedule Section 8.5.2

3. Profile Packages Section 8.5.3

4. Vouchers Section 8.5.4

5. Top-up Section 8.5.5

6. Balance Overviews Section 8.5.6

7. Usage Examples Section 8.5.7

Subsequent sections will provide an introduction and configuration instructions to these advanced features of Sipwise C5.

225

The Sipwise C5 PRO Handbook mr6.5.11 226 / 601

8.5.1 Billing Networks

The idea is to dynamically select billing profiles (including fees) depending on the IP network the caller‘s SIP client is using to

connect. The caller‘s IP is populated in a call‘s CDR, and effectively processed by:

• the rating engine component („rate-o-mat“) and the

• prepaid interception module (libswrate).

The billing profile for rating a call is identified by matching the source IP against network ranges linked to the customer contract‘s

billing mappings records. This feature is sometimes also referred to as roaming.

A Billing Network is defined as a series of network blocks where each network block consists of a single IP address or an IP

subnet. Blocks of a particular billing network can be defined by either IPv4, or IPv6 addresses but not mixed.

Figure 73: Creation of Billing Network

The new /api/billingnetworks/ REST API resource allows one to manage billing networks. The example billing network

that is shown in the figure above may be defined through the API with this JSON structure:

{ "blocks" : [{ "ip" : "10.0.1.0", // subnet: 10.0.1.0 .. 10.0.1.255

"mask" : 24

226

The Sipwise C5 PRO Handbook mr6.5.11 227 / 601

},

{ "ip" : "10.0.2.2" // single ip

}

],

"description" : "Some text",

"name" : "Demo Billing Net 1", //unique per reseller

"reseller_id" : 1

}

Input validation of the network blocks is automatically performed by Sipwise C5 during their definition in a way that it prevents

specifying overlapping blocks by means of Interval Trees; billing networks themselves may overlap though.

Figure 74: Overlapping Block Prevention

8.5.2 Profile Mapping Schedule

Using the default settings related to billing when creating a new Reseller or Customer on the administrative web panel results in

applying the standard billing profile mapping schedule: the same billing profile is always used.

227

The Sipwise C5 PRO Handbook mr6.5.11 228 / 601

8.5.2.1 Definition of Profile Mapping Schedules

The idea of billing profile mapping schedule is to extend the billing mappings logic to utilize it as a schedule for billing profiles (and

associated fees) for the Customer or Reseller contract. So far, billing mapping records provided only a history showing which

profile was in effect at a given time in the past, which is for example required for delayed rating of calls.

Now it is also possible to define in advance, when specific billing profiles should become active in the future, e.g. to plan campaigns

or special offers.

Billing profile mappings represent a schedule of overlapping time intervals with Billing Profiles and Billing Networks, which are

assigned to (customer) contracts when creating or editing them.

Mapping intervals can be of type:

• open: no start time + no end time

• half-open:

– left-open: no start time + definite end time

– right-open: definite start time + no end time

• closed: definite start time + definite end time

8.5.2.2 Schedule Example

Figure 75: Profile Mapping Schedule Example

Applying the profile mapping schedule shown in the above figure will result in billing profiles being active as provided in the table

below.

Table 11: Active Billing Profiles

228

The Sipwise C5 PRO Handbook mr6.5.11 229 / 601

Table 11: (continued)

Time Web Panel shows Rating

Caller IP in Network 1 Caller IP in Network 2 Caller IP in other

network

May 30 Profile 1 Profile 1 Profile 1 Profile 1

June 1 Profile 4 Profile 3 Profile 4 Profile 1

June 2 Profile 2 Profile 2 Profile 4 Profile 1

June 5 Profile 5 Profile 3 Profile 4 Profile 5

8.5.2.3 Configuration of Schedules

A Customer’s default billing profile mapping can be changed to scheduled mappings when editing its properties, at the parameter

"Set billing profiles", selecting: schedule (billing mapping intervals)

Figure 76: Profile Mapping Schedule Creation

229

The Sipwise C5 PRO Handbook mr6.5.11 230 / 601

Tip

Assigning a Billing Network to a billing profile mapping is optional. Without selecting the network, the Billing Profile will be

applied to all calls.

The profile mapping schedule assigned to a Customer is also listed among Customer’s properties. See Settings→ Customers

→ Details→ Billing Profile Schedule.

Figure 77: Profile Mapping Schedule List

Note

Profile mappings that started in the past, like the default one, are displayed with a strike-through font in order to indicate that

those can not be modified.

The currently active mapping is depicted by a checked box.

8.5.2.4 REST API for Profile Mapping Schedules

The /api/customers/ API resource was extended to provide three different modes of defining profile mappings:

1. billing_profiles field: explicitly declare profile mappings in form of (billing profile, billing netwo

rk, start time, stop time) tuples

2. billing_profile_id field (legacy API spec): a single profile mapping interval is appended (billing profile,

no network / any caller IP respectively, starting now)

230

The Sipwise C5 PRO Handbook mr6.5.11 231 / 601

3. profile_package_id field: profile mappings starting now are appended by using lists of (billing profile,

billing network) tuples from the given profile package

With regards to Resellers, the /api/contracts/ API resource was enhanced as well, but supports method 1. and 2. only,

and without billing networks.

Mapping Intervals

Intervals can be of open, half-open (left-open, right-open) or closed type. When specifying profile mappings discretely, allowed

interval types are restricted, depending on create/update situation:

Table 12: Allowed Mapping Intervals

Interval Type Start Stop POST (create) PUT / PATCH

(update)

open undefined undefined 1..* 0

left-open undefined defined 0 0

right-open > now() undefined * *

closed > now() > start * *

Example Profile Mapping

An example JSON structure for definition of profile mapping schedules shown in Billing Profile Schedule List Figure 77 :

{ ...,

"billing_profile_definition" : "profiles", // i.e. use ’billing_profiles’ field

"billing_profiles" : [{ "network_id" : "236",

"profile_id" : "236",

"start" : "2016-11-01 00:00:00",

"stop" : "2016-12-31 00:00:00"

}, // closed future interval, with network

{ "network_id" : null,

"profile_id" : "237",

"start" : "2017-01-01 00:00:00",

"stop" : "2017-12-31 00:00:00"

}], // closed future interval, without network

"contact_id" : 141,

...

}

8.5.3 Profile Packages

By introducing billing profile packages, general billing parameters can be defined for a customer contract:

231

The Sipwise C5 PRO Handbook mr6.5.11 232 / 601

• Balance interval duration (regular/constant or aligned to top-up events)

• The first interval‘s start date

• The cash-balance carry-over/discard behaviour upon interval transitions

• Subscriber lock levels and profile sets to get applied upon:

– top-up

– balance threshold underrun

• Initial balance and billing profiles

Profile Packages are fundamental for pre-paid billing scenarios, since in such a billing scheme the traditional, fixed monthly periods

prove to be insufficient to cover the business needs of Sipwise C5 platform operator. As an example: pre-paid subscribers typically

have their "billing periods" between account balance top-ups.

8.5.3.1 Elements of Profile Packages

A Profile Package consists of various elements that will be discussed in subsequent sections of Sipwise C5 handbook. In order

to set the parameters of a profile package one must navigate to: Settings → Profile Packages → Create Profile Package, or

alternatively, in order to update an existing profile package: select the package and press Edit button.

Basic Balance Intervals Setup

• Interval duration (n hours, days, weeks, months)

• Interval start mode:

– 1st of month (1st): billing interval is 1 calendar month; this is the default for each Customer created on Sipwise C5 platform

Figure 78: Interval Start Mode: 1st

– upon customer creation (create): (the initial) billing interval starts when the Customer is created

232

The Sipwise C5 PRO Handbook mr6.5.11 233 / 601

Figure 79: Interval Start Mode: create

– upon topup (topup_interval): interval starts at first topup event and its length is defined by interval duration parameter

of the profile package

Figure 80: Interval Start Mode: topup_interval

– intervals from topup to topup (topup): interval starts at any topup event and its length is defined by interval duration

parameter of the profile package; intervals can overlap in this case

233

The Sipwise C5 PRO Handbook mr6.5.11 234 / 601

Figure 81: Interval Start Mode: topup

• Initial balance: the initial value of account balance (e.g. every new customer gets 5 Euros as a starting bonus)

Balance Carry Over

• Carry Over: balance carry over behaviour upon interval transitions:

– carry-over: always keep balance

– carry-over only if topped-up timely: keep balance in case of a timely top-up only; where timely means the

topup happens within a pre-defined time span before the end of the balance interval

– discard: discard balance at the end of each interval

• Timely Duration: duration of the timely period

• Discard balance after intervals: for how many balance intervals the remaining account balance is kept before its disposal

Underrun Settings

• Underrun lock threshold: when account balance reaches this amount the subscriber will be locked to a restricted set of services

• Underrun lock level: this level of services will apply when an account balance underruns

– don’t change: no change in the available set of services

– no lock: all services are available

– foreign: only calls within subscriber’s own domain are allowed

– outgoing: all outgoing calls are prohibited

– all calls: all calls (incoming + outgoing) are prohibited

– global: all calls + access to Customer Self Care web interface are prohibited

– ported: only automatic call forwarding, due to number porting, is allowed

• Underrun profile threshold: when account balance reaches this amount the Underrun Billing Profile will be applied

234

The Sipwise C5 PRO Handbook mr6.5.11 235 / 601

Basic Top-up Settings

• Top-up lock level: subscriber lock (unlock) levels to apply upon top-up event

• Service charge: (always) subtract this value from the voucher amount, if topup happens via the usage of a voucher

Profile mappings

A lists of (billing profile, billing network) tuples for appending profile mappings:

• Initial Billing Profile: when creating or manually changing the customers package (initial_profiles)

• Underrun Billing Profile: when the balance underruns a cash threshold (underrun_profiles)

• Top-up Billing Profile: when the customer tops-up using a voucher associated with the package (topup_profiles)

8.5.3.2 Examples

Profile Package Configuration

1. Definition of basic profile package parameters

Figure 82: Basic Profile Package Parameters

235

The Sipwise C5 PRO Handbook mr6.5.11 236 / 601

2. Definition of balance interval and carry-over behaviour

Figure 83: Balance Interval and Carry-over

3. Definition of balance underrun parameters

236

The Sipwise C5 PRO Handbook mr6.5.11 237 / 601

Figure 84: Balance Underrun Parameters

4. Definition of top-up settings

237

The Sipwise C5 PRO Handbook mr6.5.11 238 / 601

Figure 85: Balance Top-up Settings

5. Assigning a profile package to a customer

238

The Sipwise C5 PRO Handbook mr6.5.11 239 / 601

Figure 86: Assigning Profile Package to Customer

Interval start mode: top-up interval; carry-over: timely

Profile package setup:

• initial_balance: 1.0 euro

• balance_interval: 30 "day(s)“

• interval_start_mode: "topup_interval“

• carry_over_mode: "timely“

• timely_duration: 12 "day(s)“

• underrun_lock_threshold: 0.7 euro

• underrun_profile_threshold: 5.0 euro

• underrun_lock_level:. . .

239

The Sipwise C5 PRO Handbook mr6.5.11 240 / 601

Figure 87: Example: Top-up Interval and Timely Carry-over

Interval start mode: top-up to top-up; carry-over: always

• initial_balance: 1.0 euro

• balance_interval: 30 "day(s)“

• interval_start_mode: "topup“

• carry_over_mode: "carry-over“

• notopup_discard_intervals: 1

• underrun_lock_threshold: 0.7 euro

• underrun_profile_threshold: 5.0 euro

• underrun_lock_level:. . .

240

The Sipwise C5 PRO Handbook mr6.5.11 241 / 601

Figure 88: Example: Top-up and Always Carry-over

8.5.3.3 REST API

The new /api/profilepackages/ REST API resource allows one to manage billing profile package container entities, that

aggregate settings of profile packages.

A sample JSON structure follows:

{

"reseller_id" : 1,

"status" : "active",

"name" : "demo profile package",

"description" : "package for 10C ...",

"balance_interval_start_mode" : "1st",

"balance_interval_value" : 1,

"balance_interval_unit" : "month",

"carry_over_mode" : "carry_over",

"timely_duration_unit" : null,

"timely_duration_value" : null,

"initial_balance" : 0,

"initial_profiles" : [...], // required default, e.g. same as „topup_profiles“

"notopup_discard_intervals" : null,

"underrun_lock_threshold" : 0,

"underrun_lock_level" : 4,

241

The Sipwise C5 PRO Handbook mr6.5.11 242 / 601

"underrun_profile_threshold" : 5,

"underrun_profiles" : [...],

"service_charge" : 10,

"topup_lock_level" : null,

"topup_profiles" : [{

"network_id" : null, // any network

"profile_id" : 29

},

{

"network_id" : 2, // a specific billing network

"profile_id" : 30

},

],

...

}

8.5.4 Vouchers

Vouchers are a typical mean of topping-up an account balance in pre-paid billing scenarios.

The definition of a voucher in the database may succeed via:

• manual entry of voucher data on the administrative web panel or through the REST API

• bulk-uploading of vouchers using a CSV (comma separated value) formatted file

In order to manage vouchers the administrator has to navigate to: Settings→ Vouchers→ Create Billing Voucher or select an

existing one and press Edit button.

Figure 89: List of Vouchers

242

The Sipwise C5 PRO Handbook mr6.5.11 243 / 601

8.5.4.1 Properties of Vouchers

• Code: the unique code of the voucher which assures that a voucher can be used only once; this property is encrypted and

displayed on the web panel to authorized users only

• Amount: the amount of money the voucher represents

• Valid until: end of validity period

Figure 90: Voucher’s Main Properties

Setting following properties of a voucher is optional:

• Customer: the Customer whom the voucher will be assigned to; subscribers of other customers can not redeem the voucher

• Package: vouchers may be associated with profile packages; if done so, some changes will be applied to the Customer for

whom the voucher is redeemed with the top-up event:

– applying top-up profile mappings starting with the time of the top-up

– subtracting the new package‘s service charge from the voucher amount

243

The Sipwise C5 PRO Handbook mr6.5.11 244 / 601

– resizing the current balance interval for a gapless transition, if the new package has a different interval start mode (e.g. from

"create" to "1st")

– if a new balance interval starts with the top-up, the carry-over mode of the customer‘s previous package applies

Figure 91: Voucher: Customer and Profile Package

8.5.4.2 REST API

Vouchers can be created and managed using the /api/vouchers/ REST API resource. This resource restricts invasive

operations (POST, PUT, PATCH, DELETE) to authorized users.

{

"amount" : 1000,

"customer_id" : null, //do not restrict to a specific customer

"valid_until" : "2017-06-05 23:59:59",

"package_id" : "571", //switch to profile package

"reseller_id" : 1,

"code" : "SILVER_1_1437974823"

}

244

The Sipwise C5 PRO Handbook mr6.5.11 245 / 601

8.5.5 Top-up

A customer’s administrator or subscriber can perform a top-up to increase the contract‘s cash balance. The Sipwise C5 platform

supports two means of topping-up the balance:

1. Top-up Cash: Directly specify the cash amount to add

2. Top-up Voucher: Specify the code of a voucher, which was set up in advance

The Sipwise C5 platform provides 2 interfaces to perform top-ups:

1. through the REST API: use a CRM or third-party REST-API Broker (which i.e. coordinates with an App-Store purchase

process) to finally instruct Sipwise C5 to perform a top-up. This is the recommended method.

2. through the administrative web interface:

One has to select the Customer, then Details→ Contract Balance and finally press Top-up Cash or Top-up Voucher.

8.5.5.1 Top-up Cash

When doing top-up with cash one needs to supply the amount of top-up in the currency of the customer contract. Optionally one

can assign a Profile Package to the top-up event which will activate that profile package for the customer.

Figure 92: Balance Top-up with Cash

It is also possible to perform top-up through the REST API: POST /api/topupcash

245

The Sipwise C5 PRO Handbook mr6.5.11 246 / 601

{

"subscriber_id" : "73",

"amount" : 100,

"package_id" : null,

}

8.5.5.2 Top-up Voucher

Selecting Top-up Voucher option will provide a simple list of available vouchers from which the administrator can choose the

voucher. If a Profile Package is assigned to the voucher, that package will be activated for the customer on the top-up event.

Figure 93: Balance Top-up with Voucher

It is also possible to perform top-up through the REST API: POST /api/topupvouchers

{

"subscriber_id" : "73",

"code" : "SILVER_1_1437974390“

"request_token" : "uuid_from_3rdparty_relay" // optional request identifier

// for lookups in the top-up log

}

8.5.6 Balance Overviews

The actual contract balance and logs of top-up or balance interval change events are a kind of financially important information

and that’s why those are provided on the administrative web interface for each customer. One should navigate to: Settings →
Customers→ select the customer→ Details.

246

The Sipwise C5 PRO Handbook mr6.5.11 247 / 601

The various information details available on the web interface are discussed in subsequent sections of the handbook.

8.5.6.1 Contract Balance

This part of the overviews shows the actual financial state of the customer’s balance and the current profile package and balance

interval.

Figure 94: Contract Balance Status

Another functionality assigned to Contract Balance section is the manual top-up. Both top-up with cash and top-up with voucher

can be performed from here.

8.5.6.2 Balance Intervals

This table shows the balance intervals that have been in use, including the current interval.

247

The Sipwise C5 PRO Handbook mr6.5.11 248 / 601

Figure 95: List of Balance Intervals

Content of the balance intervals table is:

• From, To: starting and end points of the time interval

• Cash: the contract’s cash balance value at the end of the interval (former int.), or currently (actual int.)

• Debit: the total spent amount of money in the actual interval

Note

While "Cash" shows the remaining amount, "Debit" shows the spent amount. With a post-paid billing scenario only "Debit"

field would be populated, with pre-paid both fields will display an amount.

• No. of Top-ups: how many top-up events happened within the interval

• No. of Timely Top-ups: how many timely top-up events happened within the interval

• Underrun detected (Profiles or Lock): the time of last underrun event when either an underrun billing profile, or a subscriber lock

was activated

8.5.6.3 Top-up Log

Each successful or failing top-up request has to be logged. The log records represent an audit trail and reflect any data changes

in the course of the top-up request.

In case of an error during the top-up operation the error message and any parseable fields of failed top-up attempts is recorded.

248

The Sipwise C5 PRO Handbook mr6.5.11 249 / 601

Figure 96: Balance Top-up Log

Content of the top-up log table is:

• Timestamp: when the top-up happened

• Subscriber: the ID of the subscriber who performed the top-up

• Type: cash or voucher

• Outcome: ok or failed

• Message: error message, if Outcome="failed"

• Voucher ID: ID of voucher, if Type="voucher"

• Amount: the amount by which the balance was modified (after the Service Charge was subtracted from the voucher’s value)

• Balance before: balance’s value before top-up

• Balance after: balance’s value after top-up

• Package before: the name of the Profile Package that was active before top-up

• Package after: the name of the Profile Package that became active after top-up

The top-up log table can also be queried using the readonly /api/topuplogs REST API resource.

An example of the response:

{

"_embedded" : {

"ngcp:topuplogs" : [{

"_links" : {...},

"amount" : null,

"cash_balance_after" : null,

"cash_balance_before" : null,

249

The Sipwise C5 PRO Handbook mr6.5.11 250 / 601

"contract_balance_after_id" : null,

"contract_balance_before_id" : null,

"contract_id" : 2565,

"id" : 373,

"lock_level_after" : null,

"lock_level_before" : null,

"message" : ..., //error reason

"outcome" : "failed",

"package_after_id" : null,

"package_before_id" : null,

"profile_after_id" : null,

"profile_before_id" : null,

"request_token" : "1444956281_6", // = “panel“ for panel UI requests

"subscriber_id" : 1804,

"timestamp" : "2015-10-16 02:45:19",

"type" : "voucher", // "cash" or "voucher"

"username" : "administrator",

"voucher_id" : null }]

},

"_links" : { ... },

"total_count" : 1

}

8.5.7 Usage Examples

After getting to know the concepts of customized billing solution on Sipwise C5 platform, it’s worth seeing some practical examples

for the usage of those advanced features.

The starting point is the setup of Profile Packages for our fictive customers: A, B and C. There are 4 different packages defined,

with corresponding vouchers:

• Initial:

– Balance interval: 1 month

– Timely duration: 1 month

– Interval start mode: topup_interval

– Carry-over mode: carry_over_timely

• Silver:

– Balance interval: 1 month

– Timely duration: 1 month

– Interval start mode: "topup_interval"

– Carry-over mode: "carry_over_timely"

– Service charge: 2 EUR

250

The Sipwise C5 PRO Handbook mr6.5.11 251 / 601

– Underrun lock level: "no lock"

– Voucher value: 10 EUR

• Gold:

– Balance interval: 1 month

– Interval start mode: "topup_interval"

– Carry-over mode: "carry_over"

– Service charge: 5 EUR

– Underrun lock level: "no lock"

– Voucher value: 20 EUR

• Extension:

– Balance interval: 1 month

– Timely duration: 1 month

– Interval start mode: "topup_interval"

– Carry-over mode: "carry_over_timely"

– Service charge: 2 EUR

– Underrun lock level: "no lock"

– Voucher value: 2 EUR

8.5.7.1 Customer A — Silver Package

1. Customer A tops up 10 EUR with a “silver” voucher. 2 EUR are deducted as service charge. Remaining balance is 8 EUR

starting on the date of the top- up.

2. Customer A doesn’t top-up balance within the next month, so remaining balance is set to 0 after one month, and billing

profiles and lock levels are set to the balance-underrun definition of the “silver” package.

Figure 97: Usage Example: Silver Package

251

The Sipwise C5 PRO Handbook mr6.5.11 252 / 601

8.5.7.2 Customer B — Silver and Extension Package

1. Customer B tops up 10 EUR with the “silver” voucher. 2 EUR are deducted as service charge. Remaining balance is 8 EUR

starting on the date of the top-up.

2. Customer B tops up 2 EUR using an “extension” voucher on the last day. 2 EUR are deducted as service charge and the

interval is extended for one month, carrying over his old balance.

3. Customer B doesn’t top-up balance within the next month, so remaining balance is set to 0 after the month, and billing

profiles and lock levels are set to the balance-underrun definition of the “extension” package.

Figure 98: Usage Example: Silver + Extension Package

8.5.7.3 Customer C — Gold Package

Customer C tops up 20 EUR with the “gold” voucher. 5 EUR are deducted as service charge. Remaining balance is 15 EUR

starting on the date of the top-up. Balance is carried over after each month until used up.

Figure 99: Usage Example: Gold Package

8.6 Notes on Billing and Call Rating

Cash balance with post-paid billing profile

252

The Sipwise C5 PRO Handbook mr6.5.11 253 / 601

Customers with a post-paid billing profile may have a positive account cash balance value. This is the regular case when using a

post-paid billing profile showing a free cash greater than 0.

Tip

You can set the free cash (and the free time) in the billing profile. The account balance will be set and managed (i.e. refilled or

carried over) automatically for subsequent balance intervals.

In case the account has a positive cash balance, the cost of the call will be deducted from that balance and not considered as

additional cost of that particular call for the customer.

Important

The rating engine (rate-o-mat) in Sipwise C5 will write 0 instead of the real cost of a call in the CDR, if the source

customer’s (who initiated the call) account has a positive cash balance! The purpose of this is to reflect the usage of

free cash in the CDR for the particular call.

Note

It might happen, for instance, that a customer’s billing profile is changed from pre-paid to post-paid, and the customer already

had a positive cash balance on his account. In that case the same call rating mechanism is involved as for the free cash.

8.7 Billing Data Export

Regular billing data export is done using CSV (comma separated values) files which may be downloaded from the platform using

the cdrexport user which has been created during the installation.

There are two types of exports. One is CDR (Call Detail Records) used to charge for calls made by subscribers, and the other is

EDR (Event Detail Records) used to charge for provisioning events like enabling certain features.

8.7.1 Glossary of Terms

Billing records contain fields that hold data of various entities that play a role in the phone service offered by Sipwise C5. For a

better understanding of billing data please refer to the glossary provided here:

• Account: the customer’s account that is charged for calls of its subscriber(s)

• Carrier: a SIP peer that sends incoming calls to, or receives outgoing calls from NGCP. A carrier may charge fees for the

outgoing calls from Sipwise C5 (outbound billing fee), or for the incoming calls to Sipwise C5 (inbound billing fee).

• Contract: the service contract that represents a customer, a reseller or a SIP peer; a contract on Sipwise C5 contains the billing

profile (billing fees) too

• Customer: the legal entity that represents any number of subscribers; this entity receives the bills for calls of its subscriber(s)

• Provider: either the reseller that holds a subscriber who is registered on NGCP, or the SIP peer that handles calls between an

external subscriber and NGCP

253

The Sipwise C5 PRO Handbook mr6.5.11 254 / 601

• Reseller: the entity who is the direct, administrative service provider of a group of customers and subscribers registered on

NGCP; Sipwise C5 operator may also charge a reseller for the calls initiated or received by its subscribers

• User: the subscriber who either is registered on NGCP, or is an external call party

8.7.2 File Name Format

In order to be able to easily identify billing files, the file names are constructed by the following fixed-length fields:

<prefix><separator><version><separator><timestamp><separator><sequence number>< ←↩
suffix>

The definition of the specific fields is as follows:

Table 13: CDR/EDR export file name format

File name element Length Description

<prefix> 7 A fixed string. Always sipwise.

<separator> 1 A fixed character. Always _.

<version> 3 The format version, a three digit number. Currently 007.

<timestamp> 14 The file creation timestamp in the format YYYYMMDDhhmmss.

<sequence number> 10 A unique 10-digit zero-padded sequence number for quick identification.

<suffix> 4 A fixed string. Always .cdr or .edr.

A valid example filename for a CDR billing file created at 2012-03-10 14:30:00 and being the 42nd file exported by the system, is:

sipwise_007_20130310143000_0000000042.cdr

8.7.3 File Format

Each billing file consists of three parts: one header line, zero to 5000 body lines and one trailer line.

8.7.3.1 File Header Format

The billing file header is one single line, which is constructed by the following fields:

<version>,<number of records>

The definition of the specific fields is as follows:

254

The Sipwise C5 PRO Handbook mr6.5.11 255 / 601

Table 14: CDR/EDR export file header line format

Body Element Length Type Description

<version> 3 zero-

padded

uint

The format version. Currently 007.

<number of records> 4 zero-

padded

uint

The number of body lines contained in the file.

A valid example for a Header is:

007,0738

8.7.3.2 File Body Format for Call Detail Records (CDR)

The body of a CDR consists of a minimum of zero and a default maximum of 5000 lines. The platform operator can configure

the maximum number of lines kept in a file by updating the cdrexport.max_rows_per_file parameter in /etc/ngcp-

config/config.yml file. Each line holds one call detail record in CSV format and is constructed by a configurable set of

fields, all of them enclosed in single quotes.

The following table defines the default set of fields that are inserted into the CDR file, for exports related to system scope. The

list of fields is defined in /etc/ngcp-config/config.yml file, cdrexport.admin_export_fields parameter.

Table 15: Default set of system CDR fields

Body Element Length Type Description

CDR_ID 1-10 uint Internal CDR ID.

UPDATE_TIME 19 timestamp Timestamp of last modification,

including date and time (with seconds

precision).

SOURCE_USER_ID 36 string Internal UUID of calling party

subscriber. Value is 0 if calling party is

external.

SOURCE_PROVIDER_ID 0-255 string Internal ID of the contract of calling

party provider (i.e. reseller or peer).

SOURCE_EXTERNAL_SUBSCRIBER_ID 0-255 string External, arbitrary ID of calling party

subscriber. (A string value shown as

"External ID" property of an Sipwise C5

subscriber.)

SOURCE_SUBSCRIBER_ID 1-11 uint Internal ID of calling party subscriber.

Value is 0 if calling party is external.

255

The Sipwise C5 PRO Handbook mr6.5.11 256 / 601

Table 15: (continued)

Body Element Length Type Description

SOURCE_EXTERNAL_CONTRACT_ID 0-255 string External, arbitrary ID of calling party

customer. (A string value shown as

"External ID" property of an Sipwise C5

customer/peer.)

SOURCE_ACCOUNT_ID 1-11 uint Internal ID of calling party customer.

SOURCE_USER 0-255 string SIP username of calling party.

SOURCE_DOMAIN 0-255 string SIP domain of calling party.

SOURCE_CLI 0-64 string CLI of calling party in E.164 format.

SOURCE_CLIR 1 uint 1 for calls with CLIR, 0 otherwise.

SOURCE_IP 0-64 string IP Address of the calling party.

DESTINATION_USER_ID 36 string Internal UUID of called party

subscriber. Value is 0 if called party is

external.

DESTINATION_PROVIDER_ID 0-255 string Internal ID of the contract of called

party provider (i.e. reseller or peer).

DESTINATION_EXTERNAL_SUBSCRIBER

_ID

0-255 string External, arbitrary ID of called party

subscriber. (A string value shown as

"External ID" property of an Sipwise C5

subscriber.)

DESTINATION_SUBSCRIBER_ID 1-11 uint Internal ID of called party subscriber.

Value is 0 if calling party is external.

DESTINATION_EXTERNAL_CONTRACT_ID 0-255 string External, arbitrary ID of called party

customer. (A string value shown as

"External ID" property of an Sipwise C5

customer/peer.)

DESTINATION_ACCOUNT_ID 1-11 uint Internal ID of called party customer.

DESTINATION_USER 0-255 string Final SIP username of called party.

DESTINATION_DOMAIN 0-255 string Final SIP domain of called party.

DESTINATION_USER_IN 0-255 string Incoming SIP username of called party,

after applying inbound rewrite rules.

DESTINATION_DOMAIN_IN 0-255 string Incoming SIP domain of called party,

after applying inbound rewrite rules.

DESTINATION_USER_DIALED 0-255 string The user-part of the SIP Request URI

as received by NGCP.

PEER_AUTH_USER 0-255 string Username used to authenticate

towards peer.

PEER_AUTH_REALM 0-255 string Realm used to authenticate towards

peer.

256

The Sipwise C5 PRO Handbook mr6.5.11 257 / 601

Table 15: (continued)

Body Element Length Type Description

CALL_TYPE 3-4 string The type of the call - one of:

call: normal call

cfu: call forward unconditional

cfb: call forward busy

cft: call forward timeout

cfna: call forward not available

cfs: call forward for SMS

cfr: call forward rerouting

CALL_STATUS 2-8 string The final call status - one of:

ok: successful call

busy: called party busy

noanswer: no answer from called

party

cancel: cancel from caller

offline called party offline

timeout: no reply from called party

other: unspecified, see CALL_CODE

field for details

CALL_CODE 3 string The final SIP status code.

INIT_TIME 23 timestamp Timestamp of call initiation (SIP INVITE

received from calling party). Includes

date, time with milliseconds (3

decimals).

START_TIME 23 timestamp Timestamp of call establishment (final

SIP response received from called

party). Includes date, time with

milliseconds (3 decimals).

DURATION 4-13 fixed

precision (3

decimals)

Length of call (calculated from

START_TIME) including milliseconds

(3 decimals).

CALL_ID 0-255 string The SIP Call-ID.

RATING_STATUS 2-7 string The internal rating status of the CDR -

one of:

unrated: not rated

ok: successfully rated

failed: error while rating

Currently always ok or unrated,

depending on whether rating is enabled

or not.

257

The Sipwise C5 PRO Handbook mr6.5.11 258 / 601

Table 15: (continued)

Body Element Length Type Description

RATED_AT 0-19 datetime Time of rating, including date and time

(with seconds precision). Empty if CDR

is not rated.

SOURCE_CARRIER_COST 7-14 fixed

precision (6

decimals)

The originating carrier cost that the

carrier (i.e. SIP peer) charges for the

calls routed to his network, or empty if

CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

SOURCE_CUSTOMER_COST 7-14 fixed

precision (6

decimals)

The originating customer cost, or empty

if CDR is not rated.

SOURCE_CARRIER_ZONE 0-127 string Name of the originating carrier billing

zone, or onnet if data is not available.

PLEASE NOTE: Only available in

system exports, not for resellers.

SOURCE_CUSTOMER_ZONE 0-127 string Name of the originating customer billing

zone, or empty if CDR is not rated.

SOURCE_CARRIER_DETAIL 0-127 string Description of the originating carrier

billing zone, or platform

internal if data is not available.

PLEASE NOTE: Only available in

system exports, not for resellers.

SOURCE_CUSTOMER_DETAIL 0-127 string Description of the originating customer

billing zone, or empty if CDR is not

rated.

SOURCE_CARRIER_FREE_TIME 1-10 uint The number of free time seconds used

on originating carrier side, or empty if

CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

SOURCE_CUSTOMER_FREE_TIME 1-10 uint The number of free time seconds used

from the originating customer’s account

balance, or empty if CDR is not rated.

DESTINATION_CARRIER_COST 7-14 fixed

precision (6

decimals)

The terminating carrier cost, or empty if

CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_CUSTOMER_COST 7-14 fixed

precision (6

decimals)

The terminating customer cost, or

empty if CDR is not rated.

258

The Sipwise C5 PRO Handbook mr6.5.11 259 / 601

Table 15: (continued)

Body Element Length Type Description

DESTINATION_CARRIER_ZONE 0-127 string Name of the terminating carrier billing

zone, or onnet if data is not available.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_CUSTOMER_ZONE 0-127 string Name of the terminating customer

billing zone, or empty if CDR is not

rated.

DESTINATION_CARRIER_DETAIL 0-127 string Description of the terminating carrier

billing zone, or empty if CDR is not

rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_CUSTOMER_DETAIL 0-127 string Description of the terminating customer

billing zone, or empty if CDR is not

rated.

DESTINATION_CARRIER_FREE_TIME 1-10 uint The number of free time seconds used

on terminating carrier side, or empty if

CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_CUSTOMER_FREE_TIME 1-10 uint The number of free time seconds used

from the terminating customer’s

account balance, or empty if CDR is not

rated.

SOURCE_RESELLER_COST 7-14 fixed

precision (6

decimals)

The originating reseller cost, or empty if

CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

SOURCE_RESELLER_ZONE 0-127 string Name of the originating reseller billing

zone, or empty if CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

SOURCE_RESELLER_DETAIL 0-127 string Description of the originating reseller

billing zone, or empty if CDR is not

rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

259

The Sipwise C5 PRO Handbook mr6.5.11 260 / 601

Table 15: (continued)

Body Element Length Type Description

SOURCE_RESELLER_FREE_TIME 1-10 uint The number of free time seconds used

from the originating reseller’s account

balance, or empty if CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_RESELLER_COST 7-14 fixed

precision (6

decimals)

The terminating reseller cost, or empty

if CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_RESELLER_ZONE 0-127 string Name of the terminating reseller billing

zone, or empty if CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_RESELLER_DETAIL 0-127 string Description of the terminating reseller

billing zone, or empty if CDR is not

rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_RESELLER_FREE_TIME 1-10 uint The number of free time seconds used

from the terminating reseller’s account

balance, or empty if CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

<line_terminator> 1 string Always \n (special char LF - ASCII

0x0A).

A valid example of one body line of a rated CDR is (line breaks added for clarity):

’15’,’2013-03-26 22:09:11’,’a84508a8-d256-4c80-a84e-820099a827b0’,’1’,’’,’1’,’’,

’2’,’testuser1’,’192.168.51.133’,’4311001’,’0’,’192.168.51.1’,

’94d85b63-8f4b-43f0-b3b0-221c9e3373f2’,’1’,’’,’3’,’’,’4’,’testuser3’,

’192.168.51.133’,’testuser3’,’192.168.51.133’,’testuser3’,’’,’’,’call’,’ok’,’200’,

’2013-03-25 20:24:50.890’,’2013-03-25 20:24:51.460’,’10.880’,’44449842’,

’ok’,’2013-03-25 20:25:27’,’0.00’,’24.00’,’onnet’,’testzone’,’platform internal’,

’testzone’,’0’,’0’,’0.00’,’200.00’,’’,’foo’,’’,’foo’,’0’,’0’,

’0.00’,’’,’’,’0’,’0.00’,’’,’’,’0’

The format of the CDR export files generated for resellers (as opposed to the complete system-wide export) is identical except

for a few missing fields.

260

The Sipwise C5 PRO Handbook mr6.5.11 261 / 601

Note

Please check the description of fields in the table above, in order to see which fields are omitted for reseller related CDR

exports.

The list of fields for reseller CDR export is defined in /etc/ngcp-config/config.yml file, cdrexport.reseller_e

xport_fields parameter.

8.7.3.3 Extra fields that can be exported to CDRs

Supplementary Data

There are fields in CDR database that contain supplementary data related to subscribers. This data is not used by Sipwise C5

for CDR processing but rather provides the system administrator with a possibility to include supplementary information in CDRs.

Note

This informational section is meant for problem solving / debugging purpose: The supplementary data listed in following table

is stored in provisioning.voip_preferences database table.

Table 16: Supplementary data in CDR fields

Body Element Length Type Description

SOURCE_GPP0 0-255 string Supplementary data field 0 of calling party.

SOURCE_GPP1 0-255 string Supplementary data field 1 of calling party.

SOURCE_GPP2 0-255 string Supplementary data field 2 of calling party.

SOURCE_GPP3 0-255 string Supplementary data field 3 of calling party.

SOURCE_GPP4 0-255 string Supplementary data field 4 of calling party.

SOURCE_GPP5 0-255 string Supplementary data field 5 of calling party.

SOURCE_GPP6 0-255 string Supplementary data field 6 of calling party.

SOURCE_GPP7 0-255 string Supplementary data field 7 of calling party.

SOURCE_GPP8 0-255 string Supplementary data field 8 of calling party.

SOURCE_GPP9 0-255 string Supplementary data field 9 of calling party.

DESTINATION_GPP0 0-255 string Supplementary data field 0 of called party.

DESTINATION_GPP1 0-255 string Supplementary data field 1 of called party.

DESTINATION_GPP2 0-255 string Supplementary data field 2 of called party.

DESTINATION_GPP3 0-255 string Supplementary data field 3 of called party.

DESTINATION_GPP4 0-255 string Supplementary data field 4 of called party.

DESTINATION_GPP5 0-255 string Supplementary data field 5 of called party.

DESTINATION_GPP6 0-255 string Supplementary data field 6 of called party.

DESTINATION_GPP7 0-255 string Supplementary data field 7 of called party.

DESTINATION_GPP8 0-255 string Supplementary data field 8 of called party.

DESTINATION_GPP9 0-255 string Supplementary data field 9 of called party.

261

The Sipwise C5 PRO Handbook mr6.5.11 262 / 601

Account balance details (prepaid calls)

There are fields in CDR database that show changes in cash or free time balance. In addition to that, a history of billing packages

/ profiles may also be present, since Sipwise C5 vouchers, that are used to top-up, may also be set up to cause a transition of

profile packages. (Which in turn can result in changing the billing profile/applicable fees). Therefore the billing package and profile

valid at the time of the CDR are recorded and exposed as fields for CDR export.

Tip

Such fields may also be required to integrate Sipwise C5 with legacy billing systems.

Note

Please be aware that pre-paid billing functionality is only available in Sipwise C5 PRO and Sipwise C5 CARRIER products.

The name of CDR data field consists of the elements listed below:

1. source|destination: decides if the data refers to calling (source) or called (destination) party

2. carrier|reseller|customer: the account owner, whose billing data is referred

3. data type:

A. cash_balance|free_time_balance _ before|after: cash balance or free time balance, before or af-

ter the call

B. profile_package_id|contract_balance_id: internal ID of the active pre-paid billing profile or the ac-

count balance

Examples:

• source_customer_cash_balance_before

• destination_customer_profile_package_id

Important

For calls spanning multiple balance intervals, the latter one will be selected, that is the balance interval where the call

ended.

Important

There are some limitations in rating pre-paid calls, please visit Pre-paid Billing Section 8.3 section for details.

262

The Sipwise C5 PRO Handbook mr6.5.11 263 / 601

8.7.3.4 Distinguish between on-net and off-net calls CDRs

On-net calls (made only between devices on your network) are sometimes treated differently from off-net calls (terminated to or

received from a peer) in external billing systems.

To distinguish between on-net and off-net calls in such a billing systems, check the source_user_id and destination_user_id

fields. For on-net calls, both fields will have a different from zero value (actually, a UUID).

8.7.3.5 File Body Format for Event Detail Records (EDR)

The body of an EDR consists of a minimum of zero and a maximum of 5000 lines. The platform operator can configure the

maximum number of lines kept in a file by updating the eventexport.max_rows_per_file parameter in /etc/ngcp-

config/config.yml file. Each line holds one call detail record in CSV format and is constructed by the fields as per the

subsequent table.

The following table defines the default set of fields that are inserted into the EDR file, for exports related to system scope. The

list of fields is defined in /etc/ngcp-config/config.yml file, eventexport.admin_export_fields parameter.

Table 17: Default set of system EDR fields

Body Element Length Type Description

EVENT_ID 1-11 uint Internal EDR ID.

TYPE 0-255 string The type of the event - one of:

start_profile: A subscriber profile has been newly

assigned to a subscriber.

end_profile: A subscriber profile has been removed

from a subscriber.

update_profile: A subscriber profile has been

changed for a subscriber.

start_huntgroup: A subscriber has been

provisioned as PBX / hunting group.

end_huntgroup: A subscriber has been

deprovisioned as PBX / hunting group.

start_ivr: A subscriber has a new call-forward to

Auto-Attendant.

end_ivr: A subscriber has removed a call-forward to

Auto-Attendant.

CONTRACT_EXTERNAL_ID 0-255 string The external ID of the customer. (A string value shown

as "External ID" property of an Sipwise C5 customer.)

COMPANY 0-127 string The company name of the customer’s contact.

SUBSCRIBER_EXTERNAL_ID 0-255 string The external ID of the subscriber. (A string value shown

as "External ID" property of an Sipwise C5 subscriber.)

PLEASE NOTE: This field is empty in case of

start_huntgroup and end_huntgroup events.

263

The Sipwise C5 PRO Handbook mr6.5.11 264 / 601

Table 17: (continued)

Body Element Length Type Description

PILOT_PRIMARY_NUMBER 0-64 string The pilot subscriber’s primary number (HPBX

subscribers). PLEASE NOTE: This is not included in

default set of EDR fields from Sipwise C5 version mr5.0

upwards.

PRIMARY_NUMBER 0-64 string The VoIP number of the subscriber with the highest ID

(DID or primary number).

OLD_PROFILE_NAME 0-255 string The old status of the event. Depending on the

event_type:

start_profile: Empty.

end_profile: The name of the subscriber profile

which got removed from the subscriber.

update_profile: The name of the former

subscriber profile which got updated.

start_huntgroup: Empty.

end_huntgroup: Empty.

start_ivr: Empty.

end_ivr: Empty.

NEW_PROFILE_NAME 0-255 string The new status of the event. Depending on the

event_type:

start_profile: The name of the subscriber profile

which got assigned to the subscriber.

end_profile: Empty.

update_profile: The name of the new subscriber

profile which got applied.

start_huntgroup: Empty.

end_huntgroup: Empty.

start_ivr: Empty.

end_ivr: Empty.

TIMESTAMP 23 timestamp Timestamp of event. Includes date, time with

milliseconds (3 decimals).

RESELLER_ID 1-11 uint Internal ID of the reseller which the event belongs to.

PLEASE NOTE: Only available in system exports, not for

resellers.

<line_terminator> 1 string A fixed character. Always \n (special char LF - ASCII

0x0A).

A valid example of one body line of an EDR is (line breaks added for clarity):

"1","start_profile","sipwise_ext_customer_id_4","Sipwise GmbH",

264

The Sipwise C5 PRO Handbook mr6.5.11 265 / 601

"sipwise_ext_subscriber_id_44","436667778","","1","2014-06-19 11:34:31","1"

The format of the EDR export files generated for resellers (as opposed to the complete system-wide export) is identical except

for a few missing fields.

Note

Please check the description of fields in the table above, in order to see which fields are omitted for reseller related EDR

exports.

The list of fields for reseller EDR export is defined in /etc/ngcp-config/config.yml file, eventexport.reseller

_export_fields parameter.

8.7.3.6 Extra fields that can be exported to EDRs

There are fields in EDR database that contain supplementary data related to subscribers, for example subscriber phone numbers

are such data.

Table 18: Supplementary data in EDR fields

Body Element Length Type Description

SUBSCRIBER_PROFILE_SET

_NAME

0-255 string The subscriber’s profile set name.

PILOT_SUBSCRIBER_PROFI

LE_SET_NAME

0-255 string The profile set name of the subscriber’s pilot subscriber.

PILOT_SUBSCRIBER_PROFI

LE_NAME

0-255 string The profile name of the subscriber’s pilot subscriber.

FIRST_NON_PRIMARY_ALIA

S_USERNAME_BEFORE

0-255 string The subscriber’s non-primary alias with lowest ID, before

number updates during the operation.

FIRST_NON_PRIMARY_ALIA

S_USERNAME_AFTER

0-255 string The subscriber’s non-primary alias with lowest ID, after

number updates during the operation.

PILOT_FIRST_NON_PRIMAR

Y_ALIAS_USERNAME_BEF

ORE

0-255 string The non-primary alias with lowest ID of the subscriber’s

pilot subscriber, before number updates during the

operation.

PILOT_FIRST_NON_PRIMAR

Y_ALIAS_USERNAME_AFTER

0-255 string The non-primary alias with lowest ID of the subscriber’s

pilot subscriber, after number updates during the

operation.

NON_PRIMARY_ALIAS_USER

NAME

0-255 string The non-primary alias of a subscriber affected by an

update_profile, start_profile or

end_profile event to track number changes.

PRIMARY_ALIAS_USERNAME

_BEFORE

0-255 string The subscriber’s primary alias, before number updates

during the operation.

PRIMARY_ALIAS_USERNAME

_AFTER

0-255 string The subscriber’s primary alias, after number updates

during the operation.

265

The Sipwise C5 PRO Handbook mr6.5.11 266 / 601

Table 18: (continued)

Body Element Length Type Description

PILOT_PRIMARY_ALIAS_US

ERNAME_BEFORE

0-255 string The primary alias of the subscriber’s pilot subscriber,

before number updates during the operation.

PILOT_PRIMARY_ALIAS_US

ERNAME_AFTER

0-255 string The primary alias of the subscriber’s pilot subscriber,

after number updates during the operation.

FIRST_NON_PRIMARY_ALIA

S_USERNAME_BEFORE_AF

TER

0-255 string Equals FIRST_NON_PRIMARY_ALIAS_USERNAME

_BEFORE, if the value is not NULL, otherwise it’s the

same as FIRST_NON_PRIMARY_ALIAS_USERNAM

E_AFTER.

PILOT_FIRST_NON_PRIMAR

Y_ALIAS_USERNAME_BEFOR

E_AFTER

0-255 string Equals PILOT_FIRST_NON_PRIMARY_ALIAS_US

ERNAME_BEFORE, if the value is not NULL, otherwise

it’s the same as PILOT_FIRST_NON_PRIMARY_ALI

AS_USERNAME_AFTER.

8.7.3.7 File Trailer Format

The billing file trailer is one single line, which is constructed by the following fields:

<md5 sum>

The <md5 sum> is a 32 character hexadecimal MD5 hash of the Header and Body.

To validate the billing file, one must remove the Trailer before computing the MD5 sum of the file. An example bash script to

validate the integrity of the file is given below:

#!/bin/sh

error() { echo $@; exit 1; }

test -n "$1" || error "Usage: $0 <cdr-file>"

test -f "$1" || error "File ’$1’ not found"

TMPFILE="/tmp/$(basename "$1").$$"

MD5="$(sed -rn ’$ s/^([a-z0-9]{32}).*$/\1/i p’ "$1") $TMPFILE"

sed ’$d’ "$1" > "$TMPFILE"

echo "$MD5" | md5sum -c -

rm -f "$TMPFILE"

Given the script is located in cdr-md5.sh and the CDR-file is sipwise_001_20071110123000_0000000004.cdr,

the output of the integrity check for an intact CDR file would be:

$./cdr-md5.sh sipwise_001_20071110123000_0000000004.cdr

266

The Sipwise C5 PRO Handbook mr6.5.11 267 / 601

/tmp/sipwise_001_20071110123000_0000000004.cdr: OK

If the file has been altered during transmission, the output of the integrity check would be:

$./cdr-md5.sh sipwise_001_20071110123000_0000000004.cdr

/tmp/sipwise_001_20071110123000_0000000004.cdr: FAILED

md5sum: WARNING: 1 of 1 computed checksum did NOT match

8.7.4 File Transfer

Billing files are created twice per hour at minutes 25 and 55 and are stored in the home directory of the cdrexport user. If the

amount of records within the transmission interval exceeds the threshold of 5000 records per file, multiple billing files are created.

If no billing records are found for an interval, a billing file without body data is constructed for easy detection of lost billing files on

the 3rd party side.

CDR and EDR files are fetched by a 3rd party billing system using SFTP or SCP with either public key or password authentication

using the username cdrexport.

If public key authentication is chosen, the public key file has to be stored in the file ~/.ssh/authorized_keys2 below the

home directory of the cdrexport user. Otherwise, a password has to be set for the user.

The 3rd party billing system is responsible for deleting CDR files after fetching them.

Note

The cdrexport user is kept in a jailed environment on the system, so it has only access to a very limited set of commandline

utilities.

267

The Sipwise C5 PRO Handbook mr6.5.11 268 / 601

9 Provisioning REST API Interface

The Sipwise C5 provides the REST API interface for interconnection with 3rd party tools.

The Sipwise C5 provides a REST API to provision various functionality of the platform. The entry point - and at the same time the

official documentation - is at https://<your-ip>:1443/api. It allows both administrators and resellers (in a limited scope) to manage

the system.

You can either authenticate via username and password of your administrative account you’re using to access the admin panel, or

via SSL client certificates. Find out more about client certificate authentication in the online API documentation.

9.1 API Workflows for Customer and Subscriber Management

The typical tasks done on the API involve managing customers and subscribers. The following chapter focuses on creating,

changing and deleting these resources.

The standard life cycle of a customer and subscriber is:

1. Create customer contact

2. Create customer

3. Create subscribers within customer

4. Modify subscribers

5. Modify subscriber preferences (features)

6. Terminate subscriber

7. Terminate customer

The boiler-plate to access the REST API is described in the online API documentation at /api/#auth. A simple example in Perl

using password authentication looks as follows:

#!/usr/bin/perl -w

use strict;

use v5.10;

use LWP::UserAgent;

use JSON qw();

my $uri = ’https://ngcp.example.com:1443’;

my $ua = LWP::UserAgent->new;

my $user = ’myusername’;

my $pass = ’mypassword’;

$ua->credentials(’ngcp.example.com:1443’, ’api_admin_http’, $user, $pass);

my ($req, $res);

268

The Sipwise C5 PRO Handbook mr6.5.11 269 / 601

For each customer you create, you need to assign a billing profile id. You either have the ID stored somewhere else, or you need

to fetch it by searching for the billing profile handle.

my $billing_profile_handle = ’my_test_profile’;

$req = HTTP::Request->new(’GET’, "$uri/api/billingprofiles/?handle=$billing_profile_handle" ←↩
);

$res = $ua->request($req);

if($res->code != 200) {

die "Failed to fetch billing profile: ".$res->decoded_content."\n";

}

my $billing_profile = JSON::from_json($res->decoded_content);

my $billing_profile_id = $billing_profile->{_embedded}->{’ngcp:billingprofiles’}->{id};

say "Fetched billing profile, id is $billing_profile_id";

A customer is mainly a billing container for subscribers without a real identification other than the external_id property you might

have stored somewhere else (e.g. the ID of the customer in your CRM). To still easily identify a customer, a customer contact is

required. It is created using the /api/customercontacts/ resource.

$req = HTTP::Request->new(’POST’, "$uri/api/customercontacts/");

$req->header(’Content-Type’ => ’application/json’);

$req->content(JSON::to_json({

firstname => ’John’,

lastname => ’Doe’,

email => ’john.doe\@example.com’

}));

$res = $ua->request($req);

if($res->code != 201) {

die "Failed to create customer contact: ".$res->decoded_content."\n";

}

my $contact_id = $res->header(’Location’);

$contact_id =~ s/^.+\/(\d+)$/$1/; # extract the ID from the Location header

say "Created customer contact, id is $contact_id";

Important

To get the ID of the recently created resource, you need to parse the Location header. In future, this approach will be

changed for POST requests. The response will also optionally return the ID of the resource. It will be controlled via the

Prefer: return=representation header as it is already the case for PUT and PATCH.

Warning

The example above implies the fact that you access the API via a reseller user. If you are accessing the API as the

admin user, you also have to provide a reseller_id parameter defining the reseller this contact belongs to.

Once you have created the customer contact, you can create the actual customer.

$req = HTTP::Request->new(’POST’, "$uri/api/customers/");

269

The Sipwise C5 PRO Handbook mr6.5.11 270 / 601

$req->header(’Content-Type’ => ’application/json’);

$req->content(JSON::to_json({

status => ’active’,

contact_id => $contact_id,

billing_profile_id => $billing_profile_id,

type => ’sipaccount’,

external_id => undef, # can be set to your crm’s customer id

}));

$res = $ua->request($req);

if($res->code != 201) {

die "Failed to create customer: ".$res->decoded_content."\n";

}

my $customer_id = $res->header(’Location’);

$customer_id =~ s/^.+\/(\d+)$/$1/; # extract the ID from the Location header

say "Created customer, id is $customer_id";

Once you have created the customer, you can add subscribers to it. One customer can hold multiple subscribers, up to the

max_subscribers property which can be set via /api/customers/. If this property is not defined, a virtually unlimited number of

subscribers can be added.

$req = HTTP::Request->new(’POST’, "$uri/api/subscribers/");

$req->header(’Content-Type’ => ’application/json’);

$req->content(JSON::to_json({

status => ’active’,

customer_id => $customer_id,

primary_number => { cc => 43, ac => 9876, sn => 10001 }, # the main number

alias_numbers => [# as many alias numbers the subscriber can be reached at (or skip ←↩
param if none)

{ cc => 43, ac => 9877, sn => 10001 },

{ cc => 43, ac => 9878, sn => 10001 }

],

username => ’test_10001’

domain => ’ngcp.example.com’,

password => ’secret subscriber pass’,

webusername => ’test_10001’,

webpassword => undef, # set undef if subscriber shouldn’t be able to log into sipwise ←↩
csc

external_id => undef, # can be set to the operator crm’s subscriber id

}));

$res = $ua->request($req);

if($res->code != 201) {

die "Failed to create subscriber: ".$res->decoded_content."\n";

}

my $subscriber_id = $res->header(’Location’);

$subscriber_id =~ s/^.+\/(\d+)$/$1/; # extract the ID from the Location header

say "Created subscriber, id is $subscriber_id";

270

The Sipwise C5 PRO Handbook mr6.5.11 271 / 601

Important

A domain must exist before creating a subscriber. You can create the domain via /api/domains/.

At that stage, the subscriber can connect both via SIP and XMPP, and can be reached via the primary number, all alias numbers,

as well as via the SIP URI.

If you want to set call forwards for the subscribers, then perform an API call as follows.

$req = HTTP::Request->new(’PUT’, "$uri/api/callforwards/$subscriber_id");

$req->header(’Content-Type’ => ’application/json’);

$req->header(’Prefer’ => "return=minimal"); # use return=representation to get full json ←↩
response

$req->content(JSON::to_json({

cfna => { # set a call-forward if subscriber is not registered

destinations => [

{ destination => "4366610001", timeout => 10 }, # ring this for 10s

{ destination => "4366710001", timeout => 300 }, # if no answer, ring that for ←↩
300s

],

times => undef # no time-based call-forward, trigger cfna always

}

}));

$res = $ua->request($req);

if($res->code != 204) { # if return=representation, it’s 200

die "Failed to set cfna for subscriber: ".$res->decoded_content."\n";

}

You can set cfu, cfna, cfb, cft, cfs and cfr via this API call, also all at once. Destinations can be hunting lists as described above or

just a single number. Also, a time set can be provided to trigger call forwards only during specific time periods.

To provision certain features of a subscriber, you can manipulate the subscriber preferences. You can find a full list of preferences

available for a subscriber at /api/subscriberpreferencedefs/.

$req = HTTP::Request->new(’GET’, "$uri/api/subscriberpreferences/$subscriber_id");

$res = $ua->request($req);

if($res->code != 200) {

die "Failed to fetch subscriber preferences: ".$res->decoded_content."\n";

}

my $prefs = JSON::from_json($res->decoded_content);

delete $prefs->{_links}; # not needed in update

$prefs->{prepaid_library} = ’libinewrate’; # switch to inew billing

$prefs->{block_in_clir} = JSON::true; # reject incoming anonymous calls

$prefs->{block_in_list} = [# reject calls from the following numbers:

’4366412345’, # this particular number

’431*’, # all vienna/austria numbers

271

The Sipwise C5 PRO Handbook mr6.5.11 272 / 601

];

$req = HTTP::Request->new(’PUT’, "$uri/api/subscriberpreferences/$subscriber_id");

$req->header(’Content-Type’ => ’application/json’);

$req->header(’Prefer’ => "return=minimal"); # use return=representation to get full json ←↩
response

$req->content(JSON::to_json($prefs));

$res = $ua->request($req);

if($res->code != 204) {

die "Failed to update subscriber preferences: ".$res->decoded_content."\n";

}

say "Updated subscriber preferences";

Modifying numbers assigned to a subscriber, changing the password, locking a subscriber, etc. can be done directly on the

subscriber resource.

$req = HTTP::Request->new(’GET’, "$uri/api/subscribers/$subscriber_id");

$res = $ua->request($req);

if($res->code != 200) {

die "Failed to fetch subscriber: ".$res->decoded_content."\n";

}

my $sub = JSON::from_json($res->decoded_content);

delete $sub->{_links}; # not needed in update

push @{ $sub->{alias_numbers} }, { cc => 1, ac => 5432, sn => $t }; # add this number

push @{ $sub->{alias_numbers} }, { cc => 1, ac => 5433, sn => $t }; # add another number

$req = HTTP::Request->new(’PUT’, "$uri/api/subscribers/$subscriber_id");

$req->header(’Content-Type’ => ’application/json’);

$req->header(’Prefer’ => "return=minimal"); # use return=representation to get full json ←↩
response

$req->content(JSON::to_json($sub));

$res = $ua->request($req);

if($res->code != 204) {

die "Failed to update subscriber: ".$res->decoded_content."\n";

}

say "Updated subscriber";

At the end of a subscriber life cycle, it can be terminated. Once terminated, you can NOT recover the subscriber anymore.

$req = HTTP::Request->new(’DELETE’, "$uri/api/subscribers/$subscriber_id");

$res = $ua->request($req);

if($res->code != 204) {

die "Failed to terminate subscriber: ".$res->decoded_content."\n";

}

say "Terminated subscriber";

Note that certain information is still available in the internal database to perform billing/rating of calls done by this subscriber.

Nevertheless, the data is removed from the operational tables of the database, so the subscriber is not able to connect to the

system, login or make calls/chats.

272

The Sipwise C5 PRO Handbook mr6.5.11 273 / 601

Resources modification can be done via the GET/PUT combination. Alternatively, you can add, modify or delete single properties

of a resource without actually fetching the whole resource. See an example below where we terminate the status of a customer

using the PATCH method.

$req = HTTP::Request->new(’PATCH’, "$uri/api/customers/$customer_id");

$req->header(’Content-Type’ => ’application/json-patch+json’);

$req->header(’Prefer’ => "return=minimal"); # use return=representation to get full json ←↩
response

$req->content(JSON::to_json([

{ op => ’replace’, path => ’/status’, value => ’terminated’ }

]));

$res = $ua->request($req); # this will also terminate all still active subscribers

if($res->code != 204) {

die "Failed to terminate customer: ".$res->decoded_content."\n";

}

say "Terminated customer";

9.2 API performance considerations

The REST API is designed with pagination support built-in. It is mandatory, to implement pagination in your API clients. If you

circumvent pagination by setting the number of rows requested in one API call to a very high number the following side effects

may appear:

1. An HTTP timeout at the gateway may appear. The default timeout limit is set to 60s. It can be modified via a customtt file:

/etc/ngcp-config/templates/etc/nginx/sites-available/ngcp-panel_admin_api.customtt.tt2.

2. Other parts of the system may become unresponsive due to mysql table locks. This especially applies to endpoints related

to the Customers entity.

273

The Sipwise C5 PRO Handbook mr6.5.11 274 / 601

10 Configuration Framework

The Sipwise C5 provides a configuration framework for consistent and easy to use low level settings management. A basic usage

of the configuration framework only needs two actions already used in previous chapters:

• Edit /etc/ngcp-config/config.yml file.

• Execute ngcpcfg apply ’my commit message’ command.

Low level management of the configuration framework might be required by advanced users though. This chapter explains the

architecture and usage of Sipwise C5 configuration framework. If the basic usage explained above fits your needs, feel free to

skip this chapter and return to it when your requirements change.

A more detailed workflow of the configuration framework for creating a configuration file consists of 7 steps:

• Generation or editing of configuration templates and/or configuration values.

• Generation of the configuration files based on configuration templates and configuration values defined in config.yml, con-

stants.yml and network.yml files.

• Execution of prebuild commands if defined for a particular configuration file or configuration directory.

• Placement of the generated configuration file in the target directory. This step is called build in the configuration framework.

• Execution of postbuild commands if defined for that configuration file or configuration directory.

• Execution of services commands if defined for that configuration file or configuration directory. This step is called services in the

configuration framework.

• Saving of the generated changes. This step is called commit in the configuration framework.

10.1 Configuration templates

The Sipwise C5 provides configuration file templates for most of the services it runs. These templates are stored in the directory

/etc/ngcp-config/templates.

Example: Template files for /etc/ngcp-sems/sems.conf are stored in /etc/ngcp-config/templates/etc/ngcp-sems/.

There are different types of files in this template framework, which are described below.

10.1.1 .tt2 and .customtt.tt2 files

These files are the main template files that will be used to generate the final configuration file for the running service. They contain

all the configuration options needed for a running Sipwise C5 system. The configuration framework will combine these files with

the values provided by config.yml, constants.yml and network.yml to generate the appropriate configuration file.

Example: Let’s say we are changing the IP used by kamailio load balancer on interface eth0 to IP 1.2.3.4. This will change ka-

mailio’s listen IP address, when the configuration file is generated. A quick look to the template file under /etc/ngcp-config/templates/etc/kamailio/lb/kamailio.cfg.tt2

will show a line like this:

274

The Sipwise C5 PRO Handbook mr6.5.11 275 / 601

listen=udp:[% ip %]:[% kamailio.lb.port %]

After applying the changes with the ngcpcfg apply ’my commit message’ command, a new configuration file will be created under

/etc/kamailio/lb/kamailio.cfg with the proper values taken from the main configuration files (in this case network.yml):

listen=udp:1.2.3.4:5060

All the low-level configuration is provided by these .tt2 template files and the corresponding config.yml file. Anyway, advanced

users might require a more particular configuration.

Instead of editing .tt2 files, the configuration framework recognises .customtt.tt2 files. These files are the same as .tt2, but they

have higher priority when the configuration framework creates the final configuration files. An advanced user should create a

.customtt.tt2 file from a copy of the corresponding .tt2 template and leave the .tt2 template untouched. This way, the user will have

his personalized configuration and the system will continue providing a working, updated configuration template in .tt2 format.

Example: We’ll create /etc/ngcp-config/templates/etc/lb/kamailio.cfg.customtt.tt2 and use it for our personalized configuration. In

this example, we’ll just append a comment at the end of the template.

cd /etc/ngcp-config/templates/etc/kamailio/lb

cp kamailio.cfg.tt2 kamailio.cfg.customtt.tt2

echo ’# This is my last line comment’ >> kamailio.cfg.customtt.tt2

ngcpcfg apply ’my commit message’

The ngcpcfg command will generate /etc/kamailio/kamailio.cfg from our custom template instead of the general one.

tail -1 /etc/kamailio/kamailio.cfg

This is my last line comment

Tip

The tt2 files use the Template Toolkit language. Therefore you can use all the feature this excellent toolkit provides within

ngcpcfg’s template files (all the ones with the .tt2 suffix).

10.1.2 .prebuild and .postbuild files

After creating the configuration files, the configuration framework can execute some commands before and after placing that file

in its target directory. These commands usually are used for changing the file’s owner, groups, or any other attributes. There are

some rules these commands need to match:

• They have to be placed in a .prebuild or .postbuild file in the same path as the original .tt2 file.

• The file name must be the same as the configuration file, but having the mentioned suffixes.

• The commands must be bash compatible.

• The commands must return 0 if successful.

275

http://template-toolkit.org/

The Sipwise C5 PRO Handbook mr6.5.11 276 / 601

• The target configuration file is matched by the environment variable output_file.

Example: We need www-data as owner of the configuration file /etc/ngcp-ossbss/provisioning.conf. The configuration framework

will by default create the configuration files with root:root as owner:group and with the same permissions (rwx) as the original

template. For this particular example, we will change the owner of the generated file using the .postbuild mechanism.

echo ’chgrp www-data ${output_file}’ \

> /etc/ngcp-config/templates/etc/ngcp-ossbss/provisioning.conf.postbuild

10.1.3 .services files

.services files are pretty similar and might contain commands that will be executed after the build process. There are two types of

.services files:

• The particular one, with the same name as the configuration file it is associated to.

Example: /etc/ngcp-config/templates/etc/asterisk/sip.conf.services is associated to /etc/asterisk/sip.conf

• The general one, named ngcpcfg.services that is associated to every file in its target directory.

Example: /etc/ngcp-config/templates/etc/asterisk/ngcpcfg.services is associated to every file under /etc/asterisk/

When the services step is triggered all .services files associated to a changed configuration file will be executed. In case of the

general file, any change to any of the configuration files in the directory will trigger the execution of the commands.

Tip

If the service script has the execute flags set (chmod +x $file) it will be invoked directly. If it doesn’t have execute flags set it will

be invoked under bash. Make sure the script is bash compatible if you do not set execute permissions on the service file.

These commands are usually service reload/restarts to ensure the new configuration has been loaded by running services.

Note

The configuration files mentioned in the following example usually already exist on the platform. Please make sure you don’t

overwrite any existing files if following this example.

Example:

echo ’ngcp-service mariadb restart’ \

> /etc/ngcpcfg-config/templates/etc/mysql/my.cnf.services

echo ’ngcp-service asterisk restart’ \

> /etc/ngcpcfg-config/templates/etc/asterisk/ngcpcfg.services

In this example we created two .services files. Now, each time we trigger a change to /etc/mysql.my.cnf or to /etc/asterisk/* we’ll

see that MySQL or Asterisk services will be restarted by the ngcpcfg system.

276

The Sipwise C5 PRO Handbook mr6.5.11 277 / 601

10.2 config.yml, constants.yml and network.yml files

The /etc/ngcp-config/config.yml file contains all the user-configurable options, using the YAML (YAML Ain’t Markup Language)

syntax.

The /etc/ngcp-config/constants.yml file provides configuration options for the platform that aren’t supposed to be edited by the

user. Do not manually edit this file unless you really know what you’re doing.

The /etc/ngcp-config/network.yml file provides configuration options for all interfaces and IP addresses on those interfaces. You

can use the ngcp-network tool for conveniently change settings without having to manually edit this file.

The /etc/ngcp-config/ngcpcfg.cfg file is the main configuration file for ngcpcfg itself. Do not manually edit this file unless you really

know what you’re doing.

10.3 ngcpcfg and its command line options

The ngcpcfg utility supports the following command line options:

10.3.1 apply

The apply option is a short-cut for the options "check && build && services && commit" and also executes etckeeper to record

any modified files inside /etc. It is the recommended option to use the ngcpcfg framework unless you want to execute any specific

commands as documented below.

10.3.2 build

The build option generates (and therefore also updates) configuration files based on their configuration (config.yml) and template

files (.tt2). Before the configuration file is generated a present .prebuild will be executed, after generation of the configuration file

the according .postbuild script (if present) will be executed. If a file or directory is specified as argument the build will generate

only the specified configuration file/directory instead of running through all present templates.

Example: to generate only the file /etc/nginx/sites-available/ngcp-panel you can execute:

ngcpcfg build /etc/nginx/sites-available/ngcp-panel

Example: to generate all the files located inside the directory /etc/nginx/ you can execute:

ngcpcfg build /etc/nginx/

10.3.3 commit

The commit option records any changes done to the configuration tree inside /etc/ngcp-config. The commit option should be

executed when you’ve modified anything inside the configuration tree.

277

http://www.yaml.org/

The Sipwise C5 PRO Handbook mr6.5.11 278 / 601

10.3.4 decrypt

Decrypt /etc/ngcp-config-crypted.tgz.gpg and restore configuration files, doing the reverse operation of the encrypt option. Note:

This feature is only available if the ngcp-ngcpcfg-locker package is installed.

10.3.5 diff

Show uncommitted changes between ngcpcfg’s Git repository and the working tree inside /etc/ngcp-config. Iff the tool doesn’t

report anything it means that there are no uncommitted changes. If the --addremove option is specified then new and removed

files (iff present) that are not yet (un)registered to the repository will be reported, no further diff actions will be executed then. Note:

This option is available since ngcp-ngcpcfg version 0.11.0.

10.3.6 encrypt

Encrypt /etc/ngcp-config and all resulting configuration files with a user defined password and save the result as /etc/ngcp-config-

crypted.tgz.gpg. Note: This feature is only available if the ngcp-ngcpcfg-locker package is installed.

10.3.7 help

The help options displays ngcpcfg’s help screen and then exits without any further actions.

10.3.8 initialise

The initialise option sets up the ngcpcfg framework. This option is automatically executed by the installer for you, so you shouldn’t

have to use this option in normal operations mode.

10.3.9 pull

Retrieve modifications from shared storage. Note: This option is available in the High Availability setup only.

10.3.10 push

Push modifications to shared storage and remote systems. After changes have been pushed to the nodes the build option will be

executed on each remote system to rebuild the configuration files (unless the --nobuild has been specified, then the build step will

be skipped). If hostname(s) or IP address(es) is given as argument then the changes will be pushed to the shared storage and to

the given hosts only. If no host has been specified then the hosts specified in /etc/ngcp-config/systems.cfg are used. Note: This

option is available in the High Availability setup only.

10.3.11 services

The services option executes the service handlers for any modified configuration file(s)/directory.

278

The Sipwise C5 PRO Handbook mr6.5.11 279 / 601

10.3.12 status

The status option provides a human readable interface to check the state of the configuration tree. If you are unsure what should

be done as next step or if want to check the current state of the configuration tree just invoke ngcpcfg status.

If everything is OK and nothing needs to be done the output should look like:

ngcpcfg status

Checking state of ngcpcfg:

OK: has been initialised already (without shared storage)

Checking state of configuration files:

OK: nothing to commit.

Checking state of /etc files

OK: nothing to commit.

If the output doesn’t say "OK" just follow the instructions provided by the output of ngcpcfg status.

Further details regarding the ngcpcfg tool are available through man ngcpcfg on the Sipwise Next Generation Platform.

279

The Sipwise C5 PRO Handbook mr6.5.11 280 / 601

11 Network Configuration

Starting with version 2.7, Sipwise C5 uses a dedicated network.yml file to configure the IP addresses of the system. The reason

for this is to be able to access all IPs of all nodes for all services from any particular node in case of a distributed system on one

hand, and in order to be able the generate /etc/network/interfaces automatically for all nodes based on this central configuration

file.

11.1 General Structure

The basic structure of the file looks like this:

hosts:

self:

role:

- proxy

- lb

- mgmt

interfaces:

- eth0

- lo

eth0:

ip: 192.168.51.213

netmask: 255.255.255.0

type:

- sip_ext

- rtp_ext

- web_ext

- web_int

lo:

ip: 127.0.0.1

netmask: 255.255.255.0

type:

- sip_int

- ha_int

Some more complete, sample configuration is shown in network.yml Overview Section B.3 section of the handbook.

The file contains all configuration parameters under the main key: hosts

In Sipwise C5 systems all hosts of the system are defined, and the names are the actual host names instead of self, like this:

hosts:

sp1:

peer: sp2

role: ...

interfaces: ...

280

The Sipwise C5 PRO Handbook mr6.5.11 281 / 601

sp2:

peer: sp1

role: ...

interfaces: ...

11.1.1 Available Host Options

There are three different main sections for a host in the config file, which are role, interfaces and the actual interface definitions.

• role: The role setting is an array defining which logical roles a node will act as. Possible entries for this setting are:

– mgmt : This entry means the host is acting as management node for the platform. In a Sipwise C5 system this option must

always be set. The management node exposes the admin and CSC panels to the users and the APIs to external applications

and is used to export CDRs.

– lb: This entry means the host is acting as SIP load-balancer for the platform. In a Sipwise C5 system this option must always

be set. The SIP load-balancer acts as an ingress and egress point for all SIP traffic to and from the platform.

– proxy : This entry means the host is acting as SIP proxy for the platform. In a Sipwise C5 system this option must always

be set. The SIP proxy acts as registrar, proxy and application server and media relay, and is responsible for providing the

features for all subscribers provisioned on it.

– db: This entry means the host is acting as the database node for the platform. In a Sipwise C5 system this option must always

be set. The database node exposes the MySQL and Redis databases.

– rtp: This entry means the host is acting as the RTP relay node for the platform. In a Sipwise C5 system this option must

always be set. The RTP relay node runs the rtpengine Sipwise C5 component.

• interfaces: The interfaces setting is an array defining all interface names in the system. The actual interface details are set in

the actual interface settings below. It typically includes lo, eth0, eth1 physical and a number of virtual interfaces, like:

bond0, vlanXXX

• <interface name>: After the interfaces are defined in the interfaces setting, each of those interfaces needs to be specified as a

separate set of parameters.

Additional main parameters of a node:

• dbnode: the sequence number (unique ID) of the node in the database cluster; not used in Sipwise C5 system

• peer : the hostname of the peer node within the pair of nodes (e.g. "sp2" for sp1 host). The purpose of that: each node knows

its companion for providing high availability, data replication etc.

• status: one of online, offline, inactive. inactive means that the node is up but is not ready to work in the cluster (installing

process). offline means that the node is not reachable. online is a normal working node.

281

The Sipwise C5 PRO Handbook mr6.5.11 282 / 601

11.1.2 Interface Parameters

• hwaddr: MAC address of the interface

• ip: IPv4 address of the node

• v6ip: IPv6 address of the node; optional

• netmask: IPv4 netmask

• shared_ip: shared IPv4 address of the pair of nodes; this is a list of addresses

• shared_v6ip: shared IPv6 address of the pair of nodes; optional; this is a list of addresses

• advertised_ip: the IP address that is used in SIP messages when Sipwise C5 system is behind NAT/SBC. An example

of such a deployment is Amazon AMI, where the server doesn’t have a public IP, so load-balancer component of Sipwise C5

needs to know what his public domain is (→ advertised_ip).

• type: type of services that the node provides; these are usually the VLANs defined for a particular Sipwise C5 system.

Note

You can assign a type only once per node.

Available types are:

– api_int: internal, API-based communication interface. It is used for the internal communication of such services as

faxserver, fraud detection and others.

– aux_ext: interface for potentially insecure external components like remote system log collection service.

Note

For example the CloudPBX module can use it to provide time services and remote logging facilities to end customer

devices. The type aux_ext is assigned to lo interface by default. If it is needed to expose this type to the public, it is

recommended to assign the type aux_ext to a separate VLAN interface to be able to limit or even block the incoming traffic

easily via firewalling in case of emergency, like a (D)DoS attack on external services.

– mon_ext: remote monitoring interface (e.g. SNMP)

– rtp_ext: main (external) interface for media traffic

– sip_ext: main (external) interface for SIP signalling traffic between NGCP and other SIP endpoints

– sip_ext_incoming: additional, optional interface for incoming SIP signalling traffic

– sip_int: internal SIP interface used by Sipwise C5 components (lb, proxy, etc.)

– ssh_ext: command line (SSH) remote access interface

– ssh_int: command line (SSH) internal NGCP access interface

– web_ext: interface for web-based or API-based provisioning and administration

– web_int: interface for the administrator’s web panel, his API and generic internal API communication

– li_int: used for LI (Lawful Interception) traffic routing

282

The Sipwise C5 PRO Handbook mr6.5.11 283 / 601

– ha_int: HA (High Availability) communication interface between the nodes

Note

Please note that, apart from the standard ones described so far, there might be other types defined for a particular Sipwise C5

system.

• vlan_raw_device: tells which physical interface is used by the particular VLAN

• post_up: routes can be defined here (interface-based routing)

• bond_XY: specific to "bond0" interface only; these contain Ethernet bonding properties

11.2 Advanced Network Configuration

You have a typical deployment now and you are good to go, however you may need to do extra configuration depending on the

devices you are using and functionality you want to achieve.

11.2.1 Extra SIP Sockets

By default, the load-balancer listens on the UDP and TCP ports 5060 (kamailio→lb→port) and TLS port 5061 (kamailio→lb→tls→port).

If you need to setup one or more extra SIP listening ports or IP addresses in addition to those standard ports, please edit the

kamailio→lb→extra_sockets option in your /etc/ngcp-config/config.yml file.

The correct format consists of a label and value like this:

extra_sockets:

port_5064: udp:10.15.20.108:5064

test: udp:10.15.20.108:6060

The label is shown in the outbound_socket peer preference (if you want to route calls to the specific peer out via specific

socket); the value must contain a transport specification as in example above (udp, tcp or tls). After adding execute ngcpcfg

apply:

ngcpcfg apply ’added extra socket’ && ngcpcfg push all

The direction of communication through this SIP extra socket is incoming+outgoing. The Sipwise C5 will answer the incoming

client registrations and other methods sent to the extra socket. For such incoming communication no configuration is needed.

For the outgoing communication the new socket must be selected in the outbound_socket peer preference. For more details

read the next section Section 11.2.2 that covers peer configuration for SIP and RTP in greater detail.

Important

In this section you have just added an extra SIP socket. RTP traffic will still use your rtp_ext IP address.

283

The Sipwise C5 PRO Handbook mr6.5.11 284 / 601

11.2.2 Extra SIP and RTP Sockets

If you want to use an additional interface (with a different IP address) for SIP signalling and RTP traffic you need to add your new

interface in the /etc/network/interfaces file. Also the interface must be declared in /etc/ngcp-config/network.yml.

Suppose we need to add a new SIP socket and a new RTP socket on VLAN 100. You can use the ngcp-network tool for adding

interfaces without having to manually edit this file:

ngcp-network --set-interface=eth0.100 --host=sp1 --ip=auto --netmask=auto --hwaddr=auto -- ←↩
type=sip_ext_incoming --type=rtp_int_100

ngcp-network --set-interface=eth0.100 --host=sp2 --ip=auto --netmask=auto --hwaddr=auto -- ←↩
type=sip_ext_incoming --type=rtp_int_100

The generated file should look like the following:

sp1:

..

..

eth0.100:

hwaddr: ff:ff:ff:ff:ff:ff

ip: 192.168.1.2

netmask: 255.255.255.0

shared_ip:

- 192.168.1.3

shared_v6ip: ~

type:

- sip_ext_incoming

- rtp_int_100

..

..

interfaces:

- lo

- eth0

- eth0.100

- eth1

..

..

sp2:

..

..

eth0.100:

hwaddr: ff:ff:ff:ff:ff:ff

ip: 192.168.1.4

netmask: 255.255.255.0

shared_ip:

- 192.168.1.3

shared_v6ip: ~

type:

- sip_ext_incoming

284

The Sipwise C5 PRO Handbook mr6.5.11 285 / 601

- rtp_int_100

..

..

interfaces:

- lo

- eth0

- eth0.100

- eth1

As you can see from the above example, extra SIP interfaces must have type sip_ext_incoming. While sip_ext should be listed

only once per host, there can be multiple sip_ext_incoming interfaces. The direction of communication through this SIP interface is

incoming only. The Sipwise C5 will answer the incoming client registrations and other methods sent to this address and remember

the interfaces used for clients’ registrations to be able to send incoming calls to him from the same interface.

In order to use the interface for the outbound SIP communication it is necessary to add it to extra_sockets section in /etc/ngcp-

config/config.yml and select in the outbound_socket peer preference. So if using the above example we want to use the

vlan100 IP as source interface towards a peer, the corresponding section may look like the following:

extra_sockets:

port_5064: udp:10.15.20.108:5064

test: udp:10.15.20.108:6060

int_100: udp:192.168.1.3:5060

The changes have to be applied:

ngcpcfg apply ’added extra SIP and RTP socket’ && ngcpcfg push all

After applying the changes, a new SIP socket will listen on IP 192.168.1.3 and this socket can now be used as source socket

to send SIP messages to your peer for example. In above example we used label int_100. So the new label "int_100" is now

shown in the outbound_socket peer preference.

Also, RTP socket is now listening on 192.168.1.3 and you can choose the new RTP socket to use by setting parameter

rtp_interface to the Label "int_100" in your Domain/Subscriber/Peer preferences.

11.2.3 Alternative RTP Interface Selection Using ICE

Normally, each interface that was configured with a type that starts with rtp_ can be selected individually as RTP interface in the

Domain/Subscriber/Peer preferences. For example, if the interface types rtp_ext, rtp_int, and rtp_int_100 have been configured,

the Domain/Subscriber/Peer preferences will allow the RTP interfaces to be selected as either ext, int, or int_100 in addition to

"default".

The same rtp_ interface type can be configured on multiple interfaces. If this is the case, and if ICE (Interactive Connectivity

Establishment) is enabled for a Domain/Subscriber/Peer, it is possible to use ICE to automatically negotiate which interface

should be used for RTP communications. ICE must be supported by the remote client for this to work.

For example, rtp_ext can be configured on multiple interfaces like so (abbreviated):

..

285

The Sipwise C5 PRO Handbook mr6.5.11 286 / 601

..

eth0.100:

type:

- rtp_ext

..

eth0.150:

type:

- rtp_ext

..

eth1:

type:

- rtp_ext

..

..

In this example, the RTP interface ext will be available for selection in the Domain/Subscriber/Peer preferences. If selected and

if ICE is enabled, the addresses of all three interfaces will be presented to the remote client, and ICE will be used to negotiate

which one of them will be used for communications. This can be useful in multi-homed environments, or when remote clients are

on private networks.

11.2.4 Extended RTP Port Range Using Multiple Interfaces

If the RTP port range configured via the config.yml keys rtpproxy.minport and rtpproxy.maxport is not sufficient

to handle all concurrent calls, it is possible to load-balance the RTP ports across multiple interfaces. This is useful if the RTP proxy

runs out of ports and if not enough additional ports are available.

To enable this, multiple interfaces with different addresses must be configured, and interface types of the format rtp_NAME:SUFFIX

must be assigned to them. For example, if the RTP interface named ext should be load-balanced across three interfaces, they

can be configured like so (abbreviated):

..

..

eth0.100:

type:

- rtp_ext:1

..

eth0.150:

type:

- rtp_ext:2

..

eth1:

type:

- rtp_ext:3

..

..

In this example, all three given RTP interface types will be available for selection in the Domain/Subscriber/Peer preferences

286

The Sipwise C5 PRO Handbook mr6.5.11 287 / 601

individually (as ext:1 and so on), but in addition to that, an interface named just ext will also be available for selection. If ext is

selected, only one of the three RTP interfaces will be selected in a round-robin fashion, thus increasing the number of available

RTP ports threefold. The round-robin algorithm only selects an interface if it actually has RTP ports available.

287

The Sipwise C5 PRO Handbook mr6.5.11 288 / 601

12 Licenses

The Sipwise C5 — starting from mr5.5.1 release — implements software licensing in form of a regular comparison of the licensed

services and capacities against the actual usage patterns of the platform. The purpose of this function is to monitor system

usage and to raise warnings to the platform operator if the thresholds of commercially agreed license parameters (like number of

provisioned subscribers or number of concurrent calls) are exceeded.

12.1 What is Subject to Licensing?

Sipwise C5 licenses determine 2 groups of system parameters which are regularly compared with actual values gathered from the

system:

• performance parameters:

– number of provisioned subscribers

– number of registered subscribers

– number of concurrent calls

• feature parameters: additional features / services that are subject to commercial agreement:

– pre-paid billing

– CPBX (Cloud PBX) services

– Push notifications (mobile SIP clients on iOS and Android)

– Lawful Interception services

– Call history available on web interface of NGCP

12.2 How Licensing Works

Sipwise operates a licensing server that is the source of license data for each deployed Sipwise C5 node. The nodes themselves

request licensing data from the license server regularly and compare them with actual system performance indicators, check the

activated features against the licensed ones. The presence and activity of the license client module ("licensed" process) may

be confirmed by checking e.g. the output of "ngcp-service summary" command. It should contain a line showing:

licensed managed on-boot active

All nodes of a single Sipwise C5 installation share the same license key. This is also valid for geographically distributed setups.

This license key is referred by an ID that has to be configured in the main Sipwise C5 configuration file (config.yml), and that ID

will be used to request license data from the license server.

In order for the license validation to work each node of an Sipwise C5 installation must be able to connect to the Sipwise license

server via standard HTTPS protocol (TCP, port 443). Alternatively the nodes may use a local, system-wide proxy server and only

that proxy server needs to access the Sipwise license server.

288

The Sipwise C5 PRO Handbook mr6.5.11 289 / 601

12.3 How to Configure Licenses

The Sipwise C5 operator can set the license key in the main configuration file (/etc/ngcp-config/config.yml). The

correct license key has to be entered in the configuration file, at the general.license_key configuration parameter, so that

licensing works as expected.

Tip

You always have to add the license key before being able to upgrade Sipwise C5 to release mr5.5.x or above. The upgrade

script will look for the license key and will stop if it does not find the key.

The license key is also shown in the /etc/ngcp-license-key file once the key has been added to the configuration file and

the new configuration has been applied.

Note

There is another configuration parameter related to licenses: general.anonymous_usage_statistics that has an

effect on Sipwise C5 CE installations only. This parameter enables / disables sending anonymous usage statistics to Sipwise.

Although not strictly related to Sipwise C5 configuration, the platform operator has to keep in mind that all Sipwise C5 nodes need

to have access to Sipwise license server: license.sipwise.com

The operator has to ensure that there is no firewall rule or other network configuration that prevents Sipwise C5 nodes from

connecting to Sipwise license server via HTTPS protocol (TCP, port 443).

12.4 How to Monitor License Client

As mentioned earlier in this chapter, the presence of license client can be monitored using the built-in utility ngcp-service.

The other way to observe the behaviour of the license client is looking into the log file of "licensed" process: /var/log/

ngcp/licensed.log

The Sipwise C5 operator may find entries like the below ones in case of normal operation:

Dec 12 16:20:42 sp1 ngcp-licensed[2205]: Valid license: [ABCDEFGHI_123456789_a1b2c3d4e5f6]:

10000 calls, 1000000 subscribers, 2000000 registered subscribers, valid until Tue Jan 1

00:00:00 2030 (signature valid until Tue Dec 26 16:20:43 2017)

Dec 12 16:22:41 sp1 ngcp-licensed[2205]: Usage report: 0 calls, 18 subscribers, 0 ←↩
registered subscribers

where:

1. The first line shows the licensed capacities

2. The second line shows the actual system usage indicators

289

The Sipwise C5 PRO Handbook mr6.5.11 290 / 601

13 Software Upgrade

13.1 Release Notes

The Sipwise C5 version mr6.5.11 has the following important changes:

• [Carrier] Added support for new Lenovo SN550 hardware nodes (both SSD and NVMe) [TT#42456]

• [PRO/Carrier] MariaDB replication has been migrated to GTID [TT#33275]

• [Carrier] Local database on proxy nodes replicated from all DB servers simultaneously [TT#33275]

• Installation and initial configuration were separated to allow rollback in the future [TT#37257]

• Add new disk partitioning schema. UEFI and software raids are supported now. See documentation for more details. [TT#44197]

• New data partition has been introduced, it will support rollback after upgrades in future releases. No changes happen during

upgrade on the current installation. [TT#44823]

• [PRO/Carrier] Implement email templates support for faxserver messages [TT#33108]

• [PRO/Carrier] Improved LI (Lawful Intercept) role definition and usage [TT#38200]

• The ngcpcfg YML files validation has been enabled by default [TT#8405]

• Improved SEMS and ngcp-witnessd idle CPU usage [TT#43805, TT#43952]

• Migrated most of Sipwise services to Systemd type notify [TT#28100]

• Upgrade influxdb 1.1.5 to 1.6.1 [TT#28100]

• API new "use_owner_tz parameter to use a timezone of the resource owner [TT#41022]

• Enhanced billing_fees matching logic flexibility and performance by introducing additional match modes [TT#41553]

• New API v2.0 Swagger based documentation [TT#44116]

• Enhanced performance of the Call Lists Panel UI by introducing a strict search mode and query optimizations [TT#43653]

• Improved the cleanup tools logic and simplified the config options, "backup-months" is renamed into "keep-month" and "backup-

retro" is removed [TT#43164]

• [CE] Voicemail sounds now use the base voicemail-sounds by default [TT#44091]

• [PRO/Carrier] Improved PBX "subscriberadmin" scope of access and profile usage. PBX "subscriberadmin" is now by default

able to modify other subscribers within the same customer as well as work with only the inherited subscriber profiles [TT#43266]

• [PRO/Carrier] SNMP trap behaviour for OIDs from the Sipwise MIB was fixed to be edge-triggered [TT#49848].

Please find the complete changelog in our release notes on our WEB site.

290

https://www.sipwise.org/category/news/

The Sipwise C5 PRO Handbook mr6.5.11 291 / 601

13.2 Overview

The Sipwise C5 software upgrade procedure to mr6.5.11 will perform several fundamental tasks:

• upgrade the NGCP software packages

• upgrade the NGCP configuration templates

• upgrade the NGCP DB schema

• upgrade the NGCP configuration schema

• upgrade the base system within Debian 9 (stretch) to the latest package versions

The software upgrade is usually performed by Sipwise engineers according to the following steps:

• create the software upgrade plan

• execute pre-upgrade steps: customtt, backups

• make the sp2 node active

• ensure that the sp1 node is standby

• perform the software upgrade on the sp1 node

• schedule and make services switchover to the sp1 node

• ensure that the sp1 node performs well (otherwise, perform a switch back)

• perform the software upgrade on the sp2 node

• perform the system post-upgrade testing and cleanup

Warning

The only allowed software upgrade path is the one described above. All the other theoretically possible upgrade

scenarios can lead to unpredictable results.

13.3 Planning a software upgrade

Confirm the following information:

• which system should be upgraded (LAB/LIVE, country, etc.)

• the date and time schedule for each of the steps above (keeping the time zone in mind)

• a confirmed timeframe for the upgrade operation (allowed switchover timeframe)

• the basic functionality test (BFT) to be executed before the start of the software upgrade and after the switchovers to ensure that

the new release does not show critical issues (the BFT scenario should be prepared by the customer engineers)

291

The Sipwise C5 PRO Handbook mr6.5.11 292 / 601

• actions to be taken if the software upgrade operation cannot be completed within the defined maintenance window

• contact persons and ways of communication in case of emergency

• ensure that the customer and/or Sipwise engineers have access to the virtual consoles of the servers: KVM, iDRAC, AMM

13.4 Preparing the software upgrade

Warning

Make sure that all the SIP domains and peering servers have the appropriate rtp_interface option (e.g. ext) selected

in the NAT and Media Flow Control section. If you leave default there, the incorrect network interface may be used for

sending and receiving RTP traffic after the software upgrade.

It is recommended to execute the preparatory steps in this chapter a few days before the actual software upgrade. They do not

cause a service downtime, so it is safe to execute them during peak hours.

13.4.1 Log into the C5 standby node

Tip

Use the static server IP address so you can switch between the nodes.

Run the terminal multiplexer under the sipwise user (to reuse the Sipwise .screenrc settings that are convenient for working in

multiple windows):

screen -S my_screen_name_for_ngcp_upgrade

Become root inside your screen session:

sudo -s

13.4.2 Check the overall system status

Check the overall system status:

ngcp-status --all

Make sure that the cluster health status is OK: Check the nodes in parallel, using the clish command:

• ngcp-clish "ngcp version summary" - ensure that all cluster nodes have correct/expected from version

• ngcp-clish "ngcp version package installed ngcp-ngcp-pro" - ensur that the metapackages version is equal to the ngcp

version above

292

The Sipwise C5 PRO Handbook mr6.5.11 293 / 601

• ngcp-clish "ngcp version package check" - ensure that all nodes have the identical Debian package installed

Note

Software must be identical on all nodes (before and after the upgrade!)

• ngcp-clish "ngcp cluster ssh connectivity" - check SSH connectivity from the current node to the peer

• ngcp-clish "ngcp cluster ssh crossconnectivity" - check SSH cross-connectivity

• ngcp-clish "ngcp monit summary" - all required services must be running on corresponding nodes

• ngcp-clish "ngcp cluster status" - active node(s) (with all services running) must print "all", the other(s) must print "none"

• ngcp-clish "ngcp status collective-check" - all checks must be OK

• ngcp-clish "ngcp show date" - date and time must be in sync on all the servers

• ngcp-clish "ngcp show dns-servers" - ensure that the DNS configuration is consistent among the nodes

Note

to exit from ngcp-clish press Ctrl+Z (or type exit):

ngcp-clish

Entering ’clish-enable’ view (press Ctrl+Z to exit)...

exit

#

13.4.3 Check access to license server and license validity

Check from within the system (better from all nodes, for extra safety) that the license server is accessible from the network point

of view, and that these commands do not end with timeouts or HTTP errors:

ping -c 3 -w 5 license.sipwise.com

curl --head https://license.sipwise.com/

Also ensure that:

• /proc/ngcp/check contains the string "ok" (if not, check logs)

• and that there are no errors or important warnings in /ngcp-data/logs/licensed.log (/var/log/ngcp/licen

sed.log in systems before mr6.5).

293

The Sipwise C5 PRO Handbook mr6.5.11 294 / 601

13.4.4 Evaluate and update custom modifications

For the below steps, investigate and make sure you understand why the custom modifications were introduced and if they are still

required after the software upgrade. If the custom modifications are not required anymore, remove them (e.g. if a bug was fixed in

the target release and the existing patch becomes irrelevant).

Create tickets to Sipwise developers to make relevant custom modifications part of the product in future releases. This allows you

to get rid of the customtt files one day.

Warning

If you directly change the working configuration (e.g. add custom templates or change the existing ones) for some

reason, then the system must be thoroughly tested after these changes have been applied. Continue with the software

upgrade preparation only if the results of the tests are acceptable.

Find the local changes to the template files:

ngcp-customtt-diff-helper

The script will also ask you if you would like to download the templates for your target release. To download the new templates

separately, execute:

ngcp-customtt-diff-helper -d

In the tmp folder provided by the script, you can merge the current customtt with the new tt2 templates, creating the new cus-

tomtt.tt2 files. Once this is done, archive the new customtt files to deploy the new templates after the software upgrade:

ngcp-customtt-diff-helper -t

Find all available script options with the "-h" parameter.

13.4.5 Check system integrity

Check if there are any *.tt2.dpkg-dist files among the templates. They usually appear when tt2 files are modified directly instead of

creating customtt files. If you find any *.tt2.dpkg-dist files, treat the corresponding tt2 files as if they were customtt.tt2 and introduce

the changes from the existing tt2 files into the new templates (create associated *.customtt.tt2) before the software upgrade.

find /etc/ngcp-config -name *.tt2.dpkg-dist

Note that in the end all *.tt2.dpkg-dist files must be removed before the software upgrade as they prevent the upgrade script from

updating the tt2 files.

Check and remove dpkg files left from previous software upgrades.

Make sure that the list is empty before you continue:

find /etc/ngcp-config -name *.tt2.dpkg*

294

The Sipwise C5 PRO Handbook mr6.5.11 295 / 601

Log into all the servers.

Open separate windows for all the servers inside your "screen" session. (Press Ctrl+a + c to open a new window, Ctrl+a

+ a or Ctrl+a + [0-9] to change the window. Ctrl+a + " shows the list of all your windows. Use Ctrl+a + A to

change the window names to corresponding hosts).

Changes made directly in tt2 templates will be lost after the software upgrade. Only custom changes made in customtt.tt2 files will

be kept. Hence, check the system for locally modified tt2 files on all nodes:

ngcp-status --integrity

13.4.6 Check the configuration framework status

Check the configuration framework status on all nodes. All checks must show the "OK" result and there must be no actions

required:

ngcpcfg status

Check the replication on both nodes. The result must always show:

Slave_IO_Running: Yes

Slave_SQL_Running: Yes

Seconds_Behind_Master: 0

Test the cluster failover to see if everything works fine on the second node as well. On the standby node execute:

ngcp-make-active

Create two test subscribers or use the credentials for existing ones. Register subscribers with the platform and perform a test call

to ensure that call routing and media flow are working fine.

Run "apt-get update" on all nodes and ensure that you do not have any warnings and errors in the output.

Warning

If the installation uses locally specified mirrors, then the mirrors must be switched to the Sipwise APT repositories

(at least for the software upgrade). Otherwise, the public Debian mirrors may not provide packages for old Releases

anymore or at least provide outdated ones!

13.5 Upgrade from previous LTS release mr5.5.* to mr6.5.11

To upgrade from the previous LTS release please follow the common upgrade procedure described in Section 13.6.

13.6 Upgrading Sipwise C5

Make sure you are prepared to spend about two hours upgrading the system. Note that a short service downtime is possible

during the services switchover to the upgraded node.

295

The Sipwise C5 PRO Handbook mr6.5.11 296 / 601

Start with the software upgrade on the standby sp1 node. Then, switch the services over to the upgraded node and upgrade the

other (now standby) sp2 node, as described in the steps below.

13.6.1 License check

The Sipwise C5 — starting from mr6.5.1 release — enforce software licensing restrictions in form of a regular comparison of the

licensed services and capacities against the actual usage patterns of the platform. In case some functionalities are enabled but

not licensed, an error in syslog will be reported and the impacted services will be automatically deactivated.

Before proceeding with the upgrade, please take some time to check that all the modules not licensed are actually disabled in

config.yml file. To verify if they are enabled execute the following commands:

ngcpcfg values sems.prepaid.enable

ngcpcfg values sems.prepaid.inew.enable

ngcpcfg values pbx.enable

ngcpcfg values pushd.enable

ngcpcfg values intercept.enable

ngcpcfg values voisniff.admin_panel

ngcpcfg values voisniff.li_x1x2x3.enable

ngcpcfg values voisniff.daemon.start

If the output of one of the commands is yes but the module is not licensed, you have to deactivate it. For example, in case of

pre-paid billing module execute:

ngcpcfg set /etc/ngcp-config/config.yml sems.prepaid.enable=no

ngcpcfg apply ’Disable prepaid module’

ngcpcfg push

Warning

Please, pay particular attention to pre-paid billing module because it is enabled by default.

13.6.2 Preparing for maintenance mode

Sipwise C5 introduces Maintenance Mode with its mr5.4.1 release. The maintenance mode of Sipwise C5 will disable some

background services (for instance: mediator) during the software upgrade. It thus prevents the system from getting into an

inconsistent state while the upgrade is being performed. You can activate maintenance mode by applying a simple configuration

change as described later.

• Pull pending configuration (if any):

ngcpcfg pull

• Enable maintenance mode:

296

The Sipwise C5 PRO Handbook mr6.5.11 297 / 601

ngcpcfg set /etc/ngcp-config/config.yml "general.maintenance=yes"

• Apply configuration changes by executing:

ngcpcfg apply ’Enabling maintenance mode before the upgrade to mr6.5.11’

ngcpcfg push all

13.6.3 Switch to the new repositories

To specify the new list of APT data sources, execute the following commands on both nodes:

NGCP_CURRENT_VERSION=$(cat /etc/ngcp_version)

sed -i "s/${NGCP_CURRENT_VERSION}/mr6.5.11/" /etc/apt/sources.list.d/sipwise.list

Warning

Do not use "ngcpcfg apply/build" after executing the above commands, as otherwise the changes will be overwritten

and you will have to redo this step.

13.6.4 Download the new packages into the approx cache (on standby node only)

Warning

Customers with far-sighted software upgrade policies usually have pre-production installations to test the services in

their environment before upgrading the production platform. In this case, the approx cache should be updated on both

platforms simultaneously to synchronize the package versions between them, hence consider carefully before executing

this step.

To download the latest package metadata into the approx cache, execute the following command on the standby node. This

action ensures that both nodes have identical packages after the software upgrade:

ngcp-approx-cache-helper --auto --node localhost

13.6.5 Install the package used to upgrade C5

Run the following commands on both nodes to install the package responsible for upgrading C5 to a newer release:

apt-get update

apt-get install ngcp-upgrade-pro

297

The Sipwise C5 PRO Handbook mr6.5.11 298 / 601

13.6.6 ngcp-upgrade options

The following options in ngcp-upgrade can be specially useful in some instances of upgrade:

• --step-by-step: confirm before proceeding to next step. With this option the upgrade operation is performed confirming ev-

ery step before execution, with the possibility to instruct to continue without confirming further steps until the end (if confirmation

is only needed for some steps at the beginning).

• --pause-before-step STEP_NAME: pause execution before step, given by the name of the script (e.g. "backup_mysql_db").

This option can be useful in several scenarios, for example:

– to help to debug problems or work around known problems during upgrades. In this case the operator can pause at a given

step known to be problematic or just before a problematic set, perform some manual checks or changes, then continue the

upgrade until another step (with confirmation like with the recent option --step-by-step), or just continue without stop

until the end

– another use might be to help to speed up upgrades when it involves several nodes: they can all proceed in parallel when it’s

known to be safe to do so; then perform some parts in lock-step (some nodes waiting until others finish with some stage);

then continue in parallel until the end

• --skip-db-backup: This will speed-up the process in cases where it’s deemed unnecessary, and this is very likely in the

upgrade of nodes other than the first.

13.6.7 Upgrade the first PRO node

Execute the upgrade script on the standby node as root :

ngcp-upgrade

Note

Sipwise C5 can be upgraded to mr6.5.11 from previous release or previous build only. The script ngcp-upgrade will find all the

possible destination releases for the upgrade and allow one to choose the proper one.

Note

If there is an error during the upgrade, the ngcp-upgrade script will request you to solve it. Once you’ve fixed the problem, just

execute ngcp-upgrade again and it will continue from the previous step.

The upgrade script will ask you to confirm that you want to start. Read the given information carefully, and if you agree, proceed

with y.

The upgrade process will take several minutes, depending on your network connection and server performance. After everything

has been updated successfully, it will finally ask you to reboot your system. Confirm to let the system reboot (it will boot with an

updated kernel).

298

The Sipwise C5 PRO Handbook mr6.5.11 299 / 601

13.6.7.1 Useful options in ngcp-upgrade

The following options in ngcp-upgrade can be useful for this phase of upgrades:

• --step-by-step: confirm before proceeding to next step.

• --pause-before-step STEP_NAME: pause execution before step, given by the name of the script (e.g. "backup_mysql_db").

See a more detailed description of the options in: ngcp-upgrade options

13.6.8 The customtt files handling (if necessary)

Merge/add the custom configuration templates if needed. Apply the changes to configuration templates and send them to the

shared storage and the other node:

ngcpcfg apply ’The first node upgraded’

ngcpcfg push --nobuild --noapply

13.6.9 Promote the upgraded standby node to active

Execute on the current standby node as root :

ngcp-make-active

13.6.10 Upgrade the second PRO node

Go to the new standby node. Run the upgrade script as root :

ngcp-upgrade

The upgrade script will ask you to confirm that you want to start. Read the given information carefully, and if you agree, proceed

with y.

The upgrade process will take several minutes, depending on your network connection and server performance. After everything

has been updated successfully, it will finally ask you to reboot your system. Confirm to let the system reboot (it will boot with an

updated kernel).

13.6.10.1 Useful options in ngcp-upgrade

The following options in ngcp-upgrade can be useful for this phase of upgrades, because it is very likely that the backup was

already performed in the upgrade of the first node:

• --skip-db-backup: This will speed-up the process in cases where it’s deemed unnecessary.

See a more detailed description of the options in: ngcp-upgrade options

299

The Sipwise C5 PRO Handbook mr6.5.11 300 / 601

13.7 Post-upgrade tasks

13.7.1 Migrate location entries from Mysql to Redis DB

Starting from mr6.2.1, location, acc and dialogs data are stored in RedisDB allowing better system performaces. In order to

be more flexible and to reduce the downtime of the system, only acc and dialogs data have been moved to RedisDB during the

upgrade. The migration of the location data to RedisDB will speedup the system and it is mandatory for future upgrades to mr7.5.X.

To complete the process you can execute the following commands right now or anytime during out of business hours.

• On the standby management node (web01a/db01a on Carrier) pull outstanding ngcpcfg changes (if any):

ngcpcfg pull

• Enable location data storage on RedisDB:

ngcpcfg set /etc/ngcp-config/config.yml "kamailio.proxy.redis.usrloc=yes"

• Apply the changes to configuration templates:

ngcpcfg apply ’Enable location data storage on RedisDB’

Important

Execute the following 3 steps one after another with as short as possible delay between them.

• Migrate all location data from MySQL to Redis DB using an adhoc script:

ngcp-location-migrate

• Update the internal counters for accurate statistics about location entries: (This step can be executed any time location entries

have been manually modified)

ngcp-location-sync

• Make the node active (proxy, ngcp-panel and mediator services will start with the new configuration):

ngcp-make-active

• Push changes:

300

The Sipwise C5 PRO Handbook mr6.5.11 301 / 601

ngcpcfg push

• Clean old location data stored in MySQL using an adhoc script:

ngcp-location-migrate -c

13.7.2 Disabling maintenance mode

In order to disable the maintenance mode, do the following:

• Pull outstanding ngcpcfg changes (if any):

ngcpcfg pull

• Disable the maintenance mode:

ngcpcfg set /etc/ngcp-config/config.yml "general.maintenance=no"

• Apply the changes to configuration templates:

ngcpcfg apply ’Disable the maintenance mode after the upgrade to mr6.5.11’

ngcpcfg push all

13.7.3 Post-upgrade checks

When everything has finished successfully, check that replication is running. Check ngcp-status --all. Finally, do a basic

functionality test. Check the web interface, register two test subscribers and perform a test call between them to ensure call routing

works.

Note

You can find a backup of some important configuration files of your existing installation under /ngcp-data/backup/ngcp-mr6.5.11-

* (where * is a place holder for a timestamp) in case you need to roll back something at any time. A log file of the upgrade

procedure is available at /ngcp-data/backup/ngcp-mr6.5.11-*/upgrade.log.

13.8 Applying the Latest Hotfixes

If your current release is already the latest or you prefer to be on the LTS release, we still suggest appling the latest hotfixes and

critical bug fixes.

Execute all steps as described in Section 13.4. They include the system checks, customtt preparation and others. It is important

to execute all the steps from the above chapter.

301

The Sipwise C5 PRO Handbook mr6.5.11 302 / 601

13.8.1 Update the approx cache on the standby node

The main goal of the following command is to download the new packages into the approx cache. So all the nodes in the cluster

will get identical packages.

ngcp-approx-cache-helper --auto --node localhost

13.8.2 Apply hotfixes on the standby node

ngcp-update

13.8.3 Recheck or update the custom configuration tempates

Merge/add the custom configuration templates if needed.

Apply the changes to configuration templates:

ngcpcfg apply ’applying customtt after installing the latest packages’

Send the new templates to the shared storage and the other node.

ngcpcfg push --nobuild --noapply all

13.8.4 Promote the standby node to active

Execute on the standby node as root :

ngcp-make-active

Check in a minute that the node became active:

ngcp-check-active

13.8.5 Apply hotfixes on the second node

ngcp-update

Execute the final checks as described in the Post-upgrade checks section.

302

The Sipwise C5 PRO Handbook mr6.5.11 303 / 601

14 Backup, Recovery and Database Maintenance

14.1 Sipwise C5 Backup

For any service provider it is important to maintain a reliable backup policy as it enables prompt services restoration after any

force majeure event. Although the design of Sipwise C5 implies data duplication and high availability of services, we still strongly

suggest you to configure a backup procedure. The Sipwise C5 has a built-in solution that can help you back up the most crucial

data. Alternatively, it can be integrated with any Debian compatible backup software.

14.1.1 What data to back up

• The database

This is the most important data in the system. All subscriber and billing information, CDRs, user preferences, etc. are stored in the

MySQL server. It is strongly recommended to have up-to-date dumps of all the databases on corresponding Sipwise C5 nodes.

• System configuration

The system configuration files such as /etc/mysql/sipwise.cnf and the /etc/ngcp-config/ directory should be included in the backup

as well. We suggest backing up the whole /etc folder.

• Exported CDRs (optional)

The /home/jail/home/cdrexport directory contains the exported CDRs. It depends on your call data retention policy whether or not

to remove these files after exporting them to an external system.

14.1.2 The built-in backup solution

The Sipwise C5 comes with an easy-to-use solution that creates everyday backups of the most important data:

• The system configuration files. The whole /etc directory is backed up.

• Exported CDRs. The /home/jail/home/cdrexport directory with csv files.

• All required databases on corresponding servers.

This functionality is disabled by default and can be enabled and configured in the backuptools subsection in the config.yml file.

Please, refer to the “C.1.3 backup tools” section of the “Sipwise C5 configs overview” chapter for the backup configuration options.

Once you set the required configuration options, apply the changes:

ngcpcfg apply ’enable the backup feature’

ngcpcfg push all

303

The Sipwise C5 PRO Handbook mr6.5.11 304 / 601

Once you activate the feature, Sipwise C5 will create backups in the off-peak time on the standby nodes and put them to the

/ngcp-data/backup/ngcp_backup directory. You can copy these files to your backup server using scp or ftp.

Note

make sure that you have enough free disk space to store the backups for the specified number of days.

14.2 Recovery

In the worst case scenario, when the system needs to be recovered from a total loss, you only need 4 steps to get the services

back online:

• Install Sipwise C5 as explained in chapter 2.

• Restore the /etc/ngcp-config/ directory and the /etc/mysql/sipwise.cnf file from the backup, overwriting your local files.

• Restore the database from the latest MySQL dump.

• Apply the changes to bring the original configuration into effect:

ngcpcfg apply ’restored the system from the backup’

ngcpcfg push all

14.3 Reset Database

Important

All existing data will be wiped out! Use this script only if you want to clear all previously configured services and start

configuration from scratch.

To reset database to its original state you can use a script provided by CE: * Execute ngcp-reset-db. It will assign new unique

passwords for Sipwise C5 services and reset all services. The script will also create dumps for all Sipwise C5 databases.

14.4 Synchronize database

In case of unresolvable database replication issues or to copy mysql data between a pair of hosts (usually a pair of sp1 and sp2

nodes).

There is a script for that: ngcp-sync-db.

To synchronize databases you need to run the script on your target host.

• Definitions:

304

The Sipwise C5 PRO Handbook mr6.5.11 305 / 601

– master - remote/master host (the database is dumped from there)

– local - target/local host (the database is imported onto)

• Usage:

Important

Your existing database on local will be completely wiped. The script provides a possibility to backup both master and

local databases during the procedure.

You can run the script with -h or --help to check its options or use man ngcp-sync_db

If you run it without any options it automatically calculates master hostname (e.g. if you run it on sp2 then sp2==local and

sp1==master).

The script also requires mysql credentials and if none provided it uses username=sipwise and the password is picked from

/etc/mysql/sipwise.cnf. You can specify user and/or password for both master and local.

Before the actual start it produces a summary with settings used to the procedure and a confirmation prompt to prevent accidental

usage. Making use of --force option" however suppresses the confirmation prompt. By default no messages are printed on

STDOUT (compliant to be integrated into another tools) and with -v or --verbose options you enable debugging where all the

ongoing steps will be printed to STDOUT.

There are 2 modes available for synchronization, online and backup. By default online is used where the procedure does not

create any backups and everything goes on the fly. That is useful for large databases where creating backups would require

solid amounts of available free disk space. With the backup mode master db is dumped into a backup file on local first (default

directory: /ngcp-data/backup/ngcp-sync-db) and imported upon the backup completion.

Mysql database connection to the master db and the local db is the essential part and by default the script tries to establish

direct mysql connection however that may not be possible due to the access restrictions. To overcome that you can use --ssh-

tunnel option and specifying there a local custom free port (e.g. --ssh-tunnel=33125) in this case an ssh tunnel will be

created to master and used to establish the db connection on the localhost behalf (NOTE: Public key based ssh negotiation is

required for the tunnel as the script does not suppot ssh credentials for security reasons).

Backups may be a subject to create during synchornization for possible rollbacks. To create the local db backup you should add

--local-backup. The master db backup is automatically created only using --sync-mode=backup. Upon completion

all those created backups are deleted and if you need to keep them please use --keep-backups option (NOTE: In case

of errors during synchronization and when backups are created they are NOT automatically deleted. Therefore, if the script

had failed with an error and afterwards completed successully you may want to manually remove the remaining backups from

/ngcp-data/backup/ngcp-sync-db).

• Examples:

Normal online mode synchronization sp1→ sp2.

sp2> ngcp-sync-db

305

The Sipwise C5 PRO Handbook mr6.5.11 306 / 601

Normal backup mode synchronization sp1→ sp2.

sp2> ngcp-sync-db --sync-mode=backup

Forced online mode synchronization sp1→ sp2. USE WITH CARE as there will be no confirmation prompts.

sp2> ngcp-sync-db --force

Direct mysql db access is not possible. SSH tunnel is initialised to local port 33125 and forwards all connections 127.0.0.1:33125

→ sp1:3306.

sp2> ngcp-sync-db --ssh-tunnel=33125

Custom mysql credentials for the master db connection (by default: sipwise:/etc/mysql/sipwise.cnf)

sp2> ngcp-sync-db --master-user=frank --master-pass=dbconnect

Normal online mode synchronization sp1 → sp2 with the local db backup and retaining the backup. (no master backup in this

case as it is only available with --sync-mode=backup).

sp2> ngcp-sync-db --local-backup --keep-backups

Normal online mode synchronization custom-node→ sp2 with ssh tunnel

sp2> ngcp-sync-db --master-host=custom-node --ssh-tunnel=45001

Forced syncrhonization custom-node → sp2 with ssh tunnel, backup sync mode, local backup, custom master and local db

credentials and ports as well as a different backup dir

sp2> ngcp-sync-db --force --sync-mode=backup --master-host=custom-node --master-port=3308 ←↩
--ssh-tunnel=45001 --master-user=frank --master-pass=dbconnect --local-user=john --local ←↩
-pass=dblocal --local-backup --keep-backups --backup-dir=/home/barry/backups

14.5 Accounting Data (CDR) Cleanup

Sipwise Sipwise C5 offers an easy way to cleanup, backup or archive old accounting data — i.e. CDRs — that is not necessary

for further processing any more, or must be deleted according to the law. There are some Sipwise C5 components designed

for this purpose and they are commonly called cleanuptools. These are basically configurable scripts that interact with NGCP’s

accounting and kamailio databases, or remove exported CDR files in order to clean or archive the unnecessary data.

14.5.1 Cleanuptools Configuration

The configuration parameters of cleanuptools are located in the main Sipwise C5 configuration file: /etc/ngcp-config/

config.yml. Please refer to the config.yml file description: Cleanuptools Configuration Data Section B.1.7 for configuration

parameter details.

In case the system administrator needs to modify some configuration value, the new configuration must be activated in the usual

way, by running the following commands:

306

The Sipwise C5 PRO Handbook mr6.5.11 307 / 601

> ngcpcfg apply ’Modified cleanuptools config’

> ngcpcfg push all

As a result new configuration files will be generated for the accounting database and the exported CDR cleanup tools. Please

read detailed description of those tools in subsequent sections of the handbook.

The Sipwise C5 system administrator can also select the time when cleanup scripts are run, by modifying the schedule here: /

etc/cron.d/cleanup-tools

14.5.2 Accounting Database Cleanup

The script responsible for cleaning up the database is: /usr/sbin/acc-cleanup.pl

The configuration file used by the script is: /etc/ngcp-cleanup-tools/acc-cleanup.conf

An extract from a sample configuration file is provided here:

############

batch = 10000

archive-target = /ngcp-data/backup/cdr

compress = gzip

username = dbcleaner

password = rcKamRdHhx7saYRbkJfP

host = localhost

connect accounting

time-column = from_unixtime(start_time)

backup-months = 2

backup-retro = 2

backup cdr

connect accounting

archive-months = 2

archive cdr

connect kamailio

time-column = time

cleanup-days = 90

cleanup acc

Clean up after mediator by deleting old leftover acc entries and deleting

old entries out of acc_trash and acc_backup

connect kamailio

time-column = time

307

The Sipwise C5 PRO Handbook mr6.5.11 308 / 601

cleanup-days = 30

cleanup acc_trash

cleanup acc_backup

The configuration file itself contains a detailed description of how database cleanup script works. It consists of a series of state-

ments, one per line, which are going to be executed in sequence. A statement can either just set a variable to some value, or

perform an action.

There are 3 types of actions the database cleanup script can take:

• backup CDRs

• archive CDRs

• cleanup CDRs

These actions are discussed in following sections.

A generic action is connecting to the proper database: connect <database name>

14.5.2.1 Backup CDRs

The database cleanup tool can create monthly backups of CDRs in the accounting database and store those data records in

separate tables named: cdr_YYYYMM. The instruction in the configuration file looks like: backup <table name>, by default

and typically it is: backup cdr

Configuration values that govern the backup procedure are:

• time-column: Which column in cdr table shows the month which a CDR belongs to.

• batch: How many records to process within a single SQL statement. If unset, less than or equals 0, all of them are processed

at once.

• backup-months: How many months worth of records to keep in the cdr table — where current CDRs are stored — and not

move into the monthly backup tables.

Important

Months are always processed as a whole, thus the value specifies how many months to keep AT MOST. In other

words, if the script is started on December 15th and this value is set to "2", then all of December and November is

kept, and all of October will be backed up.

• backup-retro: How many months to process for backups, going backwards in time. Using the example above, with this value

set to "3", the months October, September and August would be backed up, while any older records would be left untouched.

308

The Sipwise C5 PRO Handbook mr6.5.11 309 / 601

14.5.2.2 Archive CDRs

The database cleanup tool can archive (dump) old monthly backup tables. The statement used for this purpose is: archive

<table name>, by default and typically it is: archive cdr

This creates an SQL dump out of too old tables created by the backup statement and drop them afterwards from database.

Archiving uses the following configuration values:

• archive-months: Uses the same logic as the backup-months variable above. If set to "12" and the script was started

on December 15th, it will start archiving with the December table of the previous year.

Important

Note that the sum of backup-retro + backup-months values cannot be larger than archive-months

value for the same table. Otherwise you end up creating empty monthly backup tables, only to dump and delete them

right afterwards.

• archive-target: Target directory for writing the SQL dump files into. If explicitly specified as "/dev/null", then no actual

archiving will be performed, but instead the tables will only be dropped from database.

• compress: If set to "gzip", then gzip the dump files after creation. If unset, do not compress.

• host, username and password: As dumping is performed by an external command, those variables are reused from the

connect statement.

14.5.2.3 Cleanup CDRs

The database cleanup tool may do database table cleanup without performing backup. In order to do that, the statement: clean

up <table name> is used. Typically this has to be done in kamailio database, examples:

• cleanup acc

• cleanup acc_trash

• cleanup acc_backup

Basically the cleanup statement works just like the backup statement, but doesn’t actually backup anything, but rather just

deletes old records. Configuration values used by the procedure:

• time-column: Gives the database column name that shows the time of CDR creation.

• batch: The same as with backup statement.

• cleanup-days: Any record older than this many days will be deleted.

309

The Sipwise C5 PRO Handbook mr6.5.11 310 / 601

14.5.3 Exported CDR Cleanup

The script responsible for cleaning up exported CDR files is: /usr/sbin/cleanup-old-cdr-files.pl

The configuration file used by exported CDR cleanup script is: /etc/ngcp-cleanup-tools/cdr-files-cleanup.

yml

A sample configuration file is provided here:

enable: no

max_age_days: 30

paths:

-

path: /home/jail/home/*/20[0-9][0-9][0-9][0-9]/[0-9][0-9]

wildcard: yes

remove_empty_directories: yes

max_age_days: ~

-

path: /home/jail/home/cdrexport/resellers/*/20[0-9][0-9][0-9][0-9]/[0-9][0-9]

wildcard: yes

remove_empty_directories: yes

max_age_days: ~

-

path: /home/jail/home/cdrexport/system/20[0-9][0-9][0-9][0-9]/[0-9][0-9]

wildcard: yes

remove_empty_directories: yes

max_age_days: ~

The exported CDR cleanup tool simply deletes CDR files in the directories provided in the configuration file, if those have already

expired.

Configuration values that define the files to be deleted:

• enable: Enable (yes) or disable (no) exported CDR cleanup.

• max_age_days: Gives the expiration time of the exported CDR files in days. There is a general value which may be overridden

by a local value provided at a specific path. The local value is valid for the particular path only.

• paths: an array of path definitions

– path: a path where CDR files are to be found and deleted; this may contain wildcard characters

– wildcard: Enable (yes) or disable (no) using wildcards in the path

– remove_empty_directories: Enable (yes) or disable (no) removing empty directories if those are found in the given

path

– max_age_days: the local expiration time value for files in the particular path

310

The Sipwise C5 PRO Handbook mr6.5.11 311 / 601

15 Platform Security, Performance and Troubleshooting

Once Sipwise C5 is in production, security and maintenance becomes really important. In this chapter, we’ll go through a set of

best practices for any production system.

15.1 Sipwise SSH access to Sipwise C5

The Sipwise C5 provides SSH access to the system for Sipwise operational team for debugging and final tuning. Operational

team uses user sipwise which can be logged in through SSH key only (password access is disabled) from dedicated access

server jump.sipwise.com only.

To completely remove Sipwise access to your system, please execute as user root:

root@myserver:~# ngcp-support-access --disable && apt-get install ngcp-support-noaccess

Note

you have to execute the command above on each node of your Sipwise C5 system!

Warning

please ensure that the script complete successfully:

* Support access successfully disabled.

If you need to restore Sipwise access to the system, please execute as user root:

root@myserver:~# apt-get install ngcp-support-access && ngcp-support-access --enable

Warning

please ensure that the script complete successfully:

* Support access successfully enabled.

15.2 Firewalling

15.2.1 Firewall framework

The Sipwise C5 runs a wide range of services. In order to secure the platform while allowing access to Sipwise C5 , Sipwise C5

configuration framework provides a set of predefined network zones. Services are aggregated into appropriate zones by default.

Zones are assigned to network interfaces (and VLANs if applicable) in /etc/ngcp-config/network.yml.

311

The Sipwise C5 PRO Handbook mr6.5.11 312 / 601

Caution

Though the default firewall setup provided by Sipwise C5 configuration framework provides a safe setup for Sipwise

C5, security audits of the platform performed by qualified engineers before commissioning the platform into service are

strongly recommended. Customization of the setup requires in-depth knowledge of firewalling principles in general and

the netfilter facility in particular.

Table 19: Sipwise C5 network zones

Zone name Description

ha_int Internal cluster interface providing internal cluster communications between cluster

pairs (heartbeat) and synchronization of data and configuration

mon_ext Interface to connect external monitoring appliances (SNMP)

rtp_ext Interface for external RTP media relay between Sipwise C5 and endpoints (e.g. user

agents, peers)

sip_ext Interface for external SIP signalling between Sipwise C5 and endpoints (e.g. user

agents, peers)

sip_int Interface for internal signalling, e.g. between load-balancers, proxies and applications

servers

ssh_ext Interface providing external access to Sipwise C5 command line interface

ssh_int Interface providing internal access to Sipwise C5 command line interface (neccesary

for ngcp-installer)

web_ext Interface providing access to the customers’ self-care Web panel

web_int Interface for access to the administrative Web panel, its REST APIs and internal API

communications

Note

Additional custom zones may be configured, but will not be automatically integrated into the firewall configuration.

To facilitate firewall functionality, Sipwise C5 uses the Kernel’s netfilter facility and iptables-persistent as an interface to netfilter.

Netfilter is using tables and within that chains to store rules in this hierarchy: table → chain → rule. Default firewall setups of

Sipwise C5 do not use netfilter tables nat and raw, but only default table filter.

Note

Custom nat rules for IPv4 and IPv6 may be added in file /etc/ngcp-config/config.yml in sections security→firewall→nat_rules4

and security→firewall→nat_rules6.

Each chain deploys a default policy handling packets which did not trigger and rule in a prticular chain.

312

The Sipwise C5 PRO Handbook mr6.5.11 313 / 601

Table 20: Sipwise C5 netfilter default policies

Chain Default

policy

Description

INPUT DROP Handling all packets directly destined for a Sipwise C5 node (only

packets matching a rule are allowed)

FORWARD DROP Handling all packets received by a Sipwise C5 node and destined for

another, non-local IP destination (no default rules added)

OUTPUT ACCEPT Handling all packets originating on a Sipwise C5 node (no default rules

added)

rtpengine N/A Container for rptengine rule to allow the rule to persist even when the

Kernel module is unloaded (e.g. during upgrades)

The default firewall setup provided by Sipwise C5:

• adds rules to INPUT to secure access to platform and services

• blocks all traffic from and to FORWARD

• allows all OUTPUT traffic

15.2.2 Sipwise C5 firewall configuration

The Sipwise C5 comes with a preconfigured set of firewall rules, which can be enabled and configured in /etc/ngcp-config/

config.yml in section security→firewall. Refer to Section B.1.30 for available configuration options.

Firewall configuration is applied by running ngcpcfg apply. However, this will not activate new rules automatically to avoid

inadvertent self-lockout. To finally activate new firewall rules run iptables-apply. This will prompt for another system logon

to verify access remains available. If the prompt is not confirmed, firewall rules will automatically be reverted to the previous state

re-enabling access to the command line.

Caution

The Sipwise C5 firewall subsystem by default is disabled in /etc/ngcp-config/config.yml key security.firewall.

enable: no. This is to avoid blocking any traffic inadvertently during installation. After the firewall subsystem

has been configured appropriately, it needs to be enabled by setting security.firewall.enable: yes in

/etc/ngcp-config/config.yml.

15.2.3 IPv4 System rules

The following set of rules is added by the system upon activation of the firewall subsystem. Individual system rules are configured

in /etc/ngcp-config/templates/etc/iptables/rules.v4.tt2 and /etc/ngcp-config/templates/etc/iptables/rules.v6.tt2

313

The Sipwise C5 PRO Handbook mr6.5.11 314 / 601

Table 21: Firewall system rules

Zone Chain Target Rule Description

all INPUT rtpengine -p udp -j rtpengine Redirects all incoming UDP

packets to chain rtpengine (putting

RTPENGINE rule into a dedicated

chain allows for the rule to persist

even when the Kernel module gets

unloaded, e.g. during upgrades)

all rtpengine RTPENGINE -p udp -j RTPENGINE --

id 0

Feeds all RTP packets to

RTPENGINE Kernel module

n/a INPUT ACCEPT -i lo -j ACCEPT Accept all packets received by

local loopback interface

all INPUT ACCEPT -m state --state

RELATED,ESTABLISHED -j

ACCEPT

Accept all incoming packets tied to

related or established connections

all INPUT (IPv4) ACCEPT -p icmp -m icmp --

icmp-type 8 -j ACCEPT

Accept all ICMP echo messages

all INPUT (IPv4) ACCEPT -p icmp -m icmp --

icmp-type 0 -j ACCEPT

Accept all ICMP echo reply

messages

all INPUT (IPv6) ACCEPT -A INPUT -p ipv6-icmp

-j ACCEPT

Accept all ICMPv6 messages

all INPUT cluster -j cluster Divert all incoming packets to the

cluster chain

all cluster ACCEPT -s <node_ip> -j ACCEPT Set of rules white-listing all

IP-addresses owned by Sipwise

C5 platform for incoming traffic

api_int INPUT ACCEPT -p tcp --dport

<ossbss.port> -j

ACCEPT

Set of rules for all api_int

interfaces accepting all incoming

packets for API port defined in

/etc/ngcp-config/config.yml with

key ossbss.port

mon_ext INPUT ACCEPT +-p udp -s <snmpclient_ip>

--dport 161 -j ACCEPT

Set of rules for all mon_ext

interfaces based on a list of IPs for

all SNMP communities configured

in checktools.snmpd.communities

rtp_ext INPUT ACCEPT/name -p udp --dport

<rtpproxy.minport>:

’<rtpproxy.maxport>’ -

j ACCEPT/name

Set of rules for all rtp_ext

interfaces accepting all incoming

packets for RTP port range

defined in

/etc/ngcp-config/config.yml with

keys rtpproxy.minport and

rtpproxy.maxport (see note below

for custom options)

314

The Sipwise C5 PRO Handbook mr6.5.11 315 / 601

Table 21: (continued)

Zone Chain Target Rule Description

sip_ext INPUT ACCEPT -p udp --dport

<kamailio.lb.port> -j

ACCEPT

Set of rules for all sip_ext

interfaces accepting all packets on

the loda balancer’s SIP signalling

port defined in

/etc/ngcp-config/config.yml with

key kamailio.lb.port (UDP)

sip_ext INPUT ACCEPT -p tcp --dport

<kamailio.lb.port> -j

ACCEPT

Set of rules for all sip_ext

interfaces accepting all packets on

the loda balancer’s SIP signalling

port defined in

/etc/ngcp-config/config.yml with

key kamailio.lb.port (TCP)

sip_ext INPUT ACCEPT -p tcp --dport

<kamailio.lb.tls.port>

-j ACCEPT

Set of rules for all sip_ext

interfaces accepting all packets on

the loda balancer’s SIP signalling

port defined in

/etc/ngcp-config/config.yml with

key kamailio.lb.tls.port (TCP/TLS)

sip_ext INPUT ACCEPT -p tcp --dport 5222 -j

ACCEPT

Set of rules for all sip_ext

interfaces accepting all packets on

TCP port 5222 (XMPP client)

sip_ext INPUT ACCEPT -p tcp --dport 5269 -j

ACCEPT

Set of rules for all sip_ext

interfaces accepting all packets on

TCP port 5269 (XMPP server)

sip_ext INPUT ACCEPT -p tcp --dport <pushd.

port> -j ACCEPT

Set of rules for all sip_ext

interfaces accepting all packets

incoming for the pushd server port

configured in

/etc/ngcp-config/config.yml with

key pushd.port

ssh_ext INPUT ACCEPT -A INPUT -i

<ssh_ext_interface> -p

tcp -s <sshd.

permit_support_from> -

-dport sshd.port -j

ACCEPT

List of rules to accept incoming

packets for SSH on all ssh_ext

interfaces from hosts configured in

/etc/ngcp-config/config.yml with

key sshd.permit_support_from

315

The Sipwise C5 PRO Handbook mr6.5.11 316 / 601

Table 21: (continued)

Zone Chain Target Rule Description

web_ext INPUT ACCEPT -p tcp --dport

<www_admin.http_csc.

port> -j ACCEPT

List of rules to accept incoming

packets for the Customer Self

Care interface defined in

/etc/ngcp-config/config.yml with

key www_admin.http_csc.port on

all web_ext interfaces

web_int INPUT ACCEPT -p tcp --dport

<www_admin.http_admin.

port> -j ACCEPT

List of rules to accept incoming

packets for the Admin Panel

interface defined in

/etc/ngcp-config/config.yml with

key www_admin.http_admin.port

on all web_int interfaces

Caution

To function correctly, the rtpengine requires an additional iptables rule installed. This rule (with a target of RTPENGINE)

is automatically installed and removed when the rtpengine starts and stops, so normally you don’t need to worry about

it. However, any 3rd party firewall solution can potentially flush out all existing iptables rules before installing its own,

which would leave the system without the required RTPENGINE rule and this would lead to decreased performance.

It is imperative that any 3rd party firewall solution either leaves this rule untouched, or installs it back into place after

flushing all rules out. The complete parameters to install this rule (which needs to go into the INPUT chain of the

filter table) are: -p udp -j RTPENGINE --id 0

Note

Some of the parameters used to populate the firewall rules automatically may contain hostnames instead of IP addresses.

Since firewall rules need to be configured based on IP addresses by design, Sipwise C5 configuration framework will lookup

such hostnames during ngcpcfg apply and expand them to the IP addresses as returned by gethostbyname. If DNS resolving

changes for such hostnames due to changes to DNS the rules will not update automatically. Another run of ngcpcfg apply will

be needed to reperform the lookup and update the rules to reflect chages in DNS. If this step is omitted, clients may be locked

out of the system.

316

The Sipwise C5 PRO Handbook mr6.5.11 317 / 601

Note

By default, the rules for the rtp_ext zone are created with a target of ACCEPT. It is optionally possible to create these rules

with another iptables chain as target, and instruct the RTP proxy to dynamically manage individual rules for each running call

in this chain. If this is enabled, the chain with the name given in the /etc/ngcp-config/config.yml key rtpprox

y→firewall_iptables_chain will be created as empty, leaving the effective target for UDP packets within the RTP

port range as the table’s default policy (normally DROP). The RTP proxy will then dynamically created one ACCEPT rule for

each open RTP media port in the given chain when a call starts, and delete it when the call is finished. It should be noted that

dynamically creating and deleting iptables rules can incur a singificant performance overhead, especially in scenarios with high

call volumes, and it is therefore not recommended to enable this feature in such cases.

15.2.4 Custom rules

The Sipwise C5 configuration framework allows one to add custom rules to the firewall setup in /etc/ngcp-config/config.yml. The

custom rules are added after the system rules. Hence, they apply for packets not matched by the systems rules only.

Example custom rule to whitelist all IPv4 traffic from network interface eth1.301 effectively making VLAN 301 a trusted network:

rules4:

- ’-A INPUT -i eth1.301 -j ACCEPT’

Example custom rule to accept incoming traffic from monitoring station 203.0.113.93 for an optionally installed check_mk agent:

rules4:

- ’-A INPUT -p tcp -s 203.0.113.93 --dport 6556 -j ACCEPT’

To add hosts or networks to the SSH whitelist they can be either added to key sshd.permit_support_from in /etc/ngcp-config/config.yml

or a custom rule may be used:

rules4:

- ’-A INPUT -s 198.51.100.0/24 --dport 22 - j ACCEPT’

- ’-A INPUT -s 203.0.113.93 --dport 22 -j ACCEPT’

Note

In custom rules keys from /etc/ngcp-config/config.yml cannot be referenced. Thus, the values need to be manually looked up,

hard coded, and kept in sync manually. This is by design of YAML.

15.2.5 Example firewall configuration section

An example for Sipwise C5 firewall configuration in /etc/ngcp-config/config.yml enabling both the firewall subsystem and the

logging facility may look like:

security:

firewall:

enable: ’yes’

317

The Sipwise C5 PRO Handbook mr6.5.11 318 / 601

logging:

enable: ’yes’

file: ’/var/log/firewall.log’

tag: ’NGCPFW’

policies:

input: ’DROP’

forward: ’DROP’

output: ’ACCEPT’

rules4:

- ’-A INPUT -i eth0 -j ACCEPT’

15.3 Password management

The Sipwise C5 comes with some default passwords the user should change during the deployment of the system. They have

been explained in the previous chapters of this handbook.

Important

Many Sipwise C5 services use MySQL backend. Users and passwords for these services are created during the

installation. These passwords are unique for each installation, and the connections are restricted to localhost. You

should not change these users and passwords.

15.3.1 The "root" account

The Sipwise C5’s super-user account comes with a preconfigured password. It is imperative that this password is changed by

the operator immediately after Sipwise C5 is shipped and before it is connected to any potentially unsecure public or private

network using a secure password in compliance with existing password policies of the operator. The "root" password must not be

shared outside of the operator’s organization including Sipwise engineers. The "root" password must not be shared in any publicly

accessible communications including e-mail or ticketing systems.

To change the root password log into the freshly deployed system as "root" using the preconfigured password and execute:

root@myserver:~# passwd

Then follow the prompts to change the password.

15.3.2 The "administrator" account

The Sipwise C5 Web-interface comes with a preconfigured "administrator" account deployed with a default password. This account

can be considered Sipwise C5 application super-user and has far-reaching access to application specific settings via the Web-

interface. It is imperative that the password for this account is changed by the operator immediately after Sipwise C5 is shipped and

before it is connected to any potentially unsecure public or private network using a secure password in compliance with existing

password policies of the operator. The "administrator" password must not be shared outside of the operator’s organization including

318

The Sipwise C5 PRO Handbook mr6.5.11 319 / 601

Sipwise engineers. The "administrator" password must not be shared in any publicly accessible communications including e-mail

or ticketing systems.

The password for the "administrator" account can be changed via the Web-interface.

15.3.3 The "cdrexport" account

The login for the system account cdrexport is disabled by default. Although this is a jailed account, it has access to sensitive

information, namely the Call Detail Records of all calls. SSH keys should be used to login this user, or alternatively a really strong

password should be used when setting the password via passwd cdrexport.

15.3.4 The MySQL "root" user

The root user in MySQL has no default password. A password should be set using the mysqladmin password command.

15.3.5 The "ngcpsoap" account

Generate new password for user ngcpsoap to access the provisioning interfaces, see the details in Section 9.

15.4 SSL certificates.

The Sipwise C5 provides default, self-signed SSL certificates for SSL connections. These certificates are common for every

installation. Before going to production state, the system administrator should provide SSL certificates for the web services. These

certificates can either be shared by all web interfaces (provisioning, administrator interface and customer self care interface), or

separate ones for each them can be used.

• Generate the certificates. The customer self care interface certificate should be signed by a certification authority to avoid

browser warnings.

• Upload the certificates to the system

• Set the path to the new certificates in /etc/ngcp-config/config.yml :

– ossbss→apache→autoprov→sslcertfile and ossbss→apache→autoprov→sslcertkeyfile for the provisioning interface.

– ossbss→apache→restapi→sslcertfile and ossbss→apache→restapi→sslcertkeyfile for the REST interface.

– www_admin→http_admin→sslcertfile and www_admin→http_admin→sslcertkeyfile for the admin interface.

– www_admin→http_csc→sslcertfile and www_admin→http_csc→sslcertkeyfile for the customer self care interface.

• Apply the configuration changes with ngcpcfg apply ’added web ssl certs’.

The Sipwise C5 also provides the self-signed SSL certificates for SIP over TLS services. The system administrator should

replace them with certificates signed by a trusted certificate authority if he is going to enable it for the production usage (ka-

mailio→lb→tls→enable (disabled by default)).

319

The Sipwise C5 PRO Handbook mr6.5.11 320 / 601

• Generate the certificates.

• Upload the certificates to the system

• Set the path to the new certificates in /etc/ngcp-config/config.yml :

– kamailio→lb→tls→sslcertfile and kamailio→lb→tls→sslcertkeyfile .

• Apply the configuration changes with ngcpcfg apply ’added kamailio certs’.

15.5 Securing your Sipwise C5 against SIP attacks

The Sipwise C5 allows you to protect your VoIP system against SIP attacks, in particular Denial of Service and brute-force

attacks. Let’s go through each of those attacks and let’s see how to configure your system in order to face such situations and

react against them.

15.5.1 Denial of Service

As soon as you have packets arriving on your Sipwise C5 server, it will require a bit of time of your CPU. Denial of Service attacks

are aimed to break down your system by sending floods of SIP messages in a very short period of time and keep your system

busy to handle such huge amount of requests. Sipwise C5 allows you to block such kind of attacks quite easily, by configuring the

following section in your /etc/ngcp-config/config.yml :

security:

dos_ban_enable: ’yes’

dos_ban_time: 3600

dos_reqs_density_per_unit: 50

dos_sampling_time_unit: 2

dos_whitelisted_ips: []

dos_whitelisted_subnets: []

Basically, as soon as Sipwise C5 receives more than 50 messages from the same IP in a time window of 2 seconds, that IP will

be blocked for 3600 sec, and you will see in the kamailio-lb.log a line saying:

Nov 9 00:11:53 sp1 lb[41958]: WARNING: <script>: IP ’1.2.3.4’ is blocked and banned - R=< ←↩
null> ID=304153-3624477113-19168@tedadg.testlab.local

The banned IP will be stored in kamailio memory, you can check the list via web interface or via the following command:

ngcp-kamctl lb fifo htable.dump ipban

Excluding SIP endpoints from banning

There may be some SIP endpoints that send a huge traffic towards Sipwise C5 from a specific IP address. A typical example is a

SIP Peering Server.

320

The Sipwise C5 PRO Handbook mr6.5.11 321 / 601

Caution

Sipwise C5 supports handling such situations by excluding all defined SIP Peering Servers from DoS protection mech-

anism.

The Sipwise C5 platform administrator may also add whitelisted IP addresses manually in /etc/ngcp-config/config.

yml at kamailio.lb.security.dos_whitelisted_ips and kamailio.lb.security.dos_whitelisted_

subnets parameters.

15.5.2 Bruteforcing SIP credentials

This is a very common attack you can easily detect checking your /var/log/ngcp/kamailio-proxy.log. You will see INVITE/REGISTER

messages coming in with strange usernames. Attackers is trying to spoof/guess subscriber’s credentials, which allow them to call

out. The very first protection against these attacks is: ALWAYS USE STRONG PASSWORD. Nevertheless Sipwise C5 allows you

to detect and block such attacks quite easily, by configuring the following /etc/ngcp-config/config.yml section:

failed_auth_attempts: 3

failed_auth_ban_enable: ’yes’

failed_auth_ban_time: 3600

You may increase the number of failed attempt if you want (in same cases it’s better to be safed, some users can be banned

accidentally because they are not writing the right password) and adjust the ban time. If a user try to authenticate an INVITE/REG-

ISTER (or more in general any request containing an "Authorization" or "Proxy-Authorization" SIP header) and it fails more then 3

times, the "user@domain" (not the IP as for Denial of Service attack) will be blocked for 3600 seconds (see failed_auth_ban_time

on /etc/ngcp-config/config.yml). In this case you will see in your /var/log/ngcp/kamailio-lb.log the following lines:

Nov 9 13:31:56 sp1 lb[41952]: WARNING: <script>: Consecutive Authentication Failure for ’ ←↩
sipvicous@mydomain.com’ UA=’sipvicous-client’ IP=’1.2.3.4’ - R=<null> ID ←↩
=313793-3624525116-589163@testlab.local

Both the banned IPs and banned users are shown in the Admin web interface, you can check them by accessing the Security

Bans section in the main menu. You can check the banned user as well by retrieving the same info directly from kamailio memory,

using the following commands:

ngcp-kamctl lb fifo htable.dump auth

15.6 Topology Hiding

15.6.1 Introduction to Topology Hiding on NGCP

The term "topology hiding" in SIP is used to describe the measures taken by typically an SBC (Session Border Controller) to hide

detailed information of the internal network at the border of which it is located. Pieces of information such as IP addresses and

port numbers used by SIP endpoints and intermediaries within the network are considered sensitive, as these can give some hints

to potential attackers about the topology of the network.

321

The Sipwise C5 PRO Handbook mr6.5.11 322 / 601

In a typical SIP session the mandatory headers may carry that sensitive information, for example: Contact, Via, Record-Route, To,

From, Call-ID. An SBC applying topology hiding will mangle the content of those headers.

Concealment of sensitive information is achieved through encoding the original content of selected SIP headers. Then Sipwise

C5 will create a new SIP URI using a preselected IP address and the encoded content as URI parameter, finally re-assembling

the SIP header.

Examples for encoded SIP headers:

Record-Route: <sip:127.0.0.8;line=sr-NvaAlWtecghucEhu6WtAcu...>

Contact: <sip:127.0.0.8;line=sr-NvaAli-1VeL.kRxLcbN86W...>

The load-balancer element of Sipwise C5 has an SBC role, from the SIP peers point of view. The LB offers topology hiding

function that can be simply activated through a configuration change. By default the function is disabled.

15.6.2 Configuration of Topology Hiding

Activating topology hiding function is possible through the modification of the following configuration parameters in /etc/ngcp-

config/config.yml file (shown below with default values of parameters):

kamailio:

lb:

security:

topoh:

enable: no

mask_callid: no

mask_ip: 127.0.0.8

Meaning of the configuration parameters:

• enable: if set to yes, the topology hiding will be activated

• mask_callid: if set to yes, the SIP Call-ID header will also be encoded

• mask_ip: an IP address that will be used to create valid SIP URIs, after encoding the real/original header content.

Tip

Any valid, preferably private network address can be used. The suggestion is however to use an address that is not used by

any other SIP endpoint or intermediary element in the network.

15.6.3 Considerations for Topology Hiding

Although hiding sensitive information about a VoIP provider’s network is desired, there are some potential side effects caused by

topology hiding.

The most common example is the consequence that SIP message size may grow when applying topology hiding. The fact that

SIP messages become larger may even prevent Sipwise C5 from communicating successfully with another SIP entity (a peer

SBC, for example). This can be expected under following circumstances:

322

The Sipwise C5 PRO Handbook mr6.5.11 323 / 601

• SIP transport protocol is UDP

• SIP messages have more Via and Record-Route headers

• IP packets of SIP messages without the topology hiding feature already have a size close to the MTU

In such a case the IP packets carrying SIP messages with encoded headers will have a size exceeding the MTU, that will cause

loss of data.

The recommended solution in such a case is to use TCP transport for SIP messages.

15.7 System Requirements and Performance

The Sipwise C5 is a very flexible system, capable of serving from hundreds to several tens of thousands of subscribers in a single

node. The system comes with a default configuration, capable of serving up to 50.000 subscribers in a normal environment. But

there is no such thing as a normal environment. And Sipwise C5 has sometimes to be tunned for special environments, special

hardware requirements or just growing traffic.

Note

If you have performance issues with regards to disk I/O please consider enabling the noatime mount option for the root filesys-

tem. Sipwise recommends the usage of noatime, though remove it if you use software which conflicts with its presence.

In this section some parameters will be explained to allow Sipwise C5 administrator tune the system requirements for optimum

performance.

Table 22: Requirement_options

Option Default value Requirement impact

cleanuptools→binlog_days 15 Heavy impact on the harddisk storage needed for mysql logs. It can help

to restore the database from backups or restore broken replication.

database→bufferpoolsize 1/2 * Total

system RAM

The installer will calculate the total system RAM and dedicate 50% to the

mysql innodb buffer. This value won’t be changed in case the system

RAM changes so it’s up to the administrator to adjust it. For test systems

or low RAM systems, lowering this setting is one of the most effective

ways of releasing RAM. The administrator can check the innodb buffer hit

rate on production systems; a hit rate over 99% is desired to avoid

bottlenecks.

kamailio→lb→pkg_mem 16 This setting affects the amount of RAM the system will use. Each

kamailio-lb worker will have this amount of RAM reserved. Lowering this

setting up to 8 will help to release some memory depending on the

number of kamailio-lb workers running. This can be a dangerous setting

as the lb process could run out of memory. Use with caution.

323

The Sipwise C5 PRO Handbook mr6.5.11 324 / 601

Table 22: (continued)

Option Default value Requirement impact

kamailio→lb→shm_mem 1/16 * Total

System RAM

The installer will set this value to 1/16 of the total system RAM. This

setting does not change even if the system RAM does so it’s up to the

administrator to tune it. It has been calculated that 1024 (1GB) is a good

value for 50K subscriber environment. For a test environment, setting the

value to 64 should be enough. "Out of memory" messages in the

kamailio log can indicate that this value needs to be raised.

kamailio→lb→tcp_children 8 Number of TCP workers kamailio-lb will spawn per listening socket. The

value should be fine for a mixed UDP-TCP 50K subscriber system.

Lowering this setting can free some RAM as the number of kamailio

processes would decrease. For a test system or a pure UDP subscriber

system 2 is a good value. 1 or 2 TCP workers are always needed.

kamailio→lb→tls→enable yes Enable or not TLS signaling on the system. Setting this value to "no" will

prevent kamailio to spawn TLS listening workers and free some RAM.

kamailio→lb→udp_children 8 See kamailio→lb→tcp_children explanation

kamailio→proxy→children 8 See kamailio→lb→tcp_children explanation. In this case the proxy only

listens udp so these children should be enough to handle all the traffic. It

could be set to 2 for test systems to lower the requirements.

kamailio→proxy→*_expires Set the default and the max and min registration interval. The lower it is

more REGISTER requests will be handled by the lb and the proxy. It can

impact in the network traffic, RAM and CPU usage.

kamailio→proxy→natping_interval 30 Interval for the proxy to send a NAT keepalive OPTIONS message to the

nated subscriber. If decreased, this setting will increase the number of

OPTIONS requests the proxy needs to send and can impact in the

network traffic and the number of natping processes the system needs to

run. See kamailio→proxy→natping_processes explanation.

kamailio→proxy→natping_processes 7 Kamailio-proxy will spawn this number of processes to send keepalive

OPTIONS to the nated subscribers. Each worker can handle about 250

messages/second (depends on the hardware). Depending the number of

nated subscribers and the kamailio→proxy→natping_interval parameter

the number of workers may need to be adjusted. The number can be

calculated like

nated_subscribers/natping_interval/pings_per_second_per_process. For

the default options, assuming 50K nated subscribers in the system the

parameter value would be 50.000/30/250 = (6,66) 7 workers. 7 is the

maximum number of processes kamailio will accept. Raising this value

will cause kamailio not to start.

kamailio→proxy→shm_mem 1/16 * Total

System RAM

See kamailio→lb→shm_mem explanation.

rateomat→enable yes Set this to no if the system shouldn’t perform rating on the CDRs. This

will save CPU usage.

324

The Sipwise C5 PRO Handbook mr6.5.11 325 / 601

Table 22: (continued)

Option Default value Requirement impact

rsyslog→external_log 0 If enabled, the system will send the log messages to an external server.

Depending on the rsyslog→external_loglevel parameter this can

increase dramatically the network traffic.

rsyslog→ngcp_logs_preserve_days 93 This setting will set the number of days ngcp logs under /var/log/ngcp will

be kept in disk. Lowering this setting will free a high amount of disk

space.

Tip

In case of using virtualized environment with limited amount of hardware resources, you can use the script ngcp-toggle-

performance-config to adjust Sipwise C5 configuration for high/low performance:

root@spce:~# /usr/sbin/ngcp-toggle-performance-config

/usr/sbin/ngcp-toggle-performance-config - tool to adjust Sipwise C5 configuration for low ←↩
/high performance

--help Display this usage information

--high-performance Adjust configuration for system with normal/high performance

--low-performance Adjust configuration for system with low performance (e.g. VMs)

root@spce:~#

15.8 Troubleshooting

The Sipwise C5 platform provides detailed logging and log files for each component included in the system via rsyslog. The main

folder for log files is /var/log/ngcp/, it contains a list of self explanatory log files named by component name.

The Sipwise C5 is a high performance system which requires compromise between traceability (maximum amount of debug

information being written to hard drive) and productivity (minimum load on IO subsystem). This is the reason why different log

levels are configured for the provided components by default.

Most log files are designed for debugging Sipwise C5 by Sipwise operational team while main log files for daily routine usage are:

325

The Sipwise C5 PRO Handbook mr6.5.11 326 / 601

Log file Content Estimated size

/var/log/ngcp/api.log API logs

providing type

and content of

API requests

and

responses as

well as

potential

errors

medium

/var/log/ngcp/panel.log

/var/log/ngcp/panel-

debug.log

Admin Web UI

logs when

performing

operational

tasks on the

ngcp-panel

medium

/var/log/ngcp/cdr.log mediation and

rating logs,

e.g. how

many CDRs

have been

generated

and potential

errors in case

of CDR

generation or

rating fails for

particular

accounting

data

medium

326

The Sipwise C5 PRO Handbook mr6.5.11 327 / 601

Log file Content Estimated size

/var/log/ngcp/ha.log fail-over

related logs in

case a node

in a pair loses

connection to

the other side,

when a

standby node

takes over or

an active

node goes

standby due

to intra-node

communica-

tion issues or

external ping

node

connection

issues

small

/var/log/ngcp/kamailio-

proxy.log

Overview of

SIP requests

and replies

between lb,

proxy and

sems

processes. It’s

the main log

file for SIP

overview

huge

/var/log/ngcp/kamailio-lb.log Overview of

SIP requests

and replies

along with

network

source and

destination

information

flowing

through the

platform

huge

327

The Sipwise C5 PRO Handbook mr6.5.11 328 / 601

Log file Content Estimated size

/var/log/ngcp/sems.log Overview of

SIP requests

and replies

between lb,

proxy and

sems

processes

small

/var/log/ngcp/rtp.log rtpengine

related log,

showing

information

about RTP

communica-

tion

small

Warning

it is highly NOT recommended to change default log levels as it can cause system IO overloading which will affect call

processing.

Note

the exact size of log files depend on system type, system load, system health status and system configuration, so cannot be

estimated with high precision. Additionally operational network parameters like ASR and ALOC may impact the log files’ size

significantly.

15.8.1 Collecting call information from logs

The easiest way to fetch information about a single call among the log files is the search for the SIP CallID (a unique identifier

for a SIP dialog). The call ID is used as call marker in almost all the voip related log file, such as /var/log/ngcp/kamailio-lb.log ,

/var/log/ngcp/kamailio-proxy.log , /var/log/ngcp/sems.log or /var/log/ngcp/rtp.log. Example of kamailio-proxy.log line:

Nov 19 00:35:56 sp1 proxy[7475]: NOTICE: <script>: New request on proxy - M=REGISTER R=sip: ←↩
sipwise.local

F=sip:jdoe@sipwise.local T=sip:jdoe@sipwise.local IP=10.10.1.10:5060 (127.0.0.1:5060) ID ←↩
=364e4676776621034977934e055d19ea@127.0.0.1 UA=’SIP-UA 1.2.3.4’

The above line shows the SIP information you can find in a general line contained in /var/log/ngcp/kamailio-* :

• M=REGISTER : The SIP Method

• R=sip:sipwise.local : The SIP Request URI

• F=sip:jdoe@sipwise.local : The SIP From header

328

The Sipwise C5 PRO Handbook mr6.5.11 329 / 601

• T=sip:jdoe@sipwise.local : The SIP To header

• IP=10.10.1.10:5060 (127.0.0.1:5060) : The source IP where the message is coming from. Between brackets it is shown the

local internal IP where the message come from (in this case Load Balancer)

• ID=364e4676776621034977934e055d19ea@127.0.0.1 : The SIP CallID.

• UAIP=10.10.1.10 : The User Agent source IP

• UA=SIP-UA 1.2.3.4 : The SIP User Agent header

In order to collect the full log related to a single call, it’s necessary to "grep" the /var/log/ngcp/kamailio-proxy.log using the ID=

string, for example:

grep "364e4676776621034977934e055d19ea@127.0.0.1" /var/log/ngcp/kamailio-proxy.log

15.8.2 Collecting SIP traces

The Sipwise C5 platform provides several tools to collect SIP traces. It can be used Sipwise C5 ngrep-sip tool to collect SIP traces,

for example to fetch traffic in text format from outbound and among load balancer, proxy and sems :

ngrep-sip b

see the manual to know all the options:

man ngrep-sip

The ngrep debian tool can be used in order to make a SIP trace and save it into a .pcap file :

ngrep -s0 -Wbyline -d any -O /tmp/SIP_trace_file_name.pcap port 5062 or port 5060

The sngrep debian graphic tool as well can be used to visualize SIP trace and save them in a .pcap file :

sngrep

The Sipwise C5 platform provides also the native Voip sniffer, called voisniff-ng, which provide a graphic view of all the calls

passing through the platform. It can be enabled via __/etc/ngcp-config/config.yml:

voisniff:

admin_panel: ’yes’

daemon:

bpf: ’port 5060 or 5062 or ip6 proto 44 or ip[6:2] & 0x1fff != 0’

external_interfaces: ’eth0 eth1’

filter:

exclude:

-

active: 1

case_insensitive: 1

pattern: ’\ncseq: *\d+ +(register|notify|options|subscribe)’

329

mailto:364e4676776621034977934e055d19ea@127.0.0.1

The Sipwise C5 PRO Handbook mr6.5.11 330 / 601

include: []

internal_interfaces: lo

mysql_dump_threads: 4

start: ’yes’

threads_per_interface: 10

partitions:

increment: 700000

keep: 10

admin_panel should be set to yes as well as start. Also filter.exclude.active should be set to 1 in order to avoid

to sniff REGISTER, NOTIFY, OPTIONS and SUBSCRIBE messages. Then run:

ngcpcfg apply ’enable voisniff’ && ngcpcfg push

Warning

Please notice that enabling voisniff, specially under a huge amount of traffic, may affect the system performance due to

the fact that voisniff needs to save all the traffic into the database.

330

The Sipwise C5 PRO Handbook mr6.5.11 331 / 601

16 Monitoring and Alerting

16.1 Internal Monitoring

16.1.1 Service monitoring

The platform uses both systemd and monit daemons to monitor all essential services. Since Sipwise C5 runs in an active/standby

mode, not all services are always running on both nodes, some of them will only run on the active node and be stopped on the

standby node. The following commands show the most critical services on the platform: * ngcp-service summary - to

get the list of services and their current status, * systemctl status - to get a tree of the services running, * systemctl

list-units - to get a list of the service states, * monit summary - to get the list of services known to monit and their current

status, * monit status - to get the list of services known to monit with detailed status.

Important

When you perform a stop/start/monitor/unmonitor operation on a service, monit affects other services that depend on

the initial one. Hence, if you stop or unmonitor a service all services that depend on it will be stopped or unmonitored

as well.

For example, monit stop mysql operation will stop kamailio, sbc, asterisk, prosody and some other services. Although the

recommended way to operate on services is via the ngcp-service wrapper which will take care of abstracting the underlying

process monitoring implementation.

If any service ever fails for whatever reason either the systemd or monit daemons will quickly restart it. When that happens, the

daemon will send a notification email to the address specified in the config.yml file under the general.adminmail key.

It will also send warning emails to this address under certain abnormal conditions, such as high memory consumption (> 75% is

used) or high CPU load.

Important

In order for monit to be able to send emails to the specified address, the local MTA (exim4) must be configured correctly.

The CE edition’s handbook contains more information about this in the Installation chapter.

16.1.2 System monitoring via Telegraf

The platform uses the internal telegraf service to monitor many aspects of the system, including CPU, memory, swap, disk,

filesystem, network, processes, NTP, Nginx, Redis and MySQL.

The gathered information is stored in InfluxDB, in the telegraf database.

16.1.3 Sipwise C5 specific monitoring via ngcp-witnessd

The platform uses the internal ngcp-witnessd service to monitor Sipwise C5 specific metrics or system metrics currently not

tracked by telegraf, including memory, process count, Heartbeat, MTA, Kamailio, SIP and MySQL.

331

The Sipwise C5 PRO Handbook mr6.5.11 332 / 601

The gathered information is stored in InfluxDB, in the ngcp database.

16.1.4 Monitoring data in InfluxDB

The platform uses InfluxDB as a time series database, to store most of the metrics collected in the system.

On a Sipwise C5 each node stores its own metrics and the ones for their peer node. This is done via influxdb-relay which listens

for InfluxDB writes and multiplexes them to the local node and any other node necessary.

The monitoring data is used by various components of the platform, including ngcp-collective-check, ngcp-snmp-agent and by the

statistics dashboard powered by Grafana.

The monitoring data can also be accessed directly by various means; by using the influx command-line tool in CLI or TUI modes;

by using the ngcp-influxdb-extract wrapper which provides two convenience commands to run arbitrary queries or to fetch the last

value for a measurement’s field; or by using the HTTP API with curl (or other HTTP fetchers), or with the Sipwise::InfluxDB::HTTP

perl module.

See https://docs.influxdata.com/influxdb/v1.1/query_language/spec/ for information about InfluxQL, the query language used by

InfluxDB.

Tip

To get the list of all measurements for a specific database the following query can be used SHOW MEASUREMENTS.

Tip

To get the list of fields for a specific measurement the following query can be used SELECT LAST(*) FROM "measurem

ent".

Tip

To get the list of tags for a specific measurement the following query can be used SHOW TAG KEYS FROM "measureme

nt", and for all the current tag values for a tag SHOW TAG VALUES FROM "measurement" WITH KEY = "tag".

See Section G.2.1 for detailed information about the list of data currently stored in the InfluxDB ngcp monitoring database.

16.2 Statistics Dashboard

The platform’s administration interface (described in Section 5) provides a graphical overview based on Grafana of the most

important system health indicators, such as memory usage, load averages and disk usage. VoIP statistics, such as the number of

concurrent active calls, the number of provisioned and registered subscribers, etc. is also present.

332

https://docs.influxdata.com/influxdb/v1.1/query_language/spec/

The Sipwise C5 PRO Handbook mr6.5.11 333 / 601

16.3 External Monitoring Using SNMP

16.3.1 Overview and Initial Setup

The Sipwise C5 exports a variety of cluster health data and statistics over the standard SNMP interface. By default, the SNMP

interface can only be accessed locally. To make it possible to provide the SNMP data to an external system, the config.yml

file needs to be edited and the list of allowed community names and allowed hosts/IP ranges must be populated. This list can be

found under the checktools.snmpd.communities key and it consists of one or more community/source value pairs.

The community is the allowed community name, while source is an IP address or an IP block where to allow the requests

from.

The SNMP notifications can also be configured in a similar way, to send them to an external system, by populating the checkt

ools.snmpd.trap_communities key with community/target value pairs. The community is the value that will be

used when sending the trap, while the target is an IP address where to send the trap.

The public entries with the localhost source and target are used for local testing of SNMP functionality. It is recommended

that you leave these entries in place. Other legal sources can be formed as single IP addresses or IP blocks in IP/prefix notation,

for example 192.168.115.0/24. Other targets can be formed as single IP addresses.

Tip

To locally check if SNMP is working correctly, execute the command snmpwalk -v2c -cpublic localhost . (note

the trailing dot). This will generate a long list of raw SNMP OIDs and their values, provided that the default SNMP community

key has been left in place.

Tip

To locally check if SNMP notifications (or traps) are working correctly, install the snmptrapd package, which will be configured

by default to catch the traps sent by the localhost SNMP agent. The traps will show up on /var/log/daemon.log, and a

couple of traps can be generated simply by running service snmpd restart.

INFO: SNMP version 1 and version 2c are supported.

16.3.2 Details

There are two types of information that can be retrieved from SNMP. The first one is the native Sipwise C5 cluster overview from

Sipwise C5 MIBs (Management Information Bases). The second is the legacy ad-hoc information using the Net-SNMP extension

OIDs, and detailed information for the node running the SNMP daemon using standard OIDs (Object Identifiers).

16.3.2.1 Sipwise C5 OIDs

The entire Sipwise C5 cluster can be monitored by using the SIPWISE-NGCP-MIB, SIPWISE-NGCP-MONITOR-MIB and

SIPWISE-NGCP-STATS-MIB. These OIDs are rooted at Sipwise C5 slot .1.3.6.1.4.1.34274.1.*.

333

The Sipwise C5 PRO Handbook mr6.5.11 334 / 601

The MIBs are self-documented, and can be found as part of the ngcp-snmp-mibs package (running dpkg -S SIPWISE*MIB

will list their pathnames). The Sipwise C5 SNMP Agent is a part of the ngcp-snmp-agent package, which is installed by default

and works out-of-the-box as long as the snmpd has been properly configured.

The SIPWISE-NGCP-MIB acts as the root MIB and provides information about the cluster licensing and layout (which is mostly

static data about each node, such as node name, its IP address, its roles, etc.) and information required to access the OIDs from

the other MIBs.

The SIPWISE-NGCP-MONITOR-MIB provides current monitoring information, global health conditions, the number of provi-

sioned and registered subscribers and devices. It also provides per node information (independently of the number of nodes or

their names) on their filesystem, processes, databases, system load, memory, heartbeat status, MTA queues, etc.

The SIPWISE-NGCP-STATS-MIB provides accumulated statistics on billing, performance and processed SIP messages.

NOTICE: OIDs under the following trees are not yet implemented: ngcpMonitorFraud, ngcpMonitorPerformance.perfCAPSCurTable

and ngcpStats.

INFO: The Sipwise C5 SNMP Agent uses Redis and InfluxDB as data sources. This data is essential for accurate and complete

monitoring data in the SNMP OID tree. In addition, the Redis database must be available on a shared IP address, so that

ngcp-witnessd can always write to it.

16.3.2.2 Legacy OIDs

Note

The following OIDs have been superseded by Sipwise C5 OIDs, but they are still provided for backwards compatibility.

All basic system health variables (such as memory, disk, swap, CPU usage, network statistics, process lists, etc.) for the mgmt

node can be found in standard OID slots from standard MIBs. For example, memory statistics can be found through the UCD-

SNMP-MIB in OIDs such as memTotalSwap.0, memAvailSwap.0, memTotalReal.0, memAvailReal.0, etc., which

translate to numeric OIDs .1.3.6.1.4.1.2021.4.*. In fact, UCD-SNMP-MIB is the most useful MIB for overall system

health checks.

Additionally, there’s a list of specially monitored processes, also found through the UCD-SNMP-MIB. UCD-SNMP-MIB::prNa

mes (.1.3.6.1.4.1.2021.2.1.2) gives the list of monitored processes, prCount (.1.3.6.1.4.1.2021.2.1.5) is

how many of each process are running and prErrorFlag (.1.3.6.1.4.1.2021.2.1.100) gives a 0/1 error indication

(with prErrMessage (.1.3.6.1.4.1.2021.2.1.101) providing an explanation of any error).

Tip

Some of these processes are not supposed to be running on the standby node, so you’ll see the error flag raised there. A

possible solution is to run these SNMP checks against the shared service IP of the cluster. See in Section 2.4 below for more

information.

Furthermore, UCD-SNMP-MIB provides a list of custom external checks. The names of these can be found under the UCD-

SNMP-MIB::extNames (.2) tree, with extOutput (.101) providing the output (one line) from each check and extResult

(.100) the exit code from each check.

334

The Sipwise C5 PRO Handbook mr6.5.11 335 / 601

The first of these external checks called collective_check provides a combined and overall system health status indicator.

It gathers information from both nodes and returns 0 in extResult.1 (.100.1) if everything is OK and running as it should. If

it finds a problem somewhere, but with the system still operational (e.g. a service is stopped on the inactive node), extResult.

1 will return 1 and extOutput.1 will be set to a string that can be used to diagnose the problem. In case the system is found

in a critical and non-operational state, extResult.1 will return 2, again with an error message set. If you want to keep it really

simple, you can just monitor this one OID and raise an alarm if it ever goes to non-zero.

INFO: The 0/1/2 status codes allow for easy integration with Nagios.

The remaining external checks simply return statistics on the system, they all return a number in extOutput and have extRe

sult always set to zero.

The full list of such checks is below. All of these checks have three modes: the first returns the statistics from sp1 (the first

node in Sipwise C5 pair), the second - from sp2, and the third - from whichever node is being queried (which is useful when

querying the shared service IP). For example, the local SIP response time from sp1 is in sip_check_sp1, from sp2 - is in

sip_check_sp2, and from the host itself - is in sip_check_self.

The base OID of the Result and Output OIDs is always .1.3.6.1.4.1.2021.8.1, so if you read .100.1, the full OID is .

1.3.6.1.4.1.2021.8.1.100.1.

Name in MIB Result OID Output OID Name Description

UCD-SNMP-

MIB::extNames.1

.100.1 .101.1 collective_check Summarized platform

check

UCD-SNMP-

MIB::extNames.2

.100.2 .101.2 sip_check_sp1 SIP response time in

seconds on sp1

UCD-SNMP-

MIB::extNames.3

.100.3 .101.3 sip_check_sp2 SIP response time in

seconds on sp2

UCD-SNMP-

MIB::extNames.4

.100.4 .101.4 mysql_check_sp1 Average number of

MySQL queries per

second on sp1

UCD-SNMP-

MIB::extNames.5

.100.5 .101.5 mysql_check_sp2 Average number of

MySQL queries per

second on sp2

UCD-SNMP-

MIB::extNames.6

.100.6 .101.6 mysql_replication_check_sp1MySQL replication

delay in seconds on

sp1

UCD-SNMP-

MIB::extNames.7

.100.7 .101.7 mysql_replication_check_sp2MySQL replication

delay in seconds on

sp2

UCD-SNMP-

MIB::extNames.8

.100.8 .101.8 mpt_check_sp1 RAID status on sp1

UCD-SNMP-

MIB::extNames.9

.100.9 .101.9 mpt_check_sp2 RAID status on sp2

UCD-SNMP-

MIB::extNames.10

.100.10 .101.10 exim_queue_check_sp1 Number of mails

undelivered in MTA

queue on sp1

335

The Sipwise C5 PRO Handbook mr6.5.11 336 / 601

Name in MIB Result OID Output OID Name Description

UCD-SNMP-

MIB::extNames.11

.100.11 .101.11 exim_queue_check_sp2 Number of mails

undelivered in MTA

queue on sp2

UCD-SNMP-

MIB::extNames.12

.100.12 .101.12 provisioned_subscribers_check_sp1Number of

subscribers

provisioned on sp1

UCD-SNMP-

MIB::extNames.13

.100.13 .101.13 provisioned_subscribers_check_sp2Number of

subscribers

provisioned on sp2

UCD-SNMP-

MIB::extNames.14

.100.14 .101.14 kam_dialog_active_check_sp1Number of active

calls on sp1

UCD-SNMP-

MIB::extNames.15

.100.15 .101.15 kam_dialog_active_check_sp2Number of active

calls on sp2

UCD-SNMP-

MIB::extNames.16

.100.16 .101.16 kam_dialog_early_check_sp1Number of calls in

Early Media state on

sp1

UCD-SNMP-

MIB::extNames.17

.100.17 .101.17 kam_dialog_early_check_sp2Number of calls in

Early Media state on

sp2

UCD-SNMP-

MIB::extNames.18

.100.18 .101.18 kam_dialog_type_local_check_sp1Number of active

calls local on sp1

UCD-SNMP-

MIB::extNames.19

.100.19 .101.19 kam_dialog_type_local_check_sp2Number of active

calls local on sp2

UCD-SNMP-

MIB::extNames.20

.100.20 .101.20 kam_dialog_type_relay_check_sp1Number of active

calls routed via peers

on sp1

UCD-SNMP-

MIB::extNames.21

.100.21 .101.21 kam_dialog_type_relay_check_sp2Number of active

calls routed via peers

on sp2

UCD-SNMP-

MIB::extNames.22

.100.22 .101.22 kam_dialog_type_incoming_check_sp1Number of incoming

calls on sp1

UCD-SNMP-

MIB::extNames.23

.100.23 .101.23 kam_dialog_type_incoming_check_sp2Number of incoming

calls on sp2

UCD-SNMP-

MIB::extNames.24

.100.24 .101.24 kam_dialog_type_outgoing_check_sp1Number of outgoing

calls on sp1

UCD-SNMP-

MIB::extNames.25

.100.25 .101.25 kam_dialog_type_outgoing_check_sp2Number of outgoing

calls on sp2

UCD-SNMP-

MIB::extNames.26

.100.26 .101.26 kam_usrloc_regusers_check_sp1Number of

subscribers with at

least one active

registration on sp1

336

The Sipwise C5 PRO Handbook mr6.5.11 337 / 601

Name in MIB Result OID Output OID Name Description

UCD-SNMP-

MIB::extNames.27

.100.27 .101.27 kam_usrloc_regusers_check_sp2Number of

subscribers with at

least one active

registration on sp2

UCD-SNMP-

MIB::extNames.28

.100.28 .101.28 kam_usrloc_regdevices_check_sp1Total number of

registered end

devices on sp1

UCD-SNMP-

MIB::extNames.29

.100.29 .101.29 kam_usrloc_regdevices_check_sp2Total number of

registered end

devices on sp2

UCD-SNMP-

MIB::extNames.30

.100.30 .101.30 mysql_replication_discrepancies_check_sp1Number of MySQL

tables not in sync

between sp1 and sp2

UCD-SNMP-

MIB::extNames.31

.100.31 .101.31 mysql_replication_discrepancies_check_sp2Number of MySQL

tables not in sync

between sp1 and sp2

UCD-SNMP-

MIB::extNames.32

.100.32 .101.32 sip_check_self Summarized platform

check on active node

UCD-SNMP-

MIB::extNames.33

.100.33 .101.33 mysql_check_self Average number of

MySQL queries per

second on active

node

UCD-SNMP-

MIB::extNames.34

.100.34 .101.34 mysql_replication_check_selfMySQL replication

delay in seconds on

active node

UCD-SNMP-

MIB::extNames.35

.100.35 .101.35 mpt_check_self RAID status on active

node

UCD-SNMP-

MIB::extNames.36

.100.36 .101.36 exim_queue_check_self Number of mails

undelivered in MTA

queue on active node

UCD-SNMP-

MIB::extNames.37

.100.37 .101.37 provisioned_subscribers_check_selfNumber of

subscribers

provisioned on active

node

UCD-SNMP-

MIB::extNames.38

.100.38 .101.38 kam_dialog_active_check_selfNumber of active

calls on active node

UCD-SNMP-

MIB::extNames.39

.100.39 .101.39 kam_dialog_early_check_selfNumber of calls in

Early Media state on

active node

UCD-SNMP-

MIB::extNames.40

.100.40 .101.40 kam_dialog_type_local_check_selfNumber of active calls

local on active node

337

The Sipwise C5 PRO Handbook mr6.5.11 338 / 601

Name in MIB Result OID Output OID Name Description

UCD-SNMP-

MIB::extNames.41

.100.41 .101.41 kam_dialog_type_relay_check_selfNumber of active

calls routed via peers

on active node

UCD-SNMP-

MIB::extNames.42

.100.42 .101.42 kam_dialog_type_incoming_check_selfNumber of incoming

calls on active node

UCD-SNMP-

MIB::extNames.43

.100.43 .101.43 kam_dialog_type_outgoing_check_selfNumber of outgoing

calls on active node

UCD-SNMP-

MIB::extNames.44

.100.44 .101.44 kam_usrloc_regusers_check_selfNumber of

subscribers with at

least one active

registration on active

node

UCD-SNMP-

MIB::extNames.45

.100.45 .101.45 kam_usrloc_regdevices_check_selfTotal number of

registered end

devices on active

node

UCD-SNMP-

MIB::extNames.46

.100.46 .101.46 mysql_replication_discrepancies_check_selfNumber of MySQL

tables not in sync

between sp1 and sp2

Tip

Some of the checks can be disabled (most are enabled by default) through the config.yml file, and those checks will then

return an error message or an empty string in their extOutput. Enable those checks in the config file to get their output in

the SNMP OID tree. The enable/disable flags can be found in the checktools section.

338

The Sipwise C5 PRO Handbook mr6.5.11 339 / 601

17 Extensions and Additional Modules

17.1 Cloud PBX

The Sipwise C5 comes with a commercial Cloud PBX module to provide B2B features for small and medium sized enterprises.

The following chapters describe the configuration of the PBX features.

17.1.1 PBX Device Provisioning

17.1.1.1 How it works

A device gets provisioned with the following steps:

• Your customer creates a PBX device for a supported model and inputs a device’s MAC address.

• Sipwise C5 sends the provided MAC address to the device vendor (e.g. rps.yealink.com).

• When the corresponding device is connected to the network, the device fetches the provisioning URL from the vendor site.

• The device downloads its specific configuration and the firmware from Sipwise C5.

• The phone updates the firmware and automatically sets the SIP proxy server, username and password and other SIP parameters

received from Sipwise C5.

PBX device provisioning requires appropriate device models, firmwares, configurations and profiles to be added to the system.

A device model defines a specific hardware device, like the vendor, the model name, the number of keys and their capabilities.

For example, a Cisco SPA504G has 4 keys, which can be used for private lines, shared lines (SLA) and busy lamp field (BLF). If

you have an additional attendant console, you get 32 more buttons, which can only do BLF. The list of supported devices can be

found in Section 17.1.13.

A device firmware is used to update a potentially outdated factory firmware on a device. The default firmwares included in Sipwise

C5 were tested with the provided device configurations and hence guarantee that all the supported features work as expected.

That is why we recommend using the default firmwares and device configurations provided by Sipwise.

To make device provisioning easy-to-use for end-users, they do not have to care about firmwares or configurations mentioned

above. Instead, you provide a device profile for every supported device model and associate such a device profile with a specific

device configuration and firmware. When a customer employee with administrative rights provisions PBX devices for the company,

he just selects the corresponding device profiles and specifies MAC addresses if necessary. Sipwise C5 will take care of the rest.

Sipwise C5 is supplied with a set of supported device models, their firmwares, configurations and profile. You can just enable them

and your customers will be able to use PBX device provisioning immediately.

To perform basic configuration and upload the set for a specific vendor, device model(s) or for all supported devices, execute the

steps described in the following section.

339

The Sipwise C5 PRO Handbook mr6.5.11 340 / 601

17.1.1.2 Initial device provisioning configuration

Execute the following initial steps before your customers can easily and securely provision their PBX devices:

1. Set the certificates and the keys for your HTTPs FQDN

2. Upload the required device models/firmwares/configurations/profiles

17.1.1.3 Set the certificates and the key for your web domain

You can create new ones or use the existing certificate and the key for your web FQDN.

• Put the required files into the /etc/ngcp-config/ssl folder.

• Specify the paths to the files and the FQDN in the following config.yml parameters:

– server_certfile

– server_keyfile

– Specify the FQDN in autoprov.server.host

– Optionally, enable nginx_debug

The final configuration should look similar to this one:

autoprov:

hardphone:

skip_vendor_redirect: no

server:

bootstrap_port: ’1445’

ca_certfile: /etc/ngcp-config/ssl/client-auth-ca.crt

host: portal.yourdomain.com

nginx_debug: yes

port: ’1444’

server_certfile: /etc/ngcp-config/ssl/certificate.pem

server_keyfile: /etc/ngcp-config/ssl/private_key.pem

ssl_enabled: yes

softphone:

config_lockdown: ’0’

webauth: ’0’

• Apply and push the changes

ngcpcfg apply ’PBX device provisioning configuration’

ngcpcfg push all

340

The Sipwise C5 PRO Handbook mr6.5.11 341 / 601

17.1.1.4 Upload the required device items

To upload device models/firmwares/configurations/profiles for devices with ZTP support, you need to obtain credentials from the

corresponding vendor or its local distributor in advance. These credentials are required to send information about your devices

and their provisioning URLs to the corresponding ZTP/RPS systems.

The /usr/sbin/ngcp-insert-pbx-devices.pl script will insert the specified items into the database. For example, to upload items for

all supported Yealink devices for the default reseller, execute the script with the following parameters:

/usr/sbin/ngcp-insert-pbx-devices.pl --api-user youruser --api-pass yourpassword --yealink- ←↩
user user --yealink-password password

Tip

Execute /usr/sbin/ngcp-insert-pbx-devices.pl --help to find other useful parameters, e.g. --device-models, --resellers and others.

17.1.2 Preparing PBX Rewrite Rules

In a PBX environment, the dial-plans usually looks different than for normal SIP subscribers. PBX subscribers should be able to

directly dial internal extensions (e.g. 100) instead of the full number to reach another PBX subscriber in the same PBX segment.

Therefore, we need to define specific Rewrite Rules to make this work.

The PBX dial plans are different from country to country. In the Central European area, you can directly dial an extension (e.g.

100), and if you want to dial an international number like 0049 1 23456, you have to dial a break-out digit first (e.g. 0), so the

number to be dialed is 0 0049 1 23456. Other countries are used to other break-out codes (e.g. 9), which then results in 9

0049 1 23456. If you dial a national number like 01 23456, then the number to actually be dialled is 9 01 23456.

Since all numbers must be normalized to E.164 format via inbound rewrite rules, the rules need to be set up accordingly.

Let’s assume that the break-out code for the example customers created below is 0, so we have to create a Rewrite Rule Set with

the following rules.

17.1.2.1 Inbound Rewrite Rules for Caller

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: ${caller_cloud_pbx_base_cli}\1

• Description: extension to e164

• Direction: Inbound

• Field: Caller

341

The Sipwise C5 PRO Handbook mr6.5.11 342 / 601

Figure 100: Inbound Rewrite Rule for Caller

17.1.2.2 Inbound Rewrite Rules for Callee

These rules are the most important ones, as they define which number formats the PBX subscribers can dial. For the break-out

code of 0, the following rules are necessary e.g. for German dialplans to allow pbx internal extension dialing, local area calls

without area codes, national calls with area code, and international calls with country codes.

PBX INTERNAL EXTENSION DIALIN

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: ${caller_cloud_pbx_base_cli}\1

• Description: extension to e164

• Direction: Inbound

• Field: Callee

LOCAL DIALING WITHOUT AREA CODE (USE BREAK-OUT CODE 0)

342

The Sipwise C5 PRO Handbook mr6.5.11 343 / 601

• Match Pattern: ˆ0([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}${caller_ac}\1

• Description: local to e164

• Direction: Inbound

• Field: Callee

NATIONAL DIALING (USE BREAK-OUT CODE 0 AND PREFIX AREA CODE BY 0)

• Match Pattern: ˆ00([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}\1

• Description: national to e164

• Direction: Inbound

• Field: Callee

INTERNATIONAL DIALING (USE BREAK-OUT CODE 0 AND PREFIX COUNTRY CODE BY 00)

• Match Pattern: ˆ000([1-9][0-9]+)$

• Replacement Pattern: \1

• Description: international to e164

• Direction: Inbound

• Field: Callee

343

The Sipwise C5 PRO Handbook mr6.5.11 344 / 601

Figure 101: Inbound Rewrite Rule for Callee

17.1.2.3 Outbound Rewrite Rules for Caller

When a call goes to a PBX subscriber, it needs to be normalized in a way that it’s call-back-able, which means that it needs to have

the break-out code prefixed. We create a rule to show the calling number in international format including the break-out code. For

PBX-internal calls, the caller name will be shown (this is handled by implicitly setting domain preferences accordingly, so you don’t

have to worry about that in rewrite rules).

ADDING A BREAK-OUT CODE (USE BREAK-OUT CODE 0 AND PREFIX COUNTRY CODE BY 00)

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: 000\1

• Description: e164 to full international

• Direction: Outbound

• Field: Caller

344

The Sipwise C5 PRO Handbook mr6.5.11 345 / 601

DISPLAYING THE EXTENSION IN THE CALLER NUMBER FOR PBX-INTERNAL CALLS

• Match Pattern: ˆ@{callee_cloud_pbx_account_cli_list}$

• Replacement Pattern: ${caller_cloud_pbx_ext}

• Description: e164 to full international

• Direction: Outbound

• Field: Caller

Figure 102: Outbound Rewrite Rule for Caller

Create a new Rewrite Rule Set for each dial plan you’d like to support. You can later assign it to customer domains and even to

subscribers, if a specific subscriber of a PBX customer would like to have his own dial plan.

17.1.3 Creating Customers and Pilot Subscribers

As with a normal SIP Account, you have to create a Customer contract per customer, and one Subscriber, which the customer

can use to log into the web interface and manage his PBX environment.

17.1.3.1 Creating a PBX Customer

Go to Settings→Customers and click Create Customer. We need a Contact for the customer, so press Create Contact.

345

The Sipwise C5 PRO Handbook mr6.5.11 346 / 601

Figure 103: Create PBX Customer Part 1

Fill in the desired fields (you need to provide at least the Email Address) and press Save.

346

The Sipwise C5 PRO Handbook mr6.5.11 347 / 601

Figure 104: Create PBX Customer Contact

The new Contact will be automatically selected now. Also select a Billing Profile you want to use for this customer. If you don’t

have one defined yet, press Create Billing Profile, otherwise select the one you want to use.

347

The Sipwise C5 PRO Handbook mr6.5.11 348 / 601

Figure 105: Create PBX Customer Part 2

Next, you need to select the Product for the PBX customer. Since it’s going to be a PBX customer, select the product Cloud PBX

Account.

Since PBX customers are supposed to manage their subscribers by themselves, they are able to create them via the web interface.

To set an upper limit of subscribers a customer can create, define the value in the Max Subscribers field.

Important

As you will see later, both PBX subscribers and PBX groups are normal subscribers, so the value defined here limits

the overall amount of subscribers and groups. A customer can create an unlimited amount of subscribers if you leave

this field empty.

Press Save to create the customer.

348

The Sipwise C5 PRO Handbook mr6.5.11 349 / 601

Figure 106: Create PBX Customer Part 3

17.1.3.2 Creating a PBX Pilot Subscriber

Once the customer is created, you need to create at least one Subscriber for the customer, so he can log into the web interface

and manage the rest by himself.

Click the Details button on the newly created customer to enter the detailed view.

349

The Sipwise C5 PRO Handbook mr6.5.11 350 / 601

Figure 107: Go to Customer Details

To create the subscriber, open the Subscribers row and click Create Subscriber.

350

The Sipwise C5 PRO Handbook mr6.5.11 351 / 601

Figure 108: Go to Create Subscriber

For your pilot subscriber, you need a SIP domain, a pilot number (the main number of the customer PBX), the web credentials for

the customer to log into the web interfaces, and the SIP credentials to authenticate via a SIP device.

Important

In a PBX environment, customers can create their own subscribers. As a consequence, each PBX customer should

have its own SIP domain, in order to not collide with subscribers created by other customers. This is important because

two customers are highly likely to create a subscriber (or group, which is also just a subscriber) called office. If they

are in the same SIP domain, they’d both have the SIP URI office@pbx.example.org, which is not allowed, and

the an end customer will probably not understand why office@pbx.example.org is already taken, because he

(for obvious reasons, as it belongs to a different customer) will not see this subscriber in his subscribers list.

351

The Sipwise C5 PRO Handbook mr6.5.11 352 / 601

Tip

To handle one domain per customer, you should create a wild-card entry into your DNS server like *.pbx.example.org,

which points to the IP address of pbx.example.org, so you can define SIP domains like customer1.pbx.example.

org or customer2.pbx.example.org without having to create a new DNS entry for each of them. For proper secure

access to the web interface and to the SIP and XMPP services, you should also obtain a SSL wild-card certificate for *.pbx.

example.org to avoid certification warnings on customers’ web browsers and SIP/XMPP clients.

So to create a new domain for the customer, click Create Domain.

Figure 109: Go to Create Customer Domain

Specify the domain you want to create, and select the PBX Rewrite Rule Set which you created in Section 17.1.2, then click Save.

352

The Sipwise C5 PRO Handbook mr6.5.11 353 / 601

Figure 110: Create Customer Domain

Finish the subscriber creation by providing an E.164 number, which is going to be the base number for all other subscribers within

this customer, the web username and password for the pilot subscriber to log into the web interface, and the sip username and

password for a SIP device to connect to the PBX.

The parameters are as follows:

• Domain: The domain in which to create the pilot subscriber. Each customer should get his own domain as described above to

not collide with SIP usernames between customers.

• E.164 Number: The primary number of the PBX. Calls to this number are routed to the pilot subscriber, and each subsequent

subscriber created for this customer will use this number as its base number, suffixed by an individual extension. You can later

assign alias numbers also for DID support.

• Display Name: This field is used on phones to identify subscribers by their real names instead of their number or extension.

On outbound calls, the display name is signalled in the Display-Field of the From header, and it’s used as a name in the XMPP

contact lists.

• Web Username: The username for the subscriber to log into the customer self-care web interface. This is optional, if you don’t

353

The Sipwise C5 PRO Handbook mr6.5.11 354 / 601

want a subscriber to have access to the web interface.

• Web Password: The password for the subscriber to log into the customer self-care web interface.

• SIP Username: The username for the subscriber to authenticate on the SIP and XMPP service. It is automatically used for

devices, which are auto-provisioned via the Device Management, or can be used manually by subscribers to sign into the SIP

and XMPP service with any arbitrary clients.

• SIP Password: The password for the subscriber to authenticate on the SIP and XMPP service.

Figure 111: Create Pilot Subscriber Part 1

354

The Sipwise C5 PRO Handbook mr6.5.11 355 / 601

Figure 112: Create Pilot Subscriber Part 2

Once the subscriber is created, he can log into the customer self-care interface at https://<your-ip>/login/subsc

riber and manage his PBX, like creating other users and groups, assigning Devices to subscribers and configure the Auto

Attendant and more.

As an administrator, you can also do this for the customer, and we will walk through the typical steps as an administrator to

configure the different features.

Go to the Customer Details of the PBX customer you want to configure, e.g. by navigating to Settings→Customers and clicking

the Details button of the customer you want to configure.

17.1.4 Creating Regular PBX Subscribers

Since we already created a pilot subscriber, more settings now appear on the Customer Details view. The sections we are

interested in for now are the Subscribers and PBX Groups sections.

355

The Sipwise C5 PRO Handbook mr6.5.11 356 / 601

Figure 113: Subscribers and PBX Groups

To create another subscriber for the customer PBX, open the Subscribers row and click Create Subscriber.

356

The Sipwise C5 PRO Handbook mr6.5.11 357 / 601

Figure 114: Create a Subscriber Extension

When creating another subscriber in the PBX after having the pilot subscriber, some fields are different now, because the Domain

and E.164 Number are already pre-defined at the pilot subscriber level.

What you need to define for a new subscriber is the Group the subscriber is supposed to be in. We don’t have a group yet, so

create one by clicking Create Group.

A PBX Group has four settings:

• Name: The name of the group. This is used to identify a group when assigning it to subscribers on one hand, and also

subscribers are pushed as server side contact lists to XMPP clients, where they are logically placed into their corresponding

groups.

• Extension: The extension of the group, which is appended to the primary number of the pilot subscriber, so you can actually

call the group from the outside. If our pilot subscriber number is 43 1 9999 and the extension is 100, you can reach the

group from the outside by dialing 43 1 9999 100. Since PBX Groups are actually just normal subscribers in the system,

you can assign Alias Numbers to it for DID later, e.g. 43 1 9998.

• Hunting Policy: If you call a group, then all members in this group are ringing based on the policy you choose. Serial

357

The Sipwise C5 PRO Handbook mr6.5.11 358 / 601

Ringing causes each of the subscribers to be tried one after another, until one of them picks up or all subscribers are tried.

Parallel Ringing causes all subscribers in the group to be tried in parallel. Note that a subscriber can have a call-forward

configured to some external number (e.g. his mobile phone), which will work as well.

• Serial Hunting Timeout: This value defines for how long to ring each member of a group in case of serial hunting until the next

subscriber is being tried.

We will only fill in the Name and Extension for now, as the hunting policy can be changed later if needed. Click Save to create the

group.

Figure 115: Create a PBX Group

Once the group is created and selected, fill out the rest of the form as needed. Instead of the E.164 Number, you can now only

choose the Extension, which is appended to the primary number of the pilot subscriber and is then used as primary number for

this particular subscribers. Again, if your pilot number is 43 1 9999 and you choose extension 101 here, the number of this

subscriber is going to be 43 1 9999 101. Also, you can again later assign more alias numbers (e.g. 43 1 9997) to this

subscriber for DID.

The rest of the fields is as usual, with Display Name defining the real name of the user, Web Username and Web Password

allowing the subscriber to log into the customer self-care interface, and the SIP Username and SIP Password to allow signing into

358

The Sipwise C5 PRO Handbook mr6.5.11 359 / 601

the SIP and XMPP services.

Figure 116: Finish PBX Subscriber Creation Part 1

Click Save to create the subscriber.

359

The Sipwise C5 PRO Handbook mr6.5.11 360 / 601

Figure 117: Finish PBX Subscriber Creation Part 2

Repeat the steps to create all the subscribers and groups as needed. An example of a small company configuration in terms of

subscribers and groups might look like this:

360

The Sipwise C5 PRO Handbook mr6.5.11 361 / 601

Figure 118: Example of Subscribers List

Tip

The subscribers can be reached via 3 different ways. First, you can call them by their SIP URIs (e.g. by dialing frank.

fowler@customer1.pbx.example.org) from both inside and outside the PBX. Second, you can dial by the full number

(e.g. 43 1 9999 201; depending on your rewrite rules, you might need to add a leading \+ or 00 or leave out the country

code when dialing from the outside, and adding a 0 as break-out digit when dialing from the inside) from both inside and

outside the PBX. Third, you can dial just the extension (e.g. 201) from inside the PBX. If the subscriber also has an alias

number assigned, you can dial that number also, according to your dial-plan in the rewrite rules.

17.1.5 Assigning Subscribers to a Device

Basically, you can register any SIP phone with the system using a SIP subscriber credentials. However, the platform supports

PBX Device Provisioning of certain vendors and models, as described in Section 17.1.1.

To configure a physical device, expand the PBX Devices section in the Customer Details page and click Create Device.

Set up three general parameters for the new device, which are:

361

The Sipwise C5 PRO Handbook mr6.5.11 362 / 601

• Device Profile: The actual device profile you want to use. This has been pre-configured in the Device Management by the

administrator or reseller, and the customer can choose from the list of profiles (which is a combination of an actual device plus

its corresponding configuration).

• MAC Address/Identifier: The MAC address of the phone to be added. The information can usually either be found on the back

of the phone, or in the phone menu itself.

• Station Name: Since you can (depending on the actual device) configure more lines on a phone, you can give it a station name,

like Reception or the name of the owner of the device.

In addition to that information, you can configure the lines (subscribers) you want to use on which key, and the mode of operation

(e.g. if it’s a normal private phone line, or if you want to monitor another subscriber using BLF, or if you want it to act as shared

line using SLA).

For example, a Cisco SPA504G has 4 keys you can use for private and shared lines as well as BLF on the phone itself, and in our

example we have an Attendant Console attached to it as well, so you have 32 more keys for BLF.

The settings per key are as follows:

• Subscriber: The subscriber to use (for private/shared lines) or to monitor (for BLF).

• Line/Key: The key where to configure this subscriber to.

• Line/Key Type: The mode of operation for this key, with the following options (depending on which options are enabled in the

Device Model configuration for this device:

– Private Line: Use the subscriber as a regular SIP phone line. This means that the phone will register the subscriber, and you

can place and receive phone calls with/for this subscriber.

– Shared Line: The subscriber is also registered on the system and you can place and receive calls. If another phone has the

same subscriber also configured as shared line, both phones will ring on incoming calls, and you can pick the call up on either

of them. You cannot place a call with this subscriber though if the line is already in use by another subscriber. However, you

can "steal" a running call by pressing the key where the shared line is configured to barge into a running call. The other party

(the other phone where the shared line is configured too) will then be removed from the call (but can steal the call back the

same way).

– BLF Key: The Busy Lamp Field monitors the call state of another subscriber and provides three different functionalities,

depending on the actual state:

* Speed Dial: If the monitored subscriber is on-hook, the user can press the button and directly call the monitored subscriber.

* Call Pickup: If the monitored subscriber is ringing, the user can press the button to pick up the call on his own phone.

* State Indication: It the monitored subscriber is on the phone, the key is indicating that the monitored subscriber is currently

busy.

In our example, we will configure a private line on the first key, and the BLF for another subscriber on the second key.

362

The Sipwise C5 PRO Handbook mr6.5.11 363 / 601

Figure 119: Configuring a PBX Device

Once the PBX device is saved, you will see it in the list of PBX Devices.

17.1.5.1 Initial provisioning of a PBX Device

Depending on a manufacturer and the model, there are two ways of provisioning a device:

• putting the provisioning URL directly to the device via a web browser (this option is used e.g. for Cisco devices);

• using the device’s Zero Touch Provisioning (ZTP) feature. For Yealink it is called Redirection and Provisioning Service (RPS).

17.1.5.2 Direct device provisioning

Since a stock device obtained from an arbitrary distributor doesn’t know anything about your system, it can’t fetch its configuration

from there. For that to work, you need to push the URL of where the phone can get the configuration to the phone once.

In order to do so, click the Sync Device button on the device you want to configure for the very first time.

363

The Sipwise C5 PRO Handbook mr6.5.11 364 / 601

Figure 120: Go to Sync Device

Important

As you will see in the next step, you need the actual IP address of the phone to push the provisioning URL onto it. That

implies that you need access to the phone to get the IP, and that your browser is in the same network as the phone in

order to be able to connect to it, in case the phone is behind NAT.

Enter the IP Address of the phone (on Cisco SPAs, press Settings 9, where Settings is the paper sheet symbol, and note

down the Current IP setting), then click Push Provisioning URL.

364

The Sipwise C5 PRO Handbook mr6.5.11 365 / 601

Figure 121: Sync Device

You will be redirected directly to the phone, and the Provisioning URL is automatically set. If everything goes right, you will see a

confirmation page from the phone that it’s going to reboot.

365

The Sipwise C5 PRO Handbook mr6.5.11 366 / 601

Figure 122: Device Sync Confirmation from Phone

You can close the browser window/tab and proceed to sync the next subscriber.

Tip

You only have to do this step once per phone to tell it the actual provisioning URL, where it can fetch the configuration from.

From there, it will regularly sync with the server automatically to check for configuration changes and apply them automatically.

17.1.5.3 Provisioning a device using ZTP/RPS

All Polycom, Panasonic, Snom, Grandstream and Yealink phones supported by Sipwise C5 can be provisioned using ZTP/RPS

service without physically accessing the devices. You only need to input MAC addresses of corresponding devices and associate

them with subscribers. Sipwise C5 will then immediately supply this information to the ZTP/RPS system of the corresponding

device vendor. When a subscriber unpacks the phone and connects it to the Internet for the first time, the phone will contact the

manufactorer’s ZTP/RPS service and get its provisioning URL to Sipwise C5. Then, the phone downloads all required items from

Sipwise C5 and automatically configures itself. Immediately after that, the subscriber can make the first call.

366

The Sipwise C5 PRO Handbook mr6.5.11 367 / 601

To prepare a PBX device for ZTP/RPS provisioining, follow these steps:

• Go to the PBX Devices section of the corresponding customer and click Create PBX Device.

• Specify the device and its SIP lines parameters:

– Select the required device model

– Input the device MAC address

– Specify the name of this line for your convenience

– Select a subscriber from the list for the corresponding SIP line. Some devices support multiple lines and you can provision all

of them at once.

– Select the line type: private, shared or BLF.

Figure 123: Create a PBX device

• Click Save. You will see the device in the list of customer’s PBX devices.

367

The Sipwise C5 PRO Handbook mr6.5.11 368 / 601

Figure 124: Created a new PBX device

Tip

If you have already provisioned a specific device on another platform or for another reseller, then you might need to delete that

MAC address manually from the ZTP/RPS service.

When the PBX device provisions itself, it will become registered with your SIP proxy server. From then, it will be listed in the

subscriber’s Registered Devices page.

Figure 125: Registered devices

If you need to troubleshoot the provisioning process, the following logs would help you:

• /var/log/ngcp/nginx (e.g. SSL errors are collected here: autoprov_error.log)

• /var/log/ngcp/panel-debug.log (general provisioning logs)

Tip

In case you would like to edit a device model, firmware, configuration or profile, refer to Section C.12

368

The Sipwise C5 PRO Handbook mr6.5.11 369 / 601

17.1.6 Configuring Sound Sets for the Customer PBX

In the Customer Details view, there is a row Sound Sets, where the customer can define his own sound sets for Auto Attendant,

Music on Hold and the Office Hours Announcement.

To create a new sound set, open the Sound Sets row and click Create Sound Set.

If you do this as administrator or reseller, the Reseller and/or Customer is pre-selected, so keep it as is. If you do this as customer,

you don’t see any Reseller or Customer fields.

So the important settings are:

• Name: The name of the sound set as it will appear in the Subscriber Preferences, where you can assign the sound set to a

subscriber.

• Description: A more detailed description of the sound set.

• Default for Subscribers: If this setting is enabled, then the sound set is automatically assigned to all already existing sub-

scribers which do NOT have a sound set assigned yet, and also for all newly created subscribers.

Fill in the settings and click Save.

369

The Sipwise C5 PRO Handbook mr6.5.11 370 / 601

Figure 126: Create Customer Sound Set

To upload files to your Sound Set, click the Files button for the Sound Set.

17.1.6.1 Uploading a Music-on-Hold File

Open the music_on_hold row and click Upload on the music_on_hold entry. Choose a WAV file from your file system, and click

the Loopplay setting if you want to play the file in a loop instead of just once. Click Save to upload the file.

370

The Sipwise C5 PRO Handbook mr6.5.11 371 / 601

Figure 127: Upload MoH Sound File

17.1.7 Auto-Attendant Function

The Auto-Attendant is a built-in IVR feature that is available to Cloud PBX subscribers. It provides an automatic voice menu that

enables the caller to select from a number of destinations, which could be other PBX subscribers or groups.

Another typical use case for the Auto-Attendant function is when the customer would like to have an "office assistant" that auto-

matically takes incoming calls and routes them to the desired extension (i.e. to a subscriber).

The Auto-Attendant offers 2 ways of selecting the final call destination:

• option selection: selecting one of the pre-configured destinations by pressing a single digit (0-9)

• extension dialing: entering an arbitrary PBX extension number directly

17.1.7.1 Enabling the Auto-Attendant

The Auto-Attendant feature can be activated for any subscriber in the Customer PBX individually. There are three steps involved:

371

The Sipwise C5 PRO Handbook mr6.5.11 372 / 601

1. You have to prepare a Sound Set to have Auto-Attendant sound files.

2. You have to configure the destinations for the various options you provide (e.g. pressing 1 should go to the marketing

subscriber, 2 to development and 3 to some external number).

3. You have to set a Call Forward to the Auto-Attendant.

To do so, go to Customer Details and in the Subscribers section, click the Preferences button of the subscriber, where the Auto-

Attendant should be set.

17.1.7.2 Preparing the Sound Set

Create a Sound Set and upload the Sound Files for it as described below. Afterwards in the Subscriber Preferences view, set the

Customer Sound Set preference to the Sound Set to be used. To do so, click Edit on the Customer Sound Set preference and

assign the set to be used.

Uploading Auto-Attendant Sound Files

When configuring a Call Forward to the Auto-Attendant, it will play the following files:

• aa_welcome: This is the welcome message (the greeting) which is played when someone calls the Auto-Attendant.

• each available pair of aa_X_for/aa_X_option: Each menu item in the Auto-Attendant consists of two parts. The for part,

which plays something like Press One for, and the option part, which play something like Marketing. The Auto-Attendant only

plays those menu options where both the for part and the option part is present, so if you only have 3 destinations you’d like

to offer, and you want them to be on keys 1, 2 and 3, you have to upload files for aa_1_for, aa_1_option, aa_2_for,

aa_2_option and aa_3_for and aa_3_option.

Important

The sound files only define the general structure of what is being played to the caller. The actual destinations behind

your options are configured separately in Configuring the Auto-Attendant Slots Section 17.1.7.4.

An example configuration could look like this:

372

The Sipwise C5 PRO Handbook mr6.5.11 373 / 601

Figure 128: Upload Auto-Attendant Options Sound Files

In order to activate the extension dialing function within the Auto-Attendant, you have to upload the following prompt files:

• aa_star_for, aa_star_option: the announcement "Press star for connecting to an extension" (or similar message,

depending on customer’s needs)

• aa_enter_extension: will instruct the caller to enter the phone number of the extension he wants to connect to

• aa_invalid_extension: will be played when the phone number entered does not match any of the customer’s extensions

373

The Sipwise C5 PRO Handbook mr6.5.11 374 / 601

Figure 129: Upload Auto-Attendant Extension Dialing Sound Files

17.1.7.3 Auto-Attendant Flowchart with Voice Prompts

The illustration below shows the sequence of voice prompts played when Auto-Attendant feature is activated and a caller listens

the IVR menu.

374

The Sipwise C5 PRO Handbook mr6.5.11 375 / 601

Figure 130: Flowchart of Auto-Attendant

17.1.7.4 Configuring the Auto-Attendant Slots

In the Auto-Attendant Slots section, click the Edit Slots button to configure the destination options. There are up to 10 available

slots to configure, from keys 0 to 9.

Tip

Be aware that only configured slots will be prompted in the Auto-Attendant menu.

Click Add another Slot to add a destination option, select the Key the destination should be assigned to, and enter a Destination.

The destination can be a subscriber username (e.g. marketing), a full SIP URI (e.g. sip:michelle.miller@custom

er1.pbx.example.org or any external SIP URI) or a number or extension (e.g. 491234567 or 101).

Repeat the step for every option you want to add, then press Save.

375

The Sipwise C5 PRO Handbook mr6.5.11 376 / 601

Figure 131: Define the Auto-Attendant Slots

17.1.7.5 Activating the Auto-Attendant

Once the Sound Set and the Slots are configured, activate the Auto-Attendant by setting a Call Forward to Auto-Attendant.

To do so, open the Call Forwards section in the Subscriber Preferences view and press Edit on the Call Forward type (e.g. Call

Forward Unconditional if you want to redirect callers unconditionally to the Auto-Attendant).

Select Auto-Attendant and click Save to activate the Auto-Attendant.

376

The Sipwise C5 PRO Handbook mr6.5.11 377 / 601

Figure 132: Set a Call Forward to Auto-Attendant

Tip

As with any other Call Forward, you can define more complex forwarding rules in the Advanced View to only forward the call to

the Auto-Attendant during specific time periods, or as a fallback if no one picks up the office number.

17.1.8 Cloud PBX Groups with Busy Members

A huntgroup or a PBX Group is a Cloud PBX feature that distributes the calls between members of the group according to the

configured hunt policy and timeout. The PBX group belongs to a customer and one Cloud PBX subscriber can be a member of

one or more of the huntgroups of the customer. Call Waiting is a CPE (phone) feature that allows you to take another call while

you’re already on the phone.

Multiple incoming calls to the huntgroup may result in multiple calls delivered to the same subscriber if the Call Waiting feature

is enabled on his phone, regardless whether the huntgroup members are busy at this time. Hence, busy subscribers may get a

second incoming call. It may be an expected behavior (since one subscriber may have multiple devices and/or clients that all ring

in parallel) or not, depending on the setup.

377

The Sipwise C5 PRO Handbook mr6.5.11 378 / 601

Therefore, Sipwise C5 Cloud PBX module offers Skip busy huntgroup members feature to check the busy status of individual

huntgroup members before routing a call to them. This will leave subscribers on active phone calls undisturbed by calls to

huntgroup.

The configuration of the Skip busy huntgroup members feature is done via the main configuration file: /etc/ngcp-config/

config.yml. The relevant section is: kamailio.proxy.pbx.skip_busy_hg_members, the example below shows

the default values of the parameters.

skip_busy_hg_members:

enable: ’no’

redis_key_name: ’totaluser’

Option kamailio.proxy.pbx.skip_busy_hg_members.enable determines if call destined to a huntgroup is routed

to subscribers that have busy status. When enabled and huntgroup member is busy according to the active calls information in

internal Redis storage the huntgroup call is not offered to this huntgroup member. The Sipwise C5 platform tries the other available

HG members.

Important

This option does not present an extended server-side Call Waiting functionality. It concerns only the huntgroups’

behavior. Hence subscriber would still be able to receive multiple calls when called directly (not via huntgroup) with Call

Waiting enabled on his phone.

The option redis_key_name may take the following values:

• totaluser: The callee is busy when involved in one or more incoming or outgoing calls in active or alerting phase.

• activeuser: The callee is busy when involved in one or more incoming or outgoing calls in active or alerting phase but NOT

busy for the calls that are forwarded.

When the feature is enabled with redis_key_name set to totaluser :

skip_busy_hg_members:

enable: ’yes’

redis_key_name: ’totaluser’

The behavior when calling the huntgroup is the following:

• The callee is busy when involved in one or more incoming or outgoing calls in active or alerting phase.

• The callee is busy for incoming calls that are forwarded.

This can be better illustrated by the following use cases:

Use Case 1
Subscriber receives an incoming call. A second call is made to the HG. The subscriber should NOT receive this call via HG

extension.

378

The Sipwise C5 PRO Handbook mr6.5.11 379 / 601

Use Case 2
Subscriber makes an outgoing call. A second call is made to the HG. The subscriber should NOT receive this call via HG

extension.

Use Case 3
Subscriber with call forwards (CFU, CFB, CFNA, CFT) receives a call to his extension (not extension of HG) which is then

forwarded. A second call is made to the HG. The subscriber should NOT receive the call via HG extension.

In order to prevent the forwarded calls from keeping the subscriber as "busy" for the purpose of this feature the platform ad-

ministrator should set the kamailio.proxy.pbx.skip_busy_hg_members.redis_key_name parameter to value

activeuser:

skip_busy_hg_members:

enable: ’yes’

redis_key_name: ’activeuser’

While User Cases 1 an 2 will behave in the same way as described above, the change of behavior happens in Use Case 3:

Use Case 3
Subscriber with call forwards (CFU, CFB, CFNA, CFT) receives a call to his extension (not extension of HG) which is then

forwarded. A second call is made to the HG. The subscriber should receive the call as normal.

There is a possibility to fine-tune when callee is considered busy and exclude, for example, intra-PBX calls or calls to voicemail

from keeping subscriber as "busy". Please contact Sipwise support if you’d like to do that.

17.1.9 Configuring Call Queues

The Sipwise C5 platform offers call queueing feature for Cloud PBX subscribers. For any subscriber within the PBX Sipwise

C5 system administrator or the subscriber himsef may activate the Call Queue. This is done individually for each subscriber on

demand.

If call queue activation has been done and the subscriber receives more than 1 call at a time, then the second and all further

callers will be queued until the subscriber finishes his call with the first caller and gets free.

17.1.9.1 Activating the Call Queue

The call queue configuration is available at the path: Subscribers→ select one→ Details→ Preferences→ Cloud PBX.

Following configuration parameters may be set for call queueing:

• cloud_pbx_callqueue : shows the status of call queueing (enabled / disabled); by default it is disabled

• max_queue_length : the length of call queue, i.e. the maximum number of callers in a queue; the default is 5

• queue_wrap_up_time : the delay in seconds between the ending of the previous call and the connection of the next queued

caller with the subscriber; the default is 10

379

The Sipwise C5 PRO Handbook mr6.5.11 380 / 601

In order to change the actual setting, press the Edit button in the relevant row.

Figure 133: Call Queue Configuration

17.1.9.2 Call Queue Voice Prompts

Queued callers first hear a greeting message then information about their position in the queue and finally a waiting music / signal.

Table 23: Call Queue Voice Prompts

Prompt handle Prompt content

queue_greeting All lines are busy at the moment, you are being queued.

queue_prefix You are currently number. . .

queue_suffix . . . in the queue, please hold the line.

queue_full All lines are busy at the moment, please try again later.

queue_waiting_music <waiting music>

17.1.9.3 Call Queue Flowchart with Voice Prompts

The following illustration shows which voice prompts are played to the caller when the call gets into a queue.

380

The Sipwise C5 PRO Handbook mr6.5.11 381 / 601

Figure 134: Flowchart of Call Queue

17.1.10 Device Auto-Provisioning Security

17.1.10.1 Server Certificate Authentication

The Cisco SPA phones can connect to the provisioning interface of the PBX via HTTP and HTTPS. When perform secure provi-

sioning over HTTPS, the phones validate the server certificate to check if its a legitimate Cisco provisioning server. To pass this

check, the provisioning interface must provide a certificate signed by Cisco for that exact purpose.

The following steps describe how to obtain such a certificate.

First, a new SSL key needs to be generated:

381

The Sipwise C5 PRO Handbook mr6.5.11 382 / 601

$ openssl genrsa -out provisioning.key 2048

Generating RSA private key, 2048 bit long modulus

...+++

...+++

e is 65537 (0x10001)

Next, a certificate signing request needs to be generated as follows. Provide your company details.

Important

The Common Name (e.g. server FQDN or YOUR name) field is crucial here. Provide an FQDN which the phones

will later use via DNS to connect to the provisioning interface, for example pbx.example.org. Cisco does NOT support

wild-card certificates.

Important

Leave the password empty when asked for it (press Enter without entering anything).

$ openssl req -new -key provisioning.key -out provisioning.csr

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:AT

State or Province Name (full name) [Some-State]:Vienna

Locality Name (eg, city) []:Vienna

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Sipwise GmbH

Organizational Unit Name (eg, section) []:Operations

Common Name (e.g. server FQDN or YOUR name) []:pbx.example.org

Email Address []:office@sipwise.com

Please enter the following ’extra’ attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

Finally, compress the provisioning.csr file via ZIP and send it to our Cisco sales representative. If in doubt, you can try to

send it directly to ciscosb-certadmin@cisco.com asking them to sign it.

Important

Only send the CSR file. Do NOT send the key file, as this is your private key!

382

The Sipwise C5 PRO Handbook mr6.5.11 383 / 601

Important

Ask for both the signed certificate AND a so-called combinedca.crt which is needed to perform client authentication via

SSL. Otherwise you can not restrict access to Cisco SPAs only.

You will receive a signed CRT file, which Sipwise can use to configure the PBX provisioning interface.

17.1.10.2 Client Certificate Authentication

If a client connects via HTTPS, the server also checks for the client certificate in order to validate that the device requesting the

configuration is indeed a legitimate Cisco phone, and not a fraudulent user with a browser trying to fetch user credentials.

Cisco Client Root Certificate can be obtained from Download Client Certificates website.

17.1.11 Device Bootstrap and Resync Workflows

The IP phones supported by the PBX need to initially be configured to fetch their configuration from the system. Since the phones

have no initial information about the system and its provisioning URL, they need to be boot-strapped. Furthermore, changes for a

specific device might have to be pushed to the device immediately instead of waiting for it to re-fetch the configuration automatically.

The following sections describe the work-flows how this is accomplished without having the customer directly accessing the phone.

17.1.11.1 Cisco SPA Device Bootstrap

Initial Bootstrapping

383

https://webapps.cisco.com/software/edos/home

The Sipwise C5 PRO Handbook mr6.5.11 384 / 601

Figure 135: Initially bootstrap a PBX device

Subsequent Device Resyncs

If one of the subscribers configured on a PBX device is registered via SIP, the system can trigger a re-sync of the phone directly

via SIP without having the customer enter the IP of the phone again. This is accomplished by sending a special NOTIFY message

to the subscriber:

NOTIFY sip:subscriber@domain SIP/2.0

To: <sip:subscriber@domain>

From: <sip:subscriber@domain>;tag=some-random-tag

384

The Sipwise C5 PRO Handbook mr6.5.11 385 / 601

Call-ID: some-random-call-id

CSeq: 1 NOTIFY

Subscription-State: active

Event: check-sync

Content-Length: 0

In order to prevent unauthorized re-syncs, the IP phone challenges the request with its own SIP credentials, so the NOTIFY is

sent twice, once without authentication, and the second time with the subscriber’s own SIP credentials.

Figure 136: Resync a registered PBX device

17.1.11.2 Panasonic Device Bootstrap

Initial Bootstrapping

Panasonic provides a zero-touch provisioning mechanism in their firmwares, which causes the factory-reset phones to connect to

a Panasonic web service at https://provisioning.e-connecting.net to check if a custom provisioning URL is configured for the MAC

address of the phone. If an association between the MAC and a provisioning URL is found, the web service redirects the phone

to the provisioning URL, where the phone connects to in order to obtain the configuration file.

385

The Sipwise C5 PRO Handbook mr6.5.11 386 / 601

Figure 137: Initially bootstrap a Panasonic phone

The CloudPBX module ensures that when an end customer creates a Panasonic device, the MAC address is automatically

provisioned on the Panasonic web service via an API call, so the customer’s phone can use the correct provisioning URL to

connect to the auto-provisioning server of the CloudPBX.

As a result, no customer interaction is required to bootstrap Panasonic phones, other than just creating the phone with the proper

MAC on the CloudPBX web interface.

Factory Reset

For already provisioned phones, the end customer might need to perform a factory reset:

• Press Settings or Setup

• Enter #136

• Select Factory Setting and press Enter

• Select Yes and press Enter

• Select Yes and press Enter

The default username for factory-reset phones is admin with password adminpass.

Subsequent Device Resyncs

The same procedure as with Cisco SPA phones applies, once a subscriber configured on the phone is registered.

17.1.11.3 Yealink Device Bootstrap

Initial Bootstrapping

386

The Sipwise C5 PRO Handbook mr6.5.11 387 / 601

Yealink provides a zero-touch provisioning mechanism in their firmwares, which causes the factory-reset phones to connect to

a Yealink web service at https://rps.yealink.com to check if a custom provisioning URL is configured for the MAC address of the

phone. If an association between the MAC and a provisioning URL is found, the web service redirects the phone to the provisioning

URL, where the phone connects to in order to obtain the configuration file.

If both Cisco SPA and Yealink phones are used, an issue with the Cisco-signed server certificate configured on the provisioning port

(1444 by default) of the CloudPBX provisioning server arises. Yealink phones by default only connect to trusted server certificates,

and the Cisco CA certificate used to sign the server certificate is not trusted by Yealink. Therefore, a two-step approach is used to

disable the trusted check via a plain insecure http port (1445 by default) first, where only device-generic config options are served.

No user credentials are provided in this case, because no SSL client authentication can be performed. The generic configuration

disables the trusted check, and at the same time changes the provisioning URL to the secure port, where the Yealink phone is

now able to connect to.

Figure 138: Initially bootstrap a Yealink phone

The CloudPBX module ensures that when an end customer creates a Yealink device, the MAC address is automatically provisioned

on the Yealink web service via an API call, so the customer’s phone can use the correct insecure bootstrap provisioning URL to

connect to the auto-provisioning server of the CloudPBX for the generic configuration, which in turn provides the information on

where to connect to for the secure, full configuration.

As a result, no customer interaction is required to bootstrap Yealink phones, other than just creating the phone with the proper

MAC on the CloudPBX web interface.

Factory Enable Yealink Auto-Provisioning

Older Yealink firmwares don’t automatically connect to the Yealink auto-provisioning server on initial boot, so it needs to be enabled

manually by the end customer.

387

The Sipwise C5 PRO Handbook mr6.5.11 388 / 601

• Log in to http://phone-ip/servlet?p=hidden&q=load using admin and admin as user/password when prompted

• Change Redirect Active to Enabled

• Press Confirm and power-cycle phone

Subsequent Device Resyncs

The same procedure as with Cisco SPA phones applies, once a subscriber configured on the phone is registered.

17.1.11.4 Audiocodes Mediant Device Bootstrap and Configuration

Initial Bootstrapping

An Audiocodes device provides a zero-touch provisioning mechanism in its firmware which causes a factory-reset device to

connect to the URL built into the firmware. This URL is pointing to Sipwise C5 provisioning server (in case of Sipwise C5 Carrier:

web01 node) listening on TCP port 1444 for HTTPS sessions.

The prerequisites for the device provisioning are that the device has a routable IP address and can reach the IP address of Sipwise

C5 provisioning interface.

The Audiocodes device should request the firmware file or CLI configuration file from Sipwise C5 platform. The firmware versions

and CLI config versions are decoupled from each other; Sipwise C5 can not enforce specific version of the firmware on the device.

Instead, it should be requested by the device itself. In other words, provisioning is a pull and not a push process.

Sipwise C5 expects the provisioning request from the Audiocodes device after SSL handshake and serves the requested file to

the device if the device provides valid MAC address as the part of the URL. The MAC address is used to identify the device to

Sipwise C5 platform. The firmware and CLI config files are provided at the following URLs:

• the base URL to download firmwares: https://<NGCP_IP>:1444/device/autoprov/firmware/001122334

455/from/0/latest

• the base URL to download CLI config: https://<NGCP_IP>:1444/device/autoprov/config/001122334455

where 001122334455 should be replaced with the actual device’s MAC address and <NGCP_IP> with IP address of Sipwise C5

provisioning interface.

388

The Sipwise C5 PRO Handbook mr6.5.11 389 / 601

Figure 139: Initially bootstrap a Mediant gateway

Device management basics

The list of device models, firmwares and configurations are global to a reseller and are available for end customer. This data

is initially provided by Sipwise as bulk upload of all supported phone models. The firmwares and settings are stored in the

database on the DB node pair(s). The Sipwise C5 leverages the Cloud PBX module with its template system to generate the

configurations and firmware files from database on the fly. Please refer to the following chapters in Sipwise C5 handbook for the

current information on how to perform device management:

• Uploading device firmwares Section C.12.2

• Creating device configuration Section C.12.3

• Creating device profiles Section C.12.4

Parameterizing the Device Configuration Template

The device-specific parameters are filled in by the system individually when a physical device fetches its configuration file. Param-

eters from Sipwise C5 panel:

• username: Subscriber Details→ Master Data→ SIP Username

389

The Sipwise C5 PRO Handbook mr6.5.11 390 / 601

• password: Subscriber Details→ Master Data→ SIP Password

• domain: Subscriber Details→ Master Data→ Domain

• extension: Subscriber Details→ Master Data→ Extension

• area code: Subscriber Preferences→ Number Manipulations→ ac

• country code: Subscriber Preferences→ Number Manipulations→ cc

The produced CLI config file has the following structure:

1. SIP account credentials:

"sip-definition account 0"

• user-name [username]

• password [password]

• host-name [domain]

• register reg

• contact-user "[country code][area code][extension]"

2. IP Groups:

"voip-network ip-group 1" and "voip-network ip-group 2"

• sip-group-name [domain]

3. Proxy and registration settings:

"sip-definition proxy-and-registration"

• set gw-name [domain]

4. Manipulations:

• manipulation-name "from trunk domain":

"sbc manipulations message-manipulations 3"

– action-value "[% line.domain %]"

• manipulation-name "clip no screening":

"sbc manipulations message-manipulations 8"

– action-value "’<sip:+[country code][area code][extension]@’ + param.ipg.dst.host + ’

>’"

Specific CLI parameters are:

390

The Sipwise C5 PRO Handbook mr6.5.11 391 / 601

• [IPPBX_Hostname]

• [IPPBX_server_IP]

which are used at the following configuration parameters:

• Proxy settings:

"voip-network proxy-ip 1"

– proxy-address [IPPBX_Hostname]

• Manipulations:

"sbc manipulations message-manipulations 1"

– action-value [IPPBX_Hostname]

17.1.12 Device Provisioning and Deployment Workflows

This chapter provides information and hints for preparing and performing the deployment of certain VoIP devices at customer sites,

that have a customer-facing interface which also needs customisation.

17.1.12.1 Audiocodes Mediant Device Provisioning Workflow

Audiocodes ISDN gateways and eSBCs are devices used to connect legacy (ISDN) PBX and IP-PBX to Sipwise C5 platform

and maintain their operations within the Operator’s network. Sipwise C5 offers a SipConnect 1.1 compliant signaling and media

interface to connect SIP trunks to the platform. In addition to this interface, Sipwise C5 provides an auto-provisioning mechanism

to configure SIP endpoints like IP phones, media gateways and eSBCs.

Provisioning URL

An Audiocodes device needs to obtain the provisioning URL of Sipwise C5 in one way or the other to request its device configu-

ration and subsequently download specific firmwares, obtain SIP credentials to connect to the network facing side, and configure

the customer facing side for customer devices to connect either via ISDN or SIP. Typical ways of obtaining the provisioning URL

for a SIP endpoint are:

• using DHCP option-66 (in a pre-staging environment or directly at the customer premise) where vendor-specific Redirect Servers

are configured in the default configuration or firmware

• getting pre-configured per deployment from the SIP endpoint vendor

• getting pre-configured per deployment by a 3rd party distributor

The assumption is that Audiocodes devices are supplied with a firmware (and all required SSL certificates) being pre-configured

and the provisioning URL pointing to an Operator URL Sipwise C5 is serving, before handing the devices over to field service

engineers doing the truck rolls.

391

The Sipwise C5 PRO Handbook mr6.5.11 392 / 601

Field Configuration

The Sipwise C5 provides a SipConnect 1.1 compliant interface on the network side for the Audiocodes devices. This interface

clearly defines the numbering formats of the calling and called party, the SIP header mechanisms to provide CLI restriction, the

RTP codecs, etc.

On the customer facing side, however, those variables might be different from deployment to deployment:

• An IP-PBX might choose to only send its extension as calling party number, or might choose to send the full number in national

format.

• It might choose to use the SIP From-header mechanisms to suppress displaying of the CLI, or use the SIP Privacy header.

• The same uncertainty exists to some extent for a legacy PBX connecting via ISDN to the Audiocodes device.

The assumption here is that a field service engineer is NOT supposed to change the Audiocodes configuration in order to make

the customer interface work, as this will lead to big issues in maintaining those local changes, especially if a replacement of the

device is necessary. Instead, the Audiocodes configuration must ensure that all different kinds of variants in terms of SIP headers,

codecs and number formats are translated correctly to the network side and vice versa. If it turns out that there are scenarios

in the field which are not handled correctly, temporary local changes might be performed to finish a truck roll, but those changes

MUST be communicated to the platform operator, and the server-side configuration templates must be adapted to handle those

scenarios gracefully as well.

For deployments with ISDN interfaces on the customer facing side of the Audiocodes, different Device Profiles with specific Device

Configurations per Device Model must exist to handle certain scenarios, specifically whether the ISDN interface is operating

in Point-to-Point or Point-to-Multipoint mode. Configuration options like which side is providing the clock-rate are to be defined

up-front, and the PBX must be reconfigured to adhere to the configuration.

Network Configuration

On the network facing side, both the ISDN and eSBC style deployments have to be designed to obtain an IP address via DHCP.

The definition of the IP address ranges is up to the Operator. It may or may not be NAT-ed, but it is advised to use a private IP

range directly routed in the back-bone to avoid NAT.

On the customer facing side, networking is only relevant for the eSBC deployment. In order to make the IP-PBX configuration as

stream-lined as possible, a pre-defined network should be established on the customer interface of the Audiocodes device.

Tip

The proposal is to define a network 192.168.255.0/24 with the Audiocodes device using the IP 192.168.255.2 (leaving the

192.168.255.1 to a possible gateway). The IP-PBX could obtain its IP address via DHCP from a DHCP server running on the

Audiocodes device (e.g. serving IP addresses in the range of 192.168.255.100-254), or could have it configured manually (e.g.

in the range of 192.168.255.3-99). Since the Audiocodes device IP on the customer side is always fixed at 192.168.255.2, the

IP-PBX for each customer can be configured the same way, pointing the SIP proxy/registrar or outbound proxy always to this

IP.

The customer facing side is outside the Sipwise demarcation line, that’s why the network configuration mentioned above only

serves as proposal and any feedback is highly welcome. However, it must be clearly communicated how the customer facing

392

The Sipwise C5 PRO Handbook mr6.5.11 393 / 601

network is going to be configured, because Sipwise C5 needs to incorporate this configuration into the Audiocodes configuration

templates.

17.1.12.2 Audiocodes Mediant Device Deployment Workflow

Pre-Configuration on Sipwise C5 platform

1. Before connecting a customer to a SIP trunk, it must be clear which Audiocodes Device Model is going to be used (depend-

ing on if, which and how many ISDN ports are necessary) and which Device Profile for the Device Model is required (eSBC

mode, ISDN P-to-P or P-to-MP mode). Based on that, the correct physical device must be picked.

2. Next, the customer has to be created on Sipwise C5 . This step requires the creation of the customer, and the creation of a

subscriber within this customer. For the subscriber, the proper E.164 numbers or number blocks must be assigned, and the

correct subscriber preferences must be set for the network interface to adhere to the SipConnect 1.1 interface. This step

is automated by a script provided by Sipwise until the provisioning work-flow is fully integrated with Operator’s OSS/BSS

systems. Required parameters are:

• an external customer id to relate the customer entity on Sipwise C5 with a customer identifier in Operator’s IT systems

• a billing profile name

• a subscriber username and password, the domain the subscriber is configured for

• the numbers or number blocks assigned to the subscriber, and the network provided number of the subscriber

• optional information is geographic location information and IP network information to properly map emergency calls

3. Finally, the association between the MAC address of the Audiocodes device and the SIP subscriber to be used on the SIP

trunk must be established. This step is also automated by a script provided by Sipwise. Required parameters are:

• the subscriber id

• the Device Profile to be used

• and the MAC address of the Audiocodes device

Installation

Once the above requirements are fulfilled and the customer is created on Sipwise C5 , the Audiocodes device can be installed at

the customer premise.

When the Audiocodes device boots, it requests the configuration file from Sipwise C5 by issuing a GET request via HTTPS.

For authentication and authorization purposes, Sipwise C5 requests an SSL client certificate from the device and will check

whether it’s signed by a Certificate Authority known to Sipwise C5 . Therefore, Audiocodes must provide the CA certificate used

to sign the devices’ client certificates to Sipwise to allow for this process. Also, Sipwise C5 will provide an SSL server certificate

to the device. The device must validate this certificate in order to prevent man-in-the-middle attacks. Options here are to have:

• Sipwise provide a self-signed certificate to Audiocodes for Audiocodes or a 3rd party distribution partner to configure it as trusted

CA in the pre-staging process

• the Operator provide a certificate signed by a CA which is already in the trust store of the Audiocodes devices.

393

The Sipwise C5 PRO Handbook mr6.5.11 394 / 601

Once the secured HTTPS connection is established, Sipwise C5 will provide a CLI style configuration file, with its content depend-

ing on the pre-configured Device Profile and subscriber association to the device’s MAC address.

The configuration includes the firmware version of the latest available firmware configured for the Device Model, and a URL

defining from where to obtain it. The configuration details on how the Audiocodes devices manage the scheduling of firmware

updates are to be provided by Audiocodes or its partners, since this is out of scope for Sipwise. Ideally, firmware updates should

only be performed if the device is idle (no calls running), and within a specific time-frame (e.g. between 1 a.m. and 5 a.m. once a

certain firmware version is reached, including some random variation to prevent all devices to download a new firmware version

at the same time).

Device Replacement

If a customer requires the replacement of a device, e.g. due to hardware issues or due to changing the number or type of ISDN

interfaces, a new association of the new device MAC, its Device Profile and the subscriber must be established.

In order to make the change as seamless as possible for the customer, a new device is created for the customer with the new

MAC, a proper Device Profile, but the same subscriber as used on the old device. Once the new device boots at the customer

premise, it will obtain its configuration and will register with the same subscriber as the old device (in case it’s still operational). For

inbound calls to the customer, this will cause parallel ringing to take place, and it’s up to the customer or the field engineer when

to re-configure or re-cable the PBX to connect to one or the other device.

Once the old device is decommissioned, the old MAC association can be deleted on Sipwise C5 .

17.1.13 List of available pre-configured devices

Vendor Model Available from release

Audiocodes Mediant800 mr4.1.1.1

Cisco ATA112 mr3.4.1.1

Cisco ATA122 mr3.4.1.1

Cisco SPA232D mr3.4.1.1

Cisco SPA301 mr3.4.1.1

Cisco SPA303 mr3.4.1.1

Cisco SPA501G mr3.4.1.1

Cisco SPA502G mr3.4.1.1

Cisco SPA512G mr3.4.1.1

Cisco SPA504G mr3.4.1.1

Cisco SPA504G + SPA500S mr3.7.1.4

Cisco SPA504G + two SPA500S mr3.7.1.4

Cisco SPA514G mr3.4.1.1

Cisco SPA508G mr3.4.1.1

Cisco SPA509G mr3.4.1.1

Cisco SPA525G mr3.4.1.1

Grandstream HT814 mr5.1.1.1

Grandstream GXW-4008 mr5.1.1.1

Grandstream GXW-4216 mr5.1.1.1

394

The Sipwise C5 PRO Handbook mr6.5.11 395 / 601

Vendor Model Available from release

Innovaphone IP2X2X mr3.8.3.3

Innovaphone IP230-X mr3.8.3.3

Innovaphone IP232 mr3.8.3.3

Innovaphone IP222 mr3.8.3.3

Innovaphone IP240 mr3.8.3.3

Innovaphone IP22 mr3.8.3.3

Innovaphone IP111 mr3.8.3.3

Panasonic KX-UT113 mr3.7.1.1

Panasonic KX-UT123 mr3.7.1.1

Panasonic KX-UT133 mr3.7.1.1

Panasonic KX-UT136 mr3.7.1.1

Panasonic KX-UT248 mr3.7.1.1

Panasonic KX-TGP600 mr5.1.1.1

Panasonic KX-HDV330 mr5.1.1.1

Panasonic KX-HDV230 mr5.1.1.1

Panasonic KX-HDV130 mr5.1.1.1

Polycom VVX300 mr5.4.1.1

Polycom VVX400 mr5.4.1.1

Polycom VVX500 mr5.4.1.1

Yealink CP860 mr5.2.1.1

Yealink SIP-T19P mr3.7.1.1

Yealink SIP-T20P mr3.7.1.1

Yealink SIP-T21P mr3.7.1.1

Yealink SIP-T22P mr3.7.1.1

Yealink SIP-T23P mr3.7.1.1

Yealink SIP-T23G mr3.7.1.1

Yealink SIP-T26P mr3.7.1.1

Yealink SIP-T28P mr3.7.1.1

Yealink SIP-T32G mr3.7.1.1

Yealink SIP-T38G mr3.7.1.1

Yealink SIP-T41P mr3.7.1.1

Yealink SIP-T42G mr3.7.1.1

Yealink SIP-T46G mr3.7.1.1

Yealink SIP-T48G mr3.7.1.1

Yealink SIP-T28P + EXP39 mr3.8.1.1

Yealink SIP-T28P + two EXP39 mr3.8.1.1

Yealink W52P mr3.7.1.6

17.1.13.1 Audiocodes Devices

395

The Sipwise C5 PRO Handbook mr6.5.11 396 / 601

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

Speed

Dial

Mediant800 Y Y Y dhcp 1 0 0 N

17.1.13.2 Cisco Devices

IP Phones

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

Extension

Boards

SPA301 N Y Y http 1 1 0 N

SPA303 N Y Y http 1-3 1-3 1-2 N

SPA501G N Y Y http 1-8 1-8 1-7 N

SPA502G N Y Y http 1 1 0 N

SPA512G N N Y http 1 1 0 N

SPA504G N Y Y http 1-4 1-4 1-3 2

SPA514G N N Y http 1-4 1-4 1-3 N

SPA508G N Y Y http 1-8 1-8 1-7 N

SPA509G N Y Y http 1-12 1-12 1-11 N

SPA525G N Y N http 1-5 1-5 1-4 N

Analog Adapters

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

SPA232D N Y Y http 1-6 0 0

ATA112 Y Y Y http 1-2 0 0

ATA122 Y Y Y http 1-2 0 0

Extension Boards

Model Ports Buttons Busy Lamp Supported phones

SPA500S 2 32 1-32 SPA500

17.1.13.3 Grandstream Devices

Analog Adapters

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

HT814 N Y Y redirect 4 N N

GXW-4008 N Y Y redirect 8 N N

396

The Sipwise C5 PRO Handbook mr6.5.11 397 / 601

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

GXW-4216 N Y Y redirect 16 N N

17.1.13.4 Innovaphone Devices

IP Phones

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

Extension

Boards

IP232 N Y Y dhcp 1 0 1-16 2

IP222 N Y Y dhcp 1 0 1-16 2

IP240 N N N dhcp 1 0 1-15 2

IP111 N Y Y dhcp 1 0 1-16 0

Analog Adapters

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

IP22 N Y Y dhcp 1 0 0

Extension Boards

Model Ports Buttons Busy Lamp Supported phones

IP2X2X 2 64 1-32 IP2x2

IP230-X 2 30 1-30 IP230

17.1.13.5 Panasonic Devices

IP Phones

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

Extension

Boards

KX-UT113 N N N redirect 1-2 1-2 0 N

KX-UT123 N N N redirect 1-2 1-2 0 N

KX-UT133 N N N redirect 1-4 1-4 1-23 N

KX-UT136 N N N redirect 1-4 1-4 1-23 N

KX-UT248 N N Y redirect 1-6 1-6 1-23 N

KX-TGP600 Y Y Y redirect 1-8 N N N

KX-HDV330 Y Y Y redirect 1-12 Y Y N

KX-HDV230 Y Y Y redirect 1-6 Y Y N

KX-HDV130 Y Y Y redirect 1-2 Y Y N

397

The Sipwise C5 PRO Handbook mr6.5.11 398 / 601

17.1.13.6 Polycom Devices

IP Phones

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

Extension

Boards

VVX300 N N Y redirect 1-6 1-6 Y N

VVX400 N N Y redirect 1-12 1-12 Y N

VVX500 N N Y redirect 1-12 1-12 Y N

17.1.13.7 Yealink Devices

IP Phones

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

Extension

Boards

CP860 Y Y Y redirect 1 N N N

SIP-T19P Y Y Y redirect 1 1 0 N

SIP-T20P Y Y Y redirect 1 1 0 N

SIP-T21P Y Y Y redirect 1-2 1-2 1 N

SIP-T22P Y Y Y redirect 1-3 1-3 1-2 N

SIP-T23P Y Y Y redirect 1-3 1-3 1-2 N

SIP-T23G Y Y Y redirect 1-3 1-3 1-2 N

SIP-T26P Y Y Y redirect 1-3 1-3 1-12 N

SIP-T28P Y Y Y redirect 1-6 1-6 1-15 2

SIP-T32G Y Y Y redirect 1-3 1-3 1-2 N

SIP-T38G Y Y Y redirect 1-6 1-6 1-15 N

SIP-T41P Y Y Y redirect 1-3 1-3 1-14 N

SIP-T42G Y Y Y redirect 1-3 1-3 1-14 N

SIP-T46G Y Y Y redirect 1-6 1-6 1-26 N

SIP-T48G Y Y Y redirect 1-6 1-6 1-28 N

W52P N Y Y redirect 1-5 1-5 0 N

17.1.14 Phone features

17.1.14.1 Cisco phones

SPA301

1) Soft keys

Not available.

2) Hard keys

398

The Sipwise C5 PRO Handbook mr6.5.11 399 / 601

• vm

• hold/unhold

3) Line keys

Not available.

4) VSC

• directed pickup

• park/unpark

SPA303

1) Soft keys

Idle:

redial lcr dir dnd >

< cfwd unpark

Idle with missed calls:

lcr miss

Call:

hold endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer ignore

2) Hard keys

• vm

• hold/unhold

399

The Sipwise C5 PRO Handbook mr6.5.11 400 / 601

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• directed pickup

SPA501G

1) Soft keys

Idle:

redial lcr dir dnd >

< cfwd unpark

Idle with missed calls:

lcr miss

Call:

hold/resume endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer reject

2) Hard keys

• vm

• hold/unhold

3) Line keys

400

The Sipwise C5 PRO Handbook mr6.5.11 401 / 601

• BLF monitoring

• directed pickup

4) VSC

• directed pickup

SPA502G

1) Soft keys

Idle:

redial lcr dir dnd >

< cfwd unpark

Idle with missed calls:

lcr miss

Call:

hold/resume endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer reject

2) Hard keys

• vm

• hold/unhold

3) Line keys

Not available.

4) VSC

401

The Sipwise C5 PRO Handbook mr6.5.11 402 / 601

• directed pickup

SPA504G

1) Soft keys

Idle:

redial lcr dir dnd >

< cfwd unpark

Idle with missed calls:

lcr miss

Call:

hold/resume endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer reject

2) Hard keys

• vm

• hold/unhold

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• directed pickup

402

The Sipwise C5 PRO Handbook mr6.5.11 403 / 601

SPA512G

1) Soft keys

Idle:

redial lcr dir dnd >

< cfwd unpark

Idle with missed calls:

lcr miss

Call:

hold/resume endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer reject

2) Hard keys

• vm

• hold/unhold

3) Line keys

Not available.

4) VSC

• directed pickup

SPA514G

1) Soft keys

Idle:

403

The Sipwise C5 PRO Handbook mr6.5.11 404 / 601

redial lcr dir dnd >

< cfwd unpark

Idle with missed calls:

lcr miss

Call:

hold/resume endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer reject

2) Hard keys

• vm

• hold/unhold

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• directed pickup

SPA509G

1) Soft keys

Idle:

redial lcr dir dnd >

< cfwd unpark

404

The Sipwise C5 PRO Handbook mr6.5.11 405 / 601

Idle with missed calls:

lcr miss

Call:

hold/resume endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer reject

2) Hard keys

• vm

• hold/unhold

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• directed pickup

SPA508G

1) Soft keys

Idle:

redial lcr dir dnd >

< cfwd unpark

Idle with missed calls:

405

The Sipwise C5 PRO Handbook mr6.5.11 406 / 601

lcr miss

Call:

hold/resume endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer reject

2) Hard keys

• vm

• hold/unhold

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• directed pickup

SPA525G

1) Soft keys

Idle:

Redial call Rtn Directory DND >

< Forward Unpark

Idle with missed calls:

Call Rtn Miss

406

The Sipwise C5 PRO Handbook mr6.5.11 407 / 601

Call:

Hold End Call Conf Transfer >

BlindXfer Park

Call on hold:

Resume EndCall EewCall Redial >

< Directory Forward DND

Ringing:

Answer Ignore

2) Hard keys

• vm

• hold/unhold

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• directed pickup

17.1.14.2 Yealink phones

T19P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

407

The Sipwise C5 PRO Handbook mr6.5.11 408 / 601

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

Not available.

4) VSC

• transfer park

• directed pick up

• park/unpark

T20P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

408

The Sipwise C5 PRO Handbook mr6.5.11 409 / 601

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• transfer park

• park/unpark

T21P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

409

The Sipwise C5 PRO Handbook mr6.5.11 410 / 601

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• transfer park

• park/unpark

T22P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

410

The Sipwise C5 PRO Handbook mr6.5.11 411 / 601

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• park/unpark

• transfer park

T23P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

411

The Sipwise C5 PRO Handbook mr6.5.11 412 / 601

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• park/unpark

• transfer park

T23G

1) Soft keys

Idle:

History Dir DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf EndCall

Call on hold:

Tran Resume NewCall EndCall

Ringing:

Answer FWD Reject

412

The Sipwise C5 PRO Handbook mr6.5.11 413 / 601

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• unpark

• transfer park

T26P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

413

The Sipwise C5 PRO Handbook mr6.5.11 414 / 601

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• unpark

• transfer park

T28P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

414

The Sipwise C5 PRO Handbook mr6.5.11 415 / 601

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• park/unpark

• transfer park

T32G

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

415

The Sipwise C5 PRO Handbook mr6.5.11 416 / 601

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• unpark

• transfer park

T38G

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

416

The Sipwise C5 PRO Handbook mr6.5.11 417 / 601

• BLF monitoring

• directed pickup

4) VSC

• unpark

• transfer park

T41P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

417

The Sipwise C5 PRO Handbook mr6.5.11 418 / 601

4) VSC

• park/unpark

• transfer park

T42G

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

418

The Sipwise C5 PRO Handbook mr6.5.11 419 / 601

• park/unpark

• transfer park

T46G

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• park/unpark

• transfer park

419

The Sipwise C5 PRO Handbook mr6.5.11 420 / 601

T48G

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• park/unpark

• transfer park

W52P

1) Soft keys

420

The Sipwise C5 PRO Handbook mr6.5.11 421 / 601

Idle:

421

The Sipwise C5 PRO Handbook mr6.5.11 422 / 601

History Line

Idle with missed calls:

Exit View

Call:

Ext. Call Options

Call on hold:

Resume Line

Ringing:

Accept

2) Hard keys

• vm

• redirect

3) VSC

• park/unpark

• transfer park

17.1.14.3 Panasonic phones

KX-UT113

1) Soft keys

Idle:

Settings Call Log Phone book

Call:

Blind Phone book

422

The Sipwise C5 PRO Handbook mr6.5.11 423 / 601

Call on hold:

Call Log Phone book

Ringing:

Answer Reject

2) Hard keys

• vm

• forward/dnd

• hold/unhold

• redial

• recall

• transfer

• conf

3) Line keys

Not available.

4) VSC

• park/unpark

• transfer park

KX-UT123

1) Soft keys

Idle:

Settings Call Log Phone book

Call:

Blind Phone book

Call on hold:

Call Log Phone book

423

The Sipwise C5 PRO Handbook mr6.5.11 424 / 601

Ringing:

Answer Reject

2) Hard keys

• vm

• forward/dnd

• hold/unhold

• redial

• recall

• transfer

• conf

3) Line keys

Not available.

4) VSC

• park/unpark

• transfer park

KX-UT133

1) Soft keys

Idle:

Settings Call Log Phone book

Call:

Blind Phone book

Call on hold:

Call Log Phone book

Ringing:

Answer Reject

424

The Sipwise C5 PRO Handbook mr6.5.11 425 / 601

2) Hard keys

• vm

• forward/dnd

• hold/unhold

• redial

• recall

• transfer

• conf

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• unpark

• transfer park

KX-UT136

1) Soft keys

Idle:

Settings Call Log Phone book

Call:

Blind Phone book

Call on hold:

Call Log Phone book

Ringing:

Answer Reject

425

The Sipwise C5 PRO Handbook mr6.5.11 426 / 601

2) Hard keys

• vm

• forward/dnd

• hold/unhold

• redial

• recall

• transfer

• conf

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• park/unpark

• transfer park

KX-UT248

1) Soft keys

Idle:

Settings Call Log Phone book

Call:

Blind Phone book

Call on hold:

Call Log Phone book

Ringing:

Answer Reject

426

The Sipwise C5 PRO Handbook mr6.5.11 427 / 601

2) Hard keys

• vm

• forward/dnd

• hold/unhold

• redial

• recall

• transfer

• conf

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• park/unpark

• transfer park

17.1.14.4 Innovaphone

IP222

1) Soft keys

Idle:

Setup All Calls Home Calls My favorites Phonebook

Call:

Hold Transfer Park Cancel

Call on hold:

Resume Transfer Park Cancel

Ringing:

427

The Sipwise C5 PRO Handbook mr6.5.11 428 / 601

Answer Transfer Silence Reject

2) Hard keys

• hold

• redial

3) Line keys

• BLF monitoring

4) VSC

• unpark

• transfer park

IP232

1) Soft keys

Idle:

Setup All Calls Home Calls My favorites Phonebook

Call:

Hold Transfer Park Cancel

Call on hold:

Resume Transfer Park Cancel

Ringing:

Answer Transfer Silence Reject

2) Hard keys

• hold

• redial

3) Line keys

428

The Sipwise C5 PRO Handbook mr6.5.11 429 / 601

• BLF monitoring

4) VSC

• unpark

• transfer park

IP111

1) Soft keys

Idle:

Setup All Calls Home Calls My favorites Phonebook

Call:

Hold Transfer Park Cancel

Call on hold:

Resume Transfer Park Cancel

Ringing:

Answer Transfer Silence Reject

2) Hard keys

• hold

• redial

3) Line keys

• BLF monitoring

4) VSC

• unpark

• transfer park

IP240

429

The Sipwise C5 PRO Handbook mr6.5.11 430 / 601

1) Soft keys

Not available.

2) Hard keys

• hold

• redial

• conference

• dnd

• forward

3) Line keys

• BLF monitoring

4) VSC

• transfer park

• unpark

17.1.15 Shared line appearance

In PBX environment, shared line appearance is supported for PBX subscribers. In comparison to the private line, subscriber

registering for the shared line will, immediately after the successful registration, subscribe for Call-Info event. This subscribe

is challenged for authentication and if the credentials are provided, subscriber is notified that the subscription is active. In the

respective NOTIFY message, this is reflected in Subscription-State header set to active. NOTIFY also contains information about

the status of the shared line in Call-Info header. If the appearance is not used, Call-Info header will describe the state as idle. In

the NOTIFY message, this is reflected as “appearance-index=*;appearance-state=idle”.

If there is incoming call to the subscriber, the appearance index is created after the call is accepted and state will be set to active.

Call-Info header will contain “appearance-index=1; appearance-state=active”. After call is finished and appearance is not used

elsewhere, appearance index is removed and state is set to idle. In the case of outgoing call, subscription to line-seize event is

required to be able to dial. Before dialing can be started, SUBSCRIBE to line-seize is sent. Consequently, subscriber receives

NOTIFY for line-seize with active subscription state. Call-info subscription is updated accordingly, appearance is created and its

state is set to seized. As soon as the call starts ringing, Call-Info status is updated to progressing and line-seize subscription is

set to terminated with “reason=noresource” in Subscription-State header. When the call is accepted, Call-Info status is changed

to active and set again to idle when call is finished. Also, the appearance index is removed.

17.2 Sipwise sip:phone App (SIP client)

You can order two commercial Unified Communication Clients for full end-to-end integration of voice, video, chat and presence

features. There are two applications available:

430

The Sipwise C5 PRO Handbook mr6.5.11 431 / 601

• the sip:phone Desktop Client for Microsoft Windows, Apple OSX, and Linux;

• the sip:phone Mobile App for iOS and Android.

Both clients are fully brandable to the customer’s corporate identity. The clients are not part of the standard delivery and need to

be licensed separately. This handbook discusses the mobile client in details.

We continuously develop the mobile clients to provide new features, as they do not support the full range of features yet.

The sip:phone Mobile App is a mobile client for iOS and Android that supports voice calls via SIP, as well as presence and instant

messaging via XMPP. The following sections describe the steps needed to integrate it into your Sipwise C5.

17.2.1 Zero Config Launcher

Part of the mobile apps is a mechanism to sign up to the service via a 3rd party website, which is initiated on the login screen and

rendered within the app. During the sign-up process, the 3rd party service is supposed to create a new account and subscriber in

Sipwise C5 (e.g. automatically via the API) and provide the end user with the access credentials.

The mobile apps come with a zero config mechanism to simplify the end-customer log in using these credentials (especially ruling

out the need to manually enter them). It makes it possible to deliver the access credentials via a side channel (e.g. Email, SMS)

packed into a URL. The user just clicks the URL, and it automatically launches the app with the correct credentials. The following

picture shows the overall workflow.

431

The Sipwise C5 PRO Handbook mr6.5.11 432 / 601

Figure 140: Provisioning Push Workflow

There are two components provided by a 3rd party system. One is the 3rd Party Sign-Up Form, and the other is the 3rd Party

Launch Handler. The purpose of these components is to allow an end customer to open a link with the access credentials via the

sip:phone app.

17.2.1.1 3rd Party Sign-Up Form

The 3rd Party Sign-Up Form is a website the app shows to the end user when he taps the sign-up link on the app Login Screen.

There, the end customer usually provides his contact details like name, address, phone number and email address, etc. After

validation, the website creates an account and a subscriber in Sipwise C5 via the API.

After successfully creating the account and the subscriber, this site needs to construct a specially crafted URL, which is sent back

to the end customer via a side channel. Ideally, this channel would be an SMS if you want to verify the end customer’s mobile

number, or an email if you want to check the email address.

The sip:phone app registers a URL schema handler for URLs starting with sipphone://. If you start such a link, the app

performs a Base64 decoding of the string right after the sipphone:// prefix and then decrypts the resulting binary string via

AES using the keys defined during the branding step. The resulting string is supposed to be

432

The Sipwise C5 PRO Handbook mr6.5.11 433 / 601

username=$user&server=$domain&password=$password.

Therefore, the 3rd Party Sign-Up Form needs to construct this string using the credentials defined while creating the subscriber

via Sipwise C5 API, then encrypt it via AES, and finally perform a Base64 encoding of the result.

Note

Up until and including version mr6.5.11 of Sipwise C5 , the SIP login credentials are used here. Future versions will connect

to the REST interface of Sipwise C5 using the web credentials first and fetch the SIP credentials along with other settings from

there.

An example Perl code performs encoding of such a string. The AES key and initialization vector ($key and $iv) are the standard

values of the sip:phone app and should work until you specified other values during the branding process.

#!/usr/bin/perl -w

use strict;

use Crypt::Rijndael;

use MIME::Base64;

use URI::Escape;

my $key = ’iBmTdavJ8joPW3HO’;

my $iv = ’tww21lQe6cmywrp3’;

my $plain = do { local $/; <> };

pkcs#5 padding to 16 bytes blocksize

my $pad = 16 - (length $plain) % 16;

$plain .= pack(’C’, $pad) x $pad;

my $cipher = Crypt::Rijndael->new(

$key,

Crypt::Rijndael::MODE_CBC()

);

$cipher->set_iv($iv);

my $crypted = $cipher->encrypt($plain);

store b64-encoded string and print to STDOUT

my $b64 = encode_base64($crypted, ’’);

print $b64, "\n";

print to STDOUT using URL escaping also

print uri_escape($b64), "\n";

This snippet takes a string from STDIN, encrypts it via AES, encodes it via Base64 and sends the result to STDOUT. It also writes

the second line with the same string, but this time, the URL is escaped. To test it, you would run it as follows on a shell, granted

it’s stored at /path/to/encrypt.pl.

echo -n ’username=testuser&server=example.org&password=testpass’ \

| /path/to/encrypt.pl

This command would result in the output strings CI8VN8toaE40w8E4OH2rAuFj3Qev9QdLI/Wv/VaBCVK2yNkBZjxE9

433

The Sipwise C5 PRO Handbook mr6.5.11 434 / 601

eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg== and CI8VN8toaE40w8E4OH2rAuFj3Qev9QdLI%2FWv%2FVaBCVK

2yNkBZjxE9eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg%3D%3D. The sip:phone can use the former string to automati-

cally fill in the login form of the Login Screen if started via a Link like sipphone://CI8VN8toaE40w8E4OH2rAuFj3Qev9

QdLI/Wv/VaBCVK2yNkBZjxE9eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg==.

Here is the same code in PHP.

#!/usr/bin/php

<?php

$key = "iBmTdavJ8joPW3HO";

$iv = "tww21lQe6cmywrp3";

$clear = fgets(STDIN);

$cipher = fnEncrypt($clear, $key, $iv);

echo $cipher, "\n";

echo urlencode($cipher), "\n";

function fnEncrypt($clear, $key, $iv) {

$pad = 16 - strlen($clear) % 16;

$clear .= str_repeat(pack(’C’, $pad), $pad);

return rtrim(base64_encode(mcrypt_encrypt(

MCRYPT_RIJNDAEL_128, $key, $clear,

MCRYPT_MODE_CBC, $iv)), "\0");

}

?>

Similar to the Perl code, you can call it like this:

echo -n ’username=testuser&server=example.org&password=testpass’ \

| /path/to/encrypt.php

However, a URL with the sipphone:// schema is not displayed as a link in an SMS or an Email client and thus can not be

clicked by the end customer, so you need to make a detour via a regular http:// URL. To do so, you need a 3rd Party Launch

Handler to trick the phone to open such a link.

Therefore, that the 3rd Party Sign-Up Form needs to return a link containing a URL pointing to the 3rd Party Launch Handler and

pass the URL escaped string gathered above to the client via an SMS or an Email. Since it is the regular http:// link, it is

clickable on the phone and can be launched from virtually any client (SMS, Email, etc.), which correctly renders an HTML link.

A possible SMS sent to the end customer (via the phone number entered in the sign-up from) could, therefore, look as follows

(trying to stay below 140 chars).

http://example.org/p?c=CI8VN8toaE40w8E4OH2rAuFj3Qev9QdLI

%2FWv%2FVaBCVK2yNkBZjxE9eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg%3D%3D to launch sipphone

An HTML Email could look like this:

Welcome to Example.org,

434

The Sipwise C5 PRO Handbook mr6.5.11 435 / 601

<a href="http://www.example.org/sipphone?c=CI8VN8toaE40w8E4OH2rAuFj3Qev9QdLI

%2FWv%2FVaBCVK2yNkBZjxE9eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg%3D%3D">

click here

 to log in.

That way, you can do both: verify the contact details of the end customer, and send the end customer the login credentials in a

secure manner.

17.2.1.2 3rd Party Launch Handler

The URL http://www.example.org/sipphone mentioned above can be any simple script, and its sole purpose is to

send back a 301 Moved Permanently or 302 Moved Temporarily with a Location: sipphone://xxxxxx

xxxxxx header to tell the phone to open this link via the sip:phone app. The xxxxxxxxxxxx is the plain (non-URL-escaped) string

generated by the above script.

An example CGI script performing this task follows.

#!/usr/bin/perl -w

use strict;

use CGI;

my $q = CGI->new;

my $c = $q->param(’c’);

print CGI::redirect("sipphone://$c");

The script simply takes the URL parameter c from the URL http://www.example.org/sipphone?c=CI8VN8toaE40

w8E4OH2rAuFj3Qev9QdLI%2FWv%2FVaBCVK2yNkBZjxE9eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg%3D%3D crafted

above and puts its content into a Location header using the sipphone:// schema, and finally sends a 301 Moved

Permanently back to the phone.

The phone follows the redirect by opening the URL using the sip:phone app, which in turn decrypts the content and fills in the login

form.

Note

Future versions of Sipwise C5 will be shipped with this launch handler integrated into the system. Up until and including the

version mr6.5.11, this script needs to be installed on any webserver manually.

17.2.2 Mobile Push Notification

The mobile push functionality provides the remote start of a mobile application on incoming calls via the Google GCM or the Apple

APNS notification services. It enables you to offer your subscribers a modern and convenient service on mobile devices.

435

The Sipwise C5 PRO Handbook mr6.5.11 436 / 601

Caution

Although suspending an application on a phone and waking it up via the mobile push notification service extends battery

life, the whole mobile push notification concept is the best effort framework provided by Apple and Google for iOS and

Android respectively, and therefore does not guarantee 100% reliability.

17.2.2.1 Architecture

If the mobile push functionality is enabled and there are no devices registered for a subscriber, the call-flow looks as follows.

Figure 141: Mobile Push Workflow

1. The caller sends INVITE to proxy

2. The callee is offline, proxy forwards the call to AS (application server)

3. AS subscribes to the callee’s registration events on proxy

4. AS sends early media to the caller as a feedback, as the call initiation process might take a while

5. AS sends the push request to GCM/APNS service

6. GCM/APNS service delivers the push request to the callee

436

The Sipwise C5 PRO Handbook mr6.5.11 437 / 601

7. The callee accepts the push request and confirms the mobile application start (unattended on Android), then the mobile

application registers to proxy

8. Proxy sends registration notification to AS

9. AS deflects the call back to proxy

10. Proxy sends INVITE to the callee

11. The callee accepts the call

12. The response is sent back to the caller. Hence, the call setup is completed

In the case of a time-out (no registration notification within a particular time), the application server rejects the call request with an

error.

17.2.2.2 The Configuration Checklist

Follow this checklist to make sure you’ve completed all the steps. If you miss anything, the service may not work as expected.

Name Description Link

Obtain a trusted SSL certificate from a

CA

Required for either application Section 17.2.2.3

Create an Apple developer account

and enable the push notification

service

For iOS mobile application Section 17.2.2.4

Obtain the Apple certificate for the app For iOS mobile application Section 17.2.2.5

Obtain the API key for the app from

Google

For Android mobile application Section 17.2.2.6

Provide the required information to

developers

It is required to make beta builds and

publish the apps

Section 17.2.2.7

Adjust the configuration Adjust the config.yml file and apply the

changes (usually performed by

Sipwise)

Section 17.2.2.8

Recheck your DNS Zone configuration Check that the DNS Zone is correctly

configured

Section 17.2.2.9

Add DNS SRV records Create specific DNS SRV records for

SIP and XMPP services

Section 17.2.2.10

Check NTP configuration Ensure that all your servers show

exact time

Section 17.2.2.11

Enable Apple/Google Mobile Push in

the Admin Panel

It can be enabled for a domain or

separate subscribers

Section 17.2.2.12

Configure a mobile application Check that subscribers can easily

install and use your application

Section 17.2.2.13

437

The Sipwise C5 PRO Handbook mr6.5.11 438 / 601

17.2.2.3 Obtain the Trusted SSL Certificate

A trusted SSL certificate is required, and we suggest obtaining it before starting the configuration.

The mobile application uses respective iOS/Android libraries to establish a secure TLS connection with certain Sipwise C5 ser-

vices, such as SIP/XMPP/pushd(https). A signed SSL certificate is required to guarantee the security of this connection.

Any Certificate Authority (CA) such as Verisign and others can provide you with the required trusted SSL certificate (a certificate

and the key files) which you will use in the configuration below.

17.2.2.4 Create an Apple Account and Enable the Push Notification Service

Below is a brief instruction on how to create an Apple account and enable the Push Notification Service in it. You may need to

perform additional steps depending on your project.

Note

You may only create an Apple account (step 1 below) and enroll into the Apple Developer Program (step 2 below) and Sipwise

developers will do the rest. Still, you can perform all the steps by yourself.

1. Create an Apple developer account to get the Apple ID for your company. For this, go to developer.apple.com/account

2. Enrol in the Apple Developer Program. It is required to configure push notifications as you will need a push notification

certificate for your App ID, which requires the Apple Developer Program membership. Go to developer.apple.com/programs

for more details.

3. Register an App ID:

• Sign into developer.apple.com/account.

438

The Sipwise C5 PRO Handbook mr6.5.11 439 / 601

• Click Certificates, IDs & Profiles.

• Under Identifiers, select App IDs.

• Click the Add button (+) in the upper-right corner.

439

The Sipwise C5 PRO Handbook mr6.5.11 440 / 601

• Enter a name for the App ID in the App ID Description block. This helps you identify the App ID later.

• Select Explicit App ID and enter the app’s bundle ID in the Bundle ID field. Note that an explicit App ID exactly matches

the bundle ID of an app you are building — for example, com.example.push. An explicit App ID can not contain an asterisk

(*).

440

The Sipwise C5 PRO Handbook mr6.5.11 441 / 601

• In the App Services section enable Push Notifications. Click Continue to submit the form

441

The Sipwise C5 PRO Handbook mr6.5.11 442 / 601

• Click Submit to create the App ID.

17.2.2.5 Obtain an Apple SSL Certificate and a Private Key

1. Create a CSR (Certificate Signing Request):

• Sign into developer.apple.com/account/ios/certificate.

• Click the Add button (+) in the upper-right corner.

• Select Apple Push Notification service SSL (Sandbox & Production) as the certificate type and click Continue.

442

The Sipwise C5 PRO Handbook mr6.5.11 443 / 601

• Select your App ID and click Continue.

443

The Sipwise C5 PRO Handbook mr6.5.11 444 / 601

• Read the information about creating a CSR.

• Follow the instructions to create a CSR using Keychain Access in MAC.

Note

If you do not have access to a Mac, you can still create a CSR in Linux or Windows using OpenSSL, for example.

2. Get the Certificate and Private Key

• When you have the CSR file return to the browser and click Continue.

444

The Sipwise C5 PRO Handbook mr6.5.11 445 / 601

• Click Choose File. . . in your browser.

445

The Sipwise C5 PRO Handbook mr6.5.11 446 / 601

• Select the CSR file you just created and saved and click Continue.

446

The Sipwise C5 PRO Handbook mr6.5.11 447 / 601

• Click Download to download the certificate (give it the aps.cer name).

• Open the downloaded certificate file (it should automatically be opened in Keychain Access, otherwise open it manually

in Keychain Access).

• Find the certificate you just opened/imported in Keychain Access.

• Expand the certificate to show the Private Key.

• Select only the Private Key portion of the certificate, right-click on it and select Export "Common Name". . . from the menu.

• Choose a location (e.g. Desktop) and filename to export the .p12 file to and click Save.

• Optionally pick a password for the .p12 file to protect its private key contents and click OK. (You will then need to enter

your log-in password to permit the export).

3. Generate a PEM file from the p12 file:

• Open up your terminal and run the following commands to create a PEM file from the p12 file (If you input a password for

the p12 file, you will need to enter it here):

cd ~/Desktop

openssl x509 -in aps.cer -inform der -out PushChatCert.pem

openssl pkcs12 -in PushChatCert.p12 -out PushCertificate.pem -nodes -clcerts

openssl pkcs12 -nocerts -out PushChatKey.pem -in PushChatKey.p12

447

The Sipwise C5 PRO Handbook mr6.5.11 448 / 601

17.2.2.6 Obtain the API Key for the App from Google

You can use Google Cloud Messaging (GCM) to send push notifications to your subscribers with Android-based mobile devices.

Google Cloud Messaging is a free service that acts as an intermediary between Sipwise C5 and devices of your subscribers.

Google’s Cloud Connection Server (CCS), a part of GCP, manages the persistent connections with mobile devices to deliver your

push notifications.

While communicating with CCS, Sipwise C5 identifies itself using an API key. To get it, follow the steps below.

1. Create a new project in the Google APIs Console page. For this go to code.google.com/apis/console.

2. Click Create a Project..

448

The Sipwise C5 PRO Handbook mr6.5.11 449 / 601

3. Input the project name, agree with the Terms of Service and click Create.

4. Click Google Cloud Messaging on the Overview page.

449

The Sipwise C5 PRO Handbook mr6.5.11 450 / 601

5. Click Enable for the Google Cloud Messaging.

6. Click Go to Credentials.

450

The Sipwise C5 PRO Handbook mr6.5.11 451 / 601

7. Select Google Cloud Messaging and Web Server from the corresponding lists and click What credentials do I need?

8. Adjust the API Key name and input the IP addresses of all your load balancers under Accept requests from these server IP

addresses. Click Create API key.

451

The Sipwise C5 PRO Handbook mr6.5.11 452 / 601

Note

You may skip adding the IP addresses, otherwise list ALL your load balancers.

9. Copy your API key and click Done. Save the API key for future use.

17.2.2.7 Provide the Required Information to Developers

Please, provide Sipwise developers with the following files and information so that they can make beta builds and submit the

application to the App Store:

• Access to your Apple developer account

• The trusted SSL certificate and its private key

• The Apple SSL certificate and its private key

452

The Sipwise C5 PRO Handbook mr6.5.11 453 / 601

For the Android application, provide the following:

• Access to your Google developer account

• Google application API key

17.2.2.8 Adjust Sipwise C5 Configuration (Usually Performed by Sipwise)

1. Upload the Apple SSL certificate (PushChatCert.pem) and the private key (PushChatKey.pem) to /etc/ngcp-config/ssl/

2. Upload the trusted SSL certificate (CAsigned.crt) and the private key (CAsigned.key) to /etc/ngcp-config/ssl/

3. Specify the corresponding paths and names in the pushd section of the config.yml file:

• apns: section (For iOS mobile application)

– certificate: ’/etc/ngcp-config/ssl/PushChatCert.pem’

– enable: yes

– key: ’/etc/ngcp-config/ssl/PushChatKey.pem’

• enable: yes

• gcm: section (for Android mobile application)

– enable: yes

– key: ’google_server_api_key_here’

• ssl: yes

• sslcertfile: /etc/ngcp-config/ssl/CAsigned.crt

• sslcertkeyfile: /etc/ngcp-config/ssl/CAsigned.key

You can find an example of /etc/ngcp-config/config.yml configuration in the config.yml overview section.

4. Apply your changes:

ngcpcfg apply ’enabled the backup feature.’

ngcpcfg push all

17.2.2.9 Recheck Your DNS Zone Configuration

Check that your NS and A DNS records are correctly configured.

Let’s consider the following example: * the load-balancers have the lb01a.example.com and the lb01b.example.com names * the

shared name is lb01.example.com and the shared IP address is 1.1.1.1 * the service name is voipservice.example.com

The following DNS records must be present:

Server Name Record type IP Address

lb01a.example.com A 1.2.3.4

lb01b.example.com A 5.6.7.8

lb01.example.com A 1.1.1.1

voipservice.example.com A 1.1.1.1
453

apcs01.html#xpushd

The Sipwise C5 PRO Handbook mr6.5.11 454 / 601

17.2.2.10 Add SRV Records to DNS

Add at least one record for each service: xmpp-server, xmpp-client, sips.

A regular SRV record has the following form:

_service._proto.name. TTL class SRV priority weight port target

• service: the symbolic name of the service (xmpp-server, xmpp-client, sips).

• proto: the transport protocol of the desired service (TCP).

• name: the domain name (ending in a dot).

• TTL: standard DNS time to live field.

• class: the standard DNS class field (this is always IN).

• priority: the priority of the target host (lower value means more preferred).

• weight: a relative weight for records with the same priority (the higher the value, the more requests will be sent).

• port: the TCP or UDP port of the service.

• target: the canonical hostname of the machine providing the service (ending in a dot).

Here are examples of the SRV records:

_xmpp-server._tcp.voipservice.example.com. 18000 IN SRV 10 50 5269 voipservice.example.com.

_xmpp-client._tcp.voipservice.example.com. 18000 IN SRV 10 50 5222 voipservice.example.com.

_sips._tcp.voipservice.example.com. 18000 IN SRV 10 100 5061 voipservice.example.com.

You can always check whether the required SRV records are configured by executing the following commands:

dig SRV _xmpp-client._tcp.voipservice.example.net

dig SRV _xmpp-server._tcp.voipservice.example.net

dig SRV _sips._tcp.voipservice.example.net

17.2.2.11 Check NTP Configuration

We strongly suggest that the clocks of all the nodes within the platform are synchronized. To ensure this, check that the NTP

service is correctly configured on all your Sipwise C5 servers and works reliably. Execute the following command for quick test of

time synchronization:

ntpq -p

If the current node synchronizes with an NTP server, this server will be marked by the star (*) symbol.

454

The Sipwise C5 PRO Handbook mr6.5.11 455 / 601

17.2.2.12 Enable Apple/Google Mobile Push

It can be enabled for a domain or separate subscribers in the Admin Panel.

To enable the service for a domain:

1. Go to Settings→Domains and click on the Preferences button of the domain you want to enable Apple/Google Mobile Push

for.

2. Go to the Internals group and enable the mobile_push_enable parameter.

17.2.2.13 Perform Tests

Perform tests when the application is available:

1. Download and install the application.

2. Open the application and input your registration username in the username@domain.name format and password.

3. Review the quality of application branding.

4. Make test calls.

5. Test the presence functionality.

6. Test the chat and group chat.

7. Test messaging.

8. Test the sharing functionality (e.g. pictures, video and voice messages and maps).

9. Check the application phone book integration with the phone’s one

Make sure that the subscribers can start using your services in the easiest possible way.

455

The Sipwise C5 PRO Handbook mr6.5.11 456 / 601

17.3 Lawful Interception

17.3.1 Introduction

The Sipwise Sipwise C5, as a communications platform carrying voice, fax and messaging data has to provide means for lawful

interception of the content of communication by third party entities. Those Law Enforcement Agencies (LEAs) have to be able

to connect to Sipwise C5 platform in a standardized way — ETSI, 3GPP and other organisations define the interface (and data

exchange) between telecommunication operators and LEAs.

High level overview of lawful interception is shown in the following figure:

Figure 142: LI: High Level Overview

Main interfaces of lawful interception according to ETSI standard:

456

The Sipwise C5 PRO Handbook mr6.5.11 457 / 601

Figure 143: LI: ETSI Interfaces

17.3.1.1 Terms and Abbreviations

Content of Communication (CC)
Information exchanged between two or more users of a telecommunications service, excluding Intercept Related Informa-

tion.

Note

This includes information which may, as part of some telecommunications service, be stored by one user for subsequent

retrieval by another.

CC Internal Interception Function (CC-IIF)
The CC-IIF shall cause the CC, specified by the CCTF, via the CCCI to be duplicated and passed to the MF.

Content of Communication Control Interface (CCCI)
Carries controls information from the CCTF to the CC-IIF.

CC Trigger Function (CCTF)
The purpose of the CCTF is to determine the location of the CC-IIF device associated to the target CC traffic, and to control

the CC-IIF via the CCCI interface.

Content of Communication Trigger Interface (CCTI)
Carries trigger information from the IRI-IIF to the CCTF.

457

The Sipwise C5 PRO Handbook mr6.5.11 458 / 601

Handover Interface (HI)
Physical and logical interface across which the interception measures are requested from an operator, and the results of

interception are delivered from an operator to an LEMF.

Intercept Related Information (IRI)
Collection of information or data associated with telecommunication services involving the target identity, specifically call or

service associated information or data (e.g. call identifier, unsuccessful call attempts) and location information.

Intercept Related Information Internal Interception Function (IRI-IIF)
The purpose of the IRI-IIF is to generate IRI information associated with sessions, calls, connections and any other infor-

mation involving interception targets identified by Law Enforcement Agency (LEA) sessions.

Internal Network Interface (INI)
Network’s internal interface between the Internal Intercepting Function and a mediation function.

Law Enforcement Agency (LEA)
Organization authorized, by a lawful authorization based on a national law, to request interception measures and to receive

the results of telecommunications interceptions.

Law Enforcement Monitoring Facility (LEMF)
Law enforcement facility designated as the transmission destination for the results of interception relating to a particular

interception subject.

Lawful Interception Administration Function (AF)
The AF ensures that an intercept request from a LEA for IRI or CC or both is provisioned for collection from the network,

and subsequent delivery to the LEMF.

Lawful Interception Mediation Function (MF)
Mechanism which passes information between an access provider or network operator or service provider and a handover

interface.

1. Firstly it receives information related to active intercepts from the IRI-IIF(s) and CC-IIF(s) within the service provider

network.

2. Secondly correlates and formats that IRI and CC information in real time for delivery to the LEMF over the HI2 and HI3

handover Interfaces.

X1, X2 and X3 Interfaces
The 3GPP standard for Lawful Interception defines the handover interfaces with different names compared to the ETSI

standard. The Xn interface corresponds to the INIn interface and is functionally identical to the INIn interface.

17.3.2 Architecture and Configuration of LI Service

Sipwise Sipwise C5 platform implements the functions defined by LI requirements in a way that it relies on a third party provider

for the Lawful Interception Mediation Function (MF).

Regarding other LI functions that are defined by ETSI / 3GPP standards there are 2 possible implementations:

458

The Sipwise C5 PRO Handbook mr6.5.11 459 / 601

1. Sipwise Sipwise C5 behaves as the Administration Function (AF) but the actual call data capturing is carried out by other

SIP endpoints. In this case Sipwise C5 forwards the calls to be intercepted to its SIP peers dedicated for LI service.

Within the scope of SIP peer based solution there are still 2 modes of operation:

• Call loopback to NGCP: the LI peer receives the call, extracts IRI and CC data and then routes the call back to NGCP.

Sipwise C5 handles the looped back call as if that was initiated from Sipwise C5 and sets up the second call leg to the

destination.

• Call forwarded by peer directly to destination: in this case Sipwise C5 will handle the call to LI peer as an ordinary second

call leg to the destination.

2. Sipwise Sipwise C5 itself provides the required LI functions: AF and call data capturing; IRI and CC of intercepted calls

are forwarded to the third party MF from NGCP. Sipwise C5 can be configured in two modes:

• Non-Distributed : The LI roles are hosted on the PROXY nodes. The REST API endpoint to LEA will be the usual MGMT

nodes.

• Distributed : The LI roles are hosted on geographically distributed LB+RTP nodes, for example one pair of LB+RTP nodes

per country, each of which has different law enforcement authorities. The LB+RTP nodes will provide an ngcp-panel

instance, which due to privacy laws is specially configured to store intercepts locally (the node will operate on its own set

of data), and the external party (law enforcement, LI integration, etc.) interacts with the pertinent LB+RTP nodes via the

REST API (or SOAP for older installations).

This handbook will discuss the second setup in detail in the following sections.

The below figure illustrates the logical connection of LI functions on Sipwise C5.

459

The Sipwise C5 PRO Handbook mr6.5.11 460 / 601

Figure 144: LI with 3rd Party Provider

17.3.2.1 Architecture Based on Captagent Module

Note

This kind of LI implementation will be phased out in future Sipwise C5 releases. A short description is kept here for reference,

as Sipwise C5 still (as of version mr4.5.2) supports LI services with captagent module.

The captagent based implementation of LI functions on Sipwise C5 includes the following components:

• captagent: a software module provided by a third party; its operation can be summarized as follows:

1. the captagent process gets LI requests through an API

2. the process listens for and analyses SIP (INVITE) messages; based on the message headers it decides whether the SIP

session must be intercepted

3. in case the session must be intercepted, captagent sends IRI through X2 interface to the MF element

4. based on the SDP data, the process captures session media and forwards that through X3 interface to the MF element

460

The Sipwise C5 PRO Handbook mr6.5.11 461 / 601

• third party MF: Group2000’s LIMA system playes the role of Mediation Function (MF) and interacts with captagent module,

using X1, X2 and X3 interfaces.

17.3.2.2 Architecture Based on Voisniff-NG Module

Although the implementation of LI services with captagent is still available and configurable on Sipwise C5, Sipwise suggests

deploying a revised solution with its voisniff-ng software module. This newer implementation also relies on a 3rd party LI

provider representing the LI Mediation Function (MF), where Sipwise currently (as of Sipwise C5 version mr4.5.2) cooperates with

Group2000, Pine and Utimaco.

Sipwise C5 components providing LI functions:

• ngcp-panel: this module is responsible for managing REST API for the whole NGCP in general

– runs on: the active node (sp1 / sp2) on a Sipwise C5 platform

– LI functions: AF; INI1 / X1 interface towards the MF

• kamailio-proxy: this module serves as a generic call control function on the NGCP

– runs on: the active node (sp1 / sp2) on a Sipwise C5 platform

– LI functions: CCTF and IRI-IIF; INI2 / X2 interface towards the MF

• voisniff-ng: this module is a generic element for capturing SIP and RTP traffic on the NGCP

– runs on: the active node (sp1 / sp2) on a Sipwise C5 platform

– LI functions: CC-IIF; INI3 / X3 interface towards the MF

Note

The voisniff-ng module is installed and activated by default on a Sipwise Sipwise C5 platform. It provides a possibility to

get call statistics through Admin web interface, and is not readily configured for LI services.

Authentication and Confidentiality

It is required that the communication between the telecommunication operator’s network element (that is: Sipwise C5) and the MF

be authenticated and confidential, since the intercepted session related data and content of communication must not be disclosed

to any 3rd party. For this purpose NGCP’s LI service applies authentication and LI session data encryption based on public key

cryptography mechanism (TLS).

Both Sipwise C5 and the MF must authenticate themselves by certificates, for this reason Sipwise C5 operator must ensure that

valid certificates are deployed on the system. There is a need to contact the 3rd party LI provider, so that he can provide the

necessary client certificates that Sipwise C5 will use to setup secured connection to the MF on X2 and X3 interfaces.

Similarly, the MF provider must contact Sipwise C5 operator to offer him valid client certificates that the MF element will use to

establish secured connection to the Sipwise C5 on X1 interface.

461

The Sipwise C5 PRO Handbook mr6.5.11 462 / 601

17.3.2.3 Configuration of LI Service

To enable LI services on Sipwise C5 the platform administrator has to enable lawful interception through the main configuration

file (config.yml).

For a distributed setup, the cluster_sets.type variable has to be set to distributed (see Section B.1.8 for more information) , and

the lb nodes need to be assigned the li role. For a non-distributed setup, the proxy nodes need to be assigned the li role.

From the user and program point of view, the li role will only be visible in a node if the intercept.enable setting is set to yes. When

the cluster is set up in a distributed mode (that is cluster_sets.type is set to distributed), the nodes will also have the li_dist virtual

role visible, so that these can check for a single condition instead of multiple.

Here below is a sample configuration, which shows parameters of intercept and voisniff sections.

intercept:

captagent:

cin_max: ’3000’

cin_min: ’0’

country_code: ’49’

debug: ’7’

filter: ’port 5080’

license: ’’

port: ’18090’

prefix_len: ’3’

schema: http

enable: no

peer:

acc: no

inbound_prefix: LI_

outbound_prefix: intercept_

type: none

voisniff:

admin_panel: yes

daemon:

bpf: ’port 5060 or 5062 or ip6 proto 44 or ip[6:2] & 0x1fff != 0’

external_interfaces: eth0 eth2

filter:

exclude:

- active: ’0’

case_insensitive: ’1’

pattern: ’\ncseq: *\d+ +(register|notify|options)’

include: []

internal_interfaces: lo

li_x1x2x3:

call_id:

suffix:

- _pbx-1

- _b2b-1

462

The Sipwise C5 PRO Handbook mr6.5.11 463 / 601

- _xfer-1

client_certificate: ’’

enable: no

fix_checksums: no

fragmented: no

interface:

excludes: []

local_name: sipwise

x1:

port: ’18090’

mysql_dump:

enable: yes

num_threads: ’4’

mysql_dump_threads: ’2’

start: yes

threads_per_interface: ’2’

partitions:

increment: ’700000’

keep: ’10’

Configuration Parameters

intercept.enable

Set it to yes if you want to activate LI service. Default: no

intercept.peer.acc

Calls to be intercepted may be forwarded to LI peers. The LI peer may forward the call to the original destination, without

looping the call back to NGCP. Set this parameter to yes if you want to enable billing for such calls. Default: no

intercept.peer.inbound_prefix

Calls to be intercepted may be forwarded to LI peers. This parameter specifies the prefix that is prepended to SIP usernames

when the call is looped back to NGCP, in order to avoid sending the call again to any LI peer. Used by Sipwise C5 internally.

Default: LI_

intercept.peer.outbound_prefix

Calls to be intercepted may be forwarded to LI peers. This parameter specifies the prefix that is prepended to SIP usernames

when the call is routed to an LI peer. It will be stripped off by rewrite rules of the peer, before sending the call effectively to

the peer. Used by Sipwise C5 internally. Default: intercept_

intercept.type

The LI service provider module; allowed values are:

• none: LI service is not activated

• peer: LI service is activated and call data capturing is performed by SIP peers

• captagent: LI service is activated and call data capturing is performed by captagent module

• voisniff: LI service is activated and call data capturing is performed by voisniff module

Default: none

463

The Sipwise C5 PRO Handbook mr6.5.11 464 / 601

voisniff.admin_panel , voisniff.daemon.mysql_dump.* , voisniff.partitions.*
These parameters are not used in LI configuration, but only for call statistics which can be retrieved through the Admin web

interface.

voisniff.daemon.bpf

This sets the basic packet filter applied by voisniff-ng module when capturing packets on network interfaces. Default:

"port 5060 or 5062 or ip6 proto 44 or ip[6:2] & 0x1fff != 0"

Note

The default value basically allows capturing SIP traffic only. It is usually necessary to modify the parameter in order

to capture both SIP and RTP traffic. An example of such a value: "udp or ip6 proto 44 or ip[6:2] &

0x1fff != 0".

voisniff.daemon.external_interfaces

This is a list of network interfaces (typically VLAN IDs) where voisniff-ng should listen for and capture packets.

Tip

VLAN interfaces have to be listed when they are used for intercepted calls. On the other hand virtual interfaces for

additional IP addresses (e.g. eth0:1) do not have to be listed separately, because the base interface (e.g. eth0) will be

used to capture packets.

voisniff.daemon.filter.exclude

Additional filter to determine packets that need to be excluded from capturing. This configuration parameter is a list of items,

each of them has 3 components:

• active: Determines whether the filter is active or not. Allowed values are: 0 (false/inactive; this is the default) or 1

(true/active).

• case_insensitive: Determines whether the pattern is case-insensitive (1; this is the default) or not (0).

• pattern: A regular expression providing the matching pattern for packets that have to be filtered.

voisniff.daemon.filter.include

Additional filter to determine packets that need to be included in capturing. The parameter has the same syntax as voisn

iff.daemon.filter.exclude.

voisniff.daemon.internal_interfaces

A list of network interfaces which are considered only for internal communication between voisniff-ng and other

Sipwise C5 components. Packets on these interfaces are not captured.

voisniff.daemon.li_x1x2x3.call_id.suffix

List of NGCP-internal Call-ID suffix patterns that should be ignored when determining the original SIP Call-ID of an inter-

cepted call.

Caution

Please do not change these patterns unless instructed to do so by a Sipwise engineer! Changing the patterns

may result in falsely recognised Call-IDs and eventually missed SIP messages during an intercepted call.

464

The Sipwise C5 PRO Handbook mr6.5.11 465 / 601

voisniff.daemon.li_x1x2x3.client_certificate

The client certificate that Sipwise C5 uses to connect over TLS to a 3rd party LI provider.

voisniff.daemon.li_x1x2x3.enable

Set it to yes to enable LI services via X1, X2 and X3 interfaces. Default: no

voisniff.daemon.li_x1x2x3.fix_checksums

When enabled (= yes), Sipwise C5 will calculate UDP header checksum for packets sent out on X2 and X3 interfaces.

This is necessary when the checksum calculation is normally left to the network interface hardware and therefore the UDP

header checksum is inherently incorrect on application level. Also the UDP checksum must be calculated by voisniff-ng on

re-assembled packets, so enable this option if there are fragmented packets in intercepted call traffic. Default: disabled (=

no)

voisniff.daemon.li_x1x2x3.fragmented

When disabled (= no), voisniff-ng defragments all packets and sends out only reassembled packets via X2 and X3 inter-

faces. If the option is enabled (= yes), voisniff-ng will instead send out the original fragments via X2 and X3. Default:

no

voisniff.daemon.li_x1x2x3.interface.excludes

This is a list of interfaces that must be excluded from the interception procedures. The list contains regular expressions that

describe the to-be-exluded interfaces, for example: - ˆlo$ to exclude the loopback interface. Default: empty list

voisniff.daemon.li_x1x2x3.local_name

This parameter maps to the header.source field of the X2 protocol. It’s an arbitrary string and can be used to identify

the sending Sipwise C5 system. Default: sipwise

Note

As of Sipwise C5 version mr4.5.2, this is currently not used.

voisniff.daemon.li_x1x2x3.private_key

The private key that Sipwise C5 uses to connect over TLS to a 3rd party LI provider. Only necessary if the client certificate

file does not include the private key.

voisniff.daemon.li_x1x2x3.x1.port

The port number on which voisniff-ng listens for incoming X1 messages. Default: 18090

Caution

You should leave the parameter set to the default value, unless there is a good reason to change it. The default

value ensures backward compatibility with captagent LI module.

voisniff.daemon.start

Determines whether voisniff service must be started on the platform. Set it to yes if you’d like to activate voisniff

that is needed for LI service too. Default: yes

voisniff.daemon.threads_per_interface

This is a performance tuning option and controls how many threads per enabled sniffing interface should be launched.

Example: if it’s set to 10 and 3 interfaces are enabled for sniffing, a total of 30 threads will be launched. Default: 2

465

The Sipwise C5 PRO Handbook mr6.5.11 466 / 601

Caution

Do not set it to a high number, or simply leave it at its default value, unless there is a performance problem with

voisniff service. Please keep in mind that a high number of threads might also decrease the overall system

performance of NGCP!

17.3.3 X1, X2 and X3 Interface Specification

Short description of Xn interfaces:

• The X1 interface is used by an LI provider to create, modify, delete and list interceptions on Sipwise C5 . It is designed as

RESTful HTTP interface using JSON (with JSON-HAL in responses from the NGCP) as content type to provision interceptions.

• The X2 interface is a TLV based interface with JSON payload with a simple request/response mechanism over a secure TLS

connection, used to pass intercepted signaling data towards an LI provider.

• The X3 interface is also a TLV based interface with a binary payload encapsulating the intercepted RTP data.

17.3.3.1 X1 Interface

The resource used to work with interceptions is always https://ngcp-ip:1443/api/interceptions/

Authentication

Authentication and authorization on Sipwise C5 API is performed via HTTP Basic Auth or SSL Client certificates.

• HTTP Basic Auth: With cURL use --user username:password option to specify your access credentials.

curl -i - X GET -- user myuser:mypassword https://example.org:1443/api/interceptions/

Additionally use the --insecure option if you are testing against a self-signed server certificate.

• SSL Client Authentication: You can generate and download client certificates for administrators and resellers via Sipwise C5

Panel in the Administrators view.

For the actual client authentication, you will need two files which you can download from the panel after creating the client

certificates:

1. The client certificate generated via Sipwise C5 Panel. This is usually labelled NGCP-API-client-certificate-xxxxx.pem.

2. The CA certificate used to sign the server certificate, in case it as been self-signed or the CA is not recognized by the

client host environment.

With cURL use --cert /path/to/NGCPAPIclientcertificatexxxxx.pem to specify the client certificate, and -

-cacert /path/to/cacert.pem to specify the CA certificate in case of a self-signed server certificate.

curl -i - X GET --cert /path/to/NGCPAPIclientcertificatexxxxx.pem \

-- cacert /path/to/cacert.pem https://example.org:1443/api/interceptions/

Additionally use the --insecure option if you are testing against a self-signed server certificate.

466

The Sipwise C5 PRO Handbook mr6.5.11 467 / 601

API Description

Collection Actions
Allowed methods for the collection as in METHOD /api/interceptions/

• OPTIONS

• POST

• GET

• HEAD

Item Actions
Allowed methods for a collection item as in METHOD /api/interceptions/id

• PATCH

• OPTIONS

• DELETE

• PUT

• GET

• HEAD

Properties

• liid (Number): The LI ID for this interception.

• number (String): The number to intercept.

• x2_host (String): The IP address of the X2 interface.

• x2_password (null, String): The password for authenticating on the X2 interface.

• x2_port (Number): The port of the X2 interface.

• x2_user (null, String): The username for authenticating on the X2 interface.

• x3_host (null, String): The IP address of the X3 interface.

• x3_port (null, Number): The port of the X3 interface.

• x3_required (null, Boolean): Whether to also intercept call content via X3 interface (false by default).

Query Parameters

• liid: Filter for interceptions of a specific interception ID

• number: Filter for interceptions of a specific number (in E.164 format)

• order_by: Order collection by a specific attribute. Possible values are: id, reseller_id, liid, number, c

c_required, delivery_host, delivery_port, delivery_user, delivery_pass, modify_t

imestamp, create_timestamp, deleted, uuid, sip_username, sip_domain, cc_delivery

_host, cc_delivery_port

• order_by_direction: Direction which the collection should be ordered by. Possible values are: asc (default

), desc

467

The Sipwise C5 PRO Handbook mr6.5.11 468 / 601

API Examples

Get a specific interception

• Request:

curl - i -- insecure -- user administrator:administrator - X GET

https://localhost:1443/api/interceptions/528

• Response:

HTTP/1.1 200 OK

Server: nginx

Date: Tue, 01 Dec 2015 09:43:41 GMT

ContentType: application/hal+json; profile="http://purl.org/sipwise/ngcpapi/";

charset=utf 8

ContentLength: 634

Connection: keepalive

Link: </api/interceptions/>; rel=collection

Link: <http://purl.org/sipwise/ngcpapi/>; rel=profile

Link: </api/interceptions/528>; rel="item self"

SetCookie: ngcp_panel_session=35b56d921c36c1fc6edb8fcd0a86dd9af61ec62a; path=/;

expires=Tue, 01 D e c 2015 10:43:41 GMT; HttpOnly

StrictTransportSecurity: maxage=15768000

{

"_links" : {

"collection" : {

"href" : "/api/interceptions/"

},

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/528"

}

},

"id" : 528,

"liid" : 918273,

"number" : "0014155550132",

"x2_host" : "192.168.42.42",

"x2_password" : null,

"x2_port" : 3002,

"x2_user" : null,

"x3_host" : "192.168.42.42",

468

The Sipwise C5 PRO Handbook mr6.5.11 469 / 601

"x3_port" : 3003,

"x3_required" : true

}

Get all interceptions for a number

• Request:

curl - i -- insecure -- user administrator:administrator - X GET \

https://localhost:1443/api/interceptions/?number=0014155550132

• Response:

HTTP/1.1 200 OK

Server: nginx

Date: Tue, 01 Dec 2015 09:47:36 GMT

ContentType: application/hal+json; profile="http://purl.org/sipwise/ngcpapi/";

charset=utf 8

ContentLength: 1283

Connection: keepalive

SetCookie: ngcp_panel_session=238550c5737058db619b183d925b5f9a61261cfe; path=/;

expires=Tue, 01 Dec 2015 10:47:36 GMT; HttpOnly

StrictTransportSecurity: maxage=15768000

{

"_embedded" : {

"ngcp:interceptions" : {

"_links" : {

"collection" : {

"href" : "/api/interceptions/"

},

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/520"

}

},

"id" : 520,

"liid" : 1,

"number" : "0014155550132",

"x2_host" : "192.168.42.42",

"x2_password" : null,

"x2_port" : 3002,

469

The Sipwise C5 PRO Handbook mr6.5.11 470 / 601

"x2_user" : null,

"x3_host" : "192.168.42.42",

"x3_port" : 3003,

"x3_required" : true

}

},

"_links" : {

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"ngcp:interceptions" : {

"href" : "/api/interceptions/520"

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/?page=1&rows=10"

}

},

"total_count" : 1

}

Get all interceptions for all numbers

• Request:

curl - i -- insecure -- user administrator:administrator - X GET \

https://localhost:1443/api/interceptions/

• Response:

HTTP/1.1 200 OK

Server: nginx

Date: Tue, 01 Dec 2015 09:43:18 GMT

ContentType: application/hal+json; profile="http://purl.org/sipwise/ngcpapi/";

charset=utf 8

ContentLength: 2364

Connection: keepalive

SetCookie: ngcp_panel_session=68398eea5bdd3885ad0517e1f6d367ccc80111fa; path=/;

expires=Tue, 01 Dec 2015 10:43:18 GMT; HttpOnly

StrictTransportSecurity: maxage=15768000

{

"_embedded" : {

"ngcp:interceptions" : [

{

470

The Sipwise C5 PRO Handbook mr6.5.11 471 / 601

"_links" : {

"collection" : {

"href" : "/api/interceptions/"

},

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/520"

}

},

"id" : 520,

"liid" : 1,

"number" : "0014155550132",

"x2_host" : "192.168.42.42",

"x2_password" : null,

"x2_port" : 3002,

"x2_user" : null,

"x3_host" : "192.168.42.42",

"x3_port" : 3003,

"x3_required" : true

},

{

"_links" : {

"collection" : {

"href" : "/api/interceptions/"

},

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/528"

}

},

"id" : 528,

"liid" : 918273,

"number" : "0014155550132",

"x2_host" : "192.168.42.42",

471

The Sipwise C5 PRO Handbook mr6.5.11 472 / 601

"x2_password" : null,

"x2_port" : 3002, "x2_user" : null,

"x3_host" : "192.168.42.42",

"x3_port" : 3003,

"x3_required" : true

}

]

},

"_links" : {

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"ngcp:interceptions" : [

{

"href" : "/api/interceptions/520"

},

{

"href" : "/api/interceptions/528"

}

],

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/?page=1&rows=10"

}

},

"total_count" : 2

}

Get interception for specific LIID

• Request:

curl - i -- insecure -- user administrator:administrator -X GET \

https://localhost:1443/api/interceptions/?liid=9876

• Response:

HTTP/1.1 200 OK

Server: nginx

Date: Tue, 01 Dec 2015 09:50:41 GMT

ContentType: application/hal+json; profile="http://purl.org/sipwise/ngcpapi/";

charset=utf 8

ContentLength: 1283

Connection: keepalive

472

The Sipwise C5 PRO Handbook mr6.5.11 473 / 601

SetCookie: ngcp_panel_session=23960dde6bb90f0c5c84575890194c53cce120ce; path=/;

expires=Tue, 01 Dec 2015 10:50:40 GMT; HttpOnly

StrictTransportSecurity: maxage=15768000

{

"_embedded" : {

"ngcp:interceptions" : {

"_links" : {

"collection" : {

"href" : "/api/interceptions/"

},

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/520"

}

},

"id" : 520,

"liid" : 1,

"number" : "0014155550132",

"x2_host" : "192.168.42.42",

"x2_password" : null,

"x2_port" : 3002,

"x2_user" : null,

"x3_host" : "192.168.42.42",

"x3_port" : 3003,

"x3_required" : true

}

},

"_links" : {

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"ngcp:interceptions" : {

"href" : "/api/interceptions/520"

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/?page=1&rows=10"

473

The Sipwise C5 PRO Handbook mr6.5.11 474 / 601

}

},

"total_count" : 1

}

Create interception for a specific number

• Request:

curl - i -- insecure -- user administrator:administrator -X POST \

- H "ContentType: application/json" --data \

’{"liid":123, "number":"31032222203", "x2_host":"127.0.0.1", "x2_port":12345,

"x3_required":true, "x3_host":"127.0.0.2", "x3_port":23456}’ \

https://localhost:1443/api/interceptions/

• Response:

HTTP/1.1 201 Created

TransferEncoding: chunked

Connection: close

Location: /api/interceptions/528

SetCookie: ngcp_panel_session=e7817079d121fae4d86448b10e1fa21d0201c526; path=/;

expires=Tue, 01 Dec 2015 10:43:18 GMT; HttpOnly

StrictTransportSecurity: maxage=15768000

The path to the newly created interception is found in the Location header of the response.

Update specific interception

• Request:

curl - i -- insecure -- user administrator:administrator -X PUT \

- H "ContentType: application/json" - H ’Prefer: return=representation’ -- data \

’{"liid":918273, "number":"0014155550132", "x2_host":"192.168.42.42", "x2_port":5000,

"x3_required":false}’ \

https://localhost:1443/api/interceptions/123

• Response:

HTTP/1.1 200 OK

ContentType: application/hal+json; profile="http://purl.org/sipwise/ngcpapi/";

charset=utf 8

ContentLength: 621

Link: </api/interceptions/>; rel=collection

Link: <http://purl.org/sipwise/ngcpapi/>; rel=profile

Link: </api/interceptions/530>; rel=self

PreferenceApplied: return=representation

SetCookie: ngcp_panel_session=0b56e4a197b0e9f6e22a998e85473a0184770740; path=/;

474

The Sipwise C5 PRO Handbook mr6.5.11 475 / 601

expires=Tue, 01 Dec 2015 10:56:17 GMT; HttpOnly

{

"_links" : {

"collection" : {

"href" : "/api/interceptions/"

},

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/530"

}

},

"id" : 530,

"liid" : 918273,

"number" : "0014155550132",

"x2_host" : "192.168.42.42",

"x2_password" : null,

"x2_port" : 5000,

"x2_user" : null,

"x3_host" : null,

"x3_port" : null,

"x3_required" : false

}

The Prefer: return=representation header forces the API to return the content, otherwise status 201 with no content is returned.

Update only certain items for a specific interception

• Request:

curl - i -- insecure -- user administrator:administrator - X PATCH \

- H "ContentType: application/jsonpatch+json" - H ’Prefer: return=representation’ \

--data ’[{"op":"replace", "path":"/x2_host", "value":"192.168.42.42"},{"op":"replace",

"path":"/x2_port", "value":4000}]’ \

https://localhost:1443/api/interceptions/530

• Response:

HTTP/1.1 200 OK

Server: nginx

Date: Tue, 01 Dec 2015 10:06:06 GMT

ContentType: application/hal+json; profile="http://purl.org/sipwise/ngcpapi/";

475

The Sipwise C5 PRO Handbook mr6.5.11 476 / 601

charset=utf 8

ContentLength: 620

Connection: close

Link: </api/interceptions/>; rel=collection

Link: <http://purl.org/sipwise/ngcpapi/>; rel=profile

Link: </api/interceptions/530>; rel=self

PreferenceApplied: return=representation

SetCookie: ngcp_panel_session=0693129d63d543a85f96d464ff9a8f807cfc4d18; path=/;

expires=Tue, 01 Dec 2015 11:06:06 GMT; HttpOnly

StrictTransportSecurity: maxage=15768000

{

"_links" : {

"collection" : {

"href" : "/api/interceptions/"

},

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/530"

}

},

"id" : 530,

"liid" : 918273,

"number" : "0014155550132",

"x2_host" : "192.168.42.42",

"x2_password" : null,

"x2_port" : 4000,

"x2_user" : null,

"x3_host" : null,

"x3_port" : null,

"x3_required" : false

}

Delete specific interception

• Request:

curl - i -- insecure -- user administrator:administrator -X DELETE \

https://localhost:1443/api/interceptions/123

• Response:

476

The Sipwise C5 PRO Handbook mr6.5.11 477 / 601

HTTP/1.1 204 No Content

Server: nginx

Date: Tue, 01 Dec 2015 10:08:49 GMT

Connection: keepalive

SetCookie: ngcp_panel_session=570c66b66732629766f86b8ed9bd0d64902ae73e; path=/;

expires=Tue, 01 Dec 2015 11:08:49 GMT; HttpOnly

XCatalyst: 5.90042

StrictTransportSecurity: maxage=15768000

17.3.3.2 X2 Interface

The communication via the X2 interface consists of request-response pairs.

Request

The request is formatted as: X2/<bodylength>/<body>

Body part has the following items:

Table 24: X2 Message Body Items

Element Type Length Description

/x2/header/source String arbitrary

length

identifier of Sipwise node which captured the data

/x2/header/destination String arbitrary

length

identifier of LI mediation system

/x2/header/type String arbitrary

length

always "sip" (but later potentially "xmpp" and others too)

/x2/header/version PosInteger arbitrary

length

always "1"

/x2/header/timestamp String 27 chars format: YYYY-MM-DDThh:mm:ss.ffffffZ; timestamp in

UTC when the X2 package is sent to mediation

/x2/body/dialogid PosInteger arbitrary

length

globally increasing counter for each new communication

dialog (e.g. call)

/x2/body/messageid PosInteger arbitrary

length

increasing counter for each new x2 message within a

dialog, starting from 0

/x2/body/timestamp String 27 chars format: YYYY-MM-DDThh:mm:ss.ffffffZ; timestamp in

UTC when the package has been captured on the wire

/x2/body/interceptions one or more elements containing the following

information, one element per intercepted target:

/x2/body/interceptions/liid PosInteger arbitrary

length

interception id ("liid") as set via X1 interface

/x2/body/interceptions/direction String arbitrary

length

either "totarget" or "fromtarget" from the soft-switch

perspective (if target is the called party, it is "totarget", if

target is the calling party, it is "fromtarget").

477

The Sipwise C5 PRO Handbook mr6.5.11 478 / 601

Table 24: (continued)

Element Type Length Description

/x2/body/data Base64

encoded

arbitrary content of full IP frame and up on the OSI layer; packets

fragmented on the wire are provided in fully assembled

format

Example of full message:

X2/418/

{

"header": {

"source": "prx01a.example.com",

"destination": "x2destination.example.com",

"type": "sip",

"version": 1,

"timestamp": "2015 03 11T09:18:04.729803Z"

},

"body": {

"dialogid": 4,

"messageid": 0,

"timestamp": "2015 03 11T09:18:04.729123Z",

"interceptions": [

{ "liid": 174, "direction": "fromtarget" },

{ "liid": 175, "direction": "totarget" }

],

"data": "<base64 encoded ip,udp/tcp,sip frame>"

}

}

Response

• Success: X2-ACK/0/

• Error: X2-ERR/<length>/<error string>

Keep-Alive Mechanism

A regular keep-alive mechanism with a default value of 10s is used on the connection if it is re-used across multiple messages.

• Request: X2/0/

• Response: X2-ACK/0/

478

The Sipwise C5 PRO Handbook mr6.5.11 479 / 601

17.3.3.3 X3 Interface

On the X3 interface TLV based packets are sent via secured (TLS) connection on a pre-established stream. X3 messages do not

need to be acknowledged, except for keep-alive messages.

X3 Message Structure

Table 25: X3 Message Structure

Field Length

Header arbitrary

CCCID 4 bytes

MessageId 4 bytes

Timestamp 8 bytes

Payload arbitrary

Header Details

Table 26: X3: Header Details

Field Length Content

type 2 bytes always "X3"

delimiter 1 byte always "/"

length arbitrary ASCII string

delimiter 1 byte always "/"

CCCID Details

dialogid (32 bit in network byte order, reset to 0 after 232-1)

The dialogid is referencing the /x2/body/dialogid field in order to correlate an X3 packet to an X2 call.

MessageId Details

messageid (32 bit in network byte order, reset to 0 after 232-1)

The messageid is a counter within a dialog sequencing the X3 packets sent from the NGCP. This counter is not correlated in

any way with X2, rather than starting at 0 with the first RTP packet captured within a dialog.

Timestamp Details

• seconds (32 bit in network byte order)

479

The Sipwise C5 PRO Handbook mr6.5.11 480 / 601

• fraction (32 bit in network byte order)

The timestamp represents the Unix epoch starting from 1970-01-01.

Payload Details

Table 27: X3: Payload Details

Field Length

original ip header 20 bytes for v4, 40 bytes for v6

original udp header 8 bytes

original rtp header variable, 12-72 bytes

original rtp payload arbitrary

Keep-Alive Mechanism

A regular keep-alive mechanism with a default value of 10s is used on the connection if it is re-used across multiple messages.

• Request: X3/0/

• Response: X3-ACK/0/

17.4 3rd Party Call Control

17.4.1 Introduction

The Sipwise C5 offers the possibility to perform call control through 3rd party applications. This functionality, called Party Call

Control and referred to as "PCC" throughout this handbook, is available since mr5.1.1 release.

Incoming calls to local subscribers may be signalled to a 3rd party CAC (Call Admission Control) server. Before accepting (that

is: sending the SIP INVITE request to the called subscriber) or rejecting the call, Sipwise C5 will wait for an explicit reply from the

CAC / PCC server, or a timeout.

Short Messages received by Sipwise C5 for a local subscriber may also be signalled to the PCC server. After an explicit reply

with "accepted" status from the PCC server, Sipwise C5 will forward the SM to the final recipient.

Important

Sipwise C5 does not support delivering SMs to the local subscribers directly. Local subscribers can define a Call

Forward for SMS instead, thus allowing themselves to receive SMs on their mobile phones.

3rd party call control may be implemented in many ways, such as by server-side or client-side applications (e.g. smartphone app).

480

The Sipwise C5 PRO Handbook mr6.5.11 481 / 601

Note

Please note that Sipwise C5 implements a proprietary protocol for PCC deployments and adapting the protocol to customer

needs requires software development from Sipwise.

17.4.2 Details of Call Processing with PCC

17.4.2.1 Overview

The following figure presents the schema of incoming call processing when PCC is involved:

Figure 145: Overview of Party Call Control

The messages / interactions of PCC call processing are:

1. Sipwise C5 Load-Balancer receives a SIP INVITE message from the caller.

2. The LB forwards the INVITE to the PROXY component as usual with every incoming call.

3. The PROXY (kamailio-proxy module) checks whether the called subscriber has the PCC feature activated. If this is the

case, it will send an HTTP POST or GET request (configurable) to the PCC server with the most important details of the

call (such as calling and called party numbers, call-ID, a token for internal identification of the session).

4. The PCC server replies with 200 OK HTTP status in order to indicate that it understood the request and will provide the

final status (such as ACCEPTED or REJECTED) of the call later.

• Optional:

– *1) The PCC server requests the subscriber’s confirmation to accept the call for instance via a smartphone app.

– *2) The subscriber indicates accepting the call to the PCC server.

481

The Sipwise C5 PRO Handbook mr6.5.11 482 / 601

5. The PCC server send an HTTP POST request to the WEB component of NGCP, using Sipwise C5 REST API, to signal

accepting the call.

6. The WEB will reply with 200 OK HTTP status.

7. The WEB sends an internal XMLRPC request to PROXY indicating that the incoming call can be accepted.

8. The PROXY sends the SIP INVITE message to the LB, i.e. it continues the call setup as usual.

9. The LB sends the INVITE to the subscriber.

There are more software modules within NGCP’s components and those are shown separately on the diagrams in following

sections of the handbook. For instance the PROXY component has the kamailio-proxy and ngcp-sems modules.

17.4.2.2 Successful Call Initiation at PCC Server

A subscriber with PCC activated will not receive the SIP INVITE request directly, but only after a series of intermediate CAC (Call

Admission Control) steps, involving Sipwise C5 Proxy and the PCC server. First of those steps is the call initiation at the PCC

server:

Figure 146: Successful Call Initiation with PCC

1. When kamailio-proxy receives the INVITE request from Sipwise C5 LB, it will forward the message to ngcp-sems module

with 2 private SIP headers:

P-App-Name: party_call_control

P-App-Param: callid="acbd";caller="4369912345";callee="4310001";caller_clir="0";

2. These headers will activate the PCC function in ngcp-sems and it will send an HTTP POST request to the PCC server,

instead of creating the second call leg directly towards Sipwise C5 LB. An example of such a request (not all details

included):

POST /calls/4310001/initiate HTTP/1.1

Content-Type: application/json

482

The Sipwise C5 PRO Handbook mr6.5.11 483 / 601

{

"actualMsisdn": 4369912345,

"callingMsisdn": 4310001,

"actualClir": 0,

"callId": "abcd",

"token": "PCC-aijfeoi"

}

where:

• actualMsisdn: calling party number

• callingMsisdn: called party number

• actualClir: non-0 if CLIR is active

• callid: the SIP Call-ID

• token: a generated token that identifies the session between Sipwise C5 and the PCC server

The target URL has the format: /calls/<called_party_num>/initiate

3. The PCC server replies with HTTP 200 OK if it understood the request and can proceed with working on that.

17.4.2.3 Call Initiation at PCC Server with Error

The ngcp-sems module on Sipwise C5 Proxy will wait for a response from PCC server, once it has sent the "initiate" request to it.

If the PCC server responds with an HTTP error status, such as any 4xx, then ngcp-sems reports the error condition of PCC server

with a SIP 487 Request Terminated reply to kamailio-proxy.

Figure 147: Call Initiation Error with PCC

17.4.2.4 Call Initiation at PCC Server with Timeout

The ngcp-sems module on Sipwise C5 Proxy will wait for a response from PCC server, once it has sent the "initiate" request to it.

If the PCC server does not respond with HTTP 200 OK within 30 seconds (configurable) then ngcp-sems considers the PCC is

not available. In such a case ngcp-sems sends a SIP 408 Timeout reply to kamailio-proxy.

483

The Sipwise C5 PRO Handbook mr6.5.11 484 / 601

Figure 148: Call Initiation Timeout with PCC

17.4.2.5 Call Accepted by PCC Server

If the PCC server (eventually this may also be the called subscriber) accepts the call, the PCC server will send an HTTP POST

request to the REST API interface of Sipwise C5 (Web/Management component). This request must contain a status field with

the content ACCEPT (configurable) so that Sipwise C5 continues the call setup towards called party. Example:

POST /api/partycallcontrols HTTP/1.1

Content-Type: application/json

{

"type": "pcc",

"caller": 4369912345,

"callee": 4310001,

"status": "ACCEPT",

"callId": "abcd",

"token": "PCC-aijfeoi"

}

The target URL of the request: /api/partycallcontrols. The type parameter must have a value of pcc.

You can see the flow of messages in the diagram below:

484

The Sipwise C5 PRO Handbook mr6.5.11 485 / 601

Figure 149: Call Accepted by PCC

1. The PCC server sends an HTTP POST request to NGCP’s REST API.

2. Sipwise C5 Web will reply with 200 OK HTTP status once the request is validated.

3. The ngcp-panel module generates an XMLRPC call to the ngcp-sems module on the PROXY. An example is shown here:

<?xml version="1.0"?>

<methodCall>

<methodName>postDSMEvent</methodName>

<params>

<param>

<value><string>PCC-aijfeoi</string></value>

</param>

<param>

<value><array><data>

<value><array><data>

<value><string>cmd</string></value>

<value><string>handleCall</string></value>

</data></array></value>

<value><array><data>

<value><string>callid</string></value>

<value><string>abcd</string></value>

</data></array></value>

<value><array><data>

<value><string>caller</string></value>

<value><string>4369912345</string></value>

</data></array></value>

<value><array><data>

<value><string>callee</string></value>

<value><string>4310001</string></value>

</data></array></value>

<value><array><data>

<value><string>status</string></value>

<value><string>ACCEPT</string></value>

</data></array></value>

485

The Sipwise C5 PRO Handbook mr6.5.11 486 / 601

</data></array></value>

</param>

</params>

</methodCall>

At this point ngcp-sems examines the following:

• whether the token (listed as first param parameter of postDSMEvent) matches any of the saved session tokens

• whether the callid parameter’s value matches the session’s SIP Call-ID

• whether the status parameter’s value is ACCEPT (configurable)

and if all those conditions are valid it will indicate to kamailio-proxy module that the call can be accepted (i.e. call setup

towards the callee may continue).

4. ngcp-sems module sends 301 Accepted SIP response to kamailio-proxy and the latter can forward the SIP INVITE message

to Sipwise C5 LB. If the status parameter’s value is not ACCEPT (configurable), ngcp-sems will reply 487 Request

Terminated to kamailio-proxy.

17.4.2.6 Indicating Call Termination at PCC Server

In the same manner as call initiation happens, call termination is also reported by Sipwise C5 towards the PCC server.

Figure 150: Call Termination with PCC

The target URL of the HTTP POST request for the call termination case looks like: /calls/<called_party_num>/term

inate

The body of the request must contain the following element: "reason": "BYE", where the reason can be one of BYE,

CANCEL, NOANSWER and REJECT. An example of a call termination request:

POST /calls/4310001/terminate HTTP/1.1

Content-Type: application/json

{

486

The Sipwise C5 PRO Handbook mr6.5.11 487 / 601

"actualMsisdn": 4369912345,

"callingMsisdn": 4310001,

"actualClir": 0,

"callId": "abcd",

"token": "PCC-aijfeoi",

"reason": "BYE"

}

Sipwise C5 will not take the response of PCC server into consideration, because the call has already been terminated at SIP

protocol level.

17.4.3 Voicemail Notification

17.4.3.1 Using the PCC Framework

The PCC call control framework may also be used for voicemail notifications. The Sipwise C5 involves its elements: asterisk

(Voicemail server) and ngcp-vmnotify in the process of the notification.

Figure 151: Voicemail Notification with PCC

1. The asterisk voicemail server triggers the ngcp-vmnotify script when a caller leaves a voicemail message in the callee’s

voicebox.

2. ngcp-vmnotify sends an HTTP POST request to the PCC server, as given in the example below:

POST /voicemail/4310001/notify HTTP/1.1

Content-Type: application/json

{

"caller": 4369912345,

"callee": 4310001,

"recording_id": 45235 ,

"timestamp": "2017-06-13T14:21:17T+01:00",

487

The Sipwise C5 PRO Handbook mr6.5.11 488 / 601

"duration": 17

}

The target URL is: /voicemail/<called_party_num>/notify

3. The PCC server replies with 200 OK if it properly processed the request.

17.4.3.2 Using SMS

The Sipwise C5 also supports voicemail notifications in form of short messages, using the built-in SMS modules. In such a

case the ngcp-vmnotify module will send an HTTP POST request to the REST API (Sipwise C5 Web), that will contain the short

message and finally be stored in the central database. Afterwards the short message will be sent to the recipient by Sipwise C5

Proxy.

Figure 152: Voicemail Notification with SMS

1. The asterisk voicemail server triggers the ngcp-vmnotify script when a caller leaves a voicemail message in the callee’s

voicebox.

2. ngcp-vmnotify sends an API request to ngcp-api module, as given in the example below:

POST /api/sms/?skip_checks=true&skip_journal=false HTTP/1.1

Content-Type: application/json

{

"subscriber_id": 90

"caller": 4369912345,

"callee" : 4310001,

"text": "user1 4310001 17 Tue 13 Jun 2017 14:21:17 +01:00"

488

The Sipwise C5 PRO Handbook mr6.5.11 489 / 601

}

The target URL is: /api/sms

3. The ngcp-api stores the message in the database.

4. The kannel-smsbox module of Sipwise C5 Proxy will query the database for messages waiting for delivery and send the

SM to its recipient through Sipwise C5 LB.

17.4.4 Incoming Short Message Acceptance

17.4.4.1 Indicating Incoming SM to PCC Server

The PCC server may also serve as a control point for incoming short messages. The Sipwise C5 may indicate an incoming SM to

the PCC server, which in turn must explicitly accept the message, so that the message will be forwarded to the recipient.

Figure 153: Short Message Notification with PCC

1. The ngcp-panel module on Sipwise C5 Web component will query the central database for pending incoming SMs.

2. The ngcp-panel will send an HTTP POST request to the PCC server if there is a message waiting for a subscriber. An

example of such request is shown here:

POST /sms/4310001/in HTTP/1.1

Content-Type: application/json

{

"caller": 4369912345,

"callee": 4310001,

"token": "PCC-aijfeoi",

"callId": "abcd",

"text": "This is the SM text"

}

The target URL in this case is: /sms/<called_party_num>/in

489

The Sipwise C5 PRO Handbook mr6.5.11 490 / 601

3. The PCC server replies with 200 OK HTTP status if it properly understood the request.

17.4.4.2 Incoming SM Accepted by PCC Server

As in the case of an incoming call, the PCC server will send an HTTP POST request to the REST API of NGCP, in order to signal

the acceptance of the SM.

Figure 154: Short Message Accepted by PCC

1. The PCC server sends the request to Sipwise C5 Web component, where ngcp-api module will process it. An example:

POST /api/partycallcontrols HTTP/1.1

Content-Type: application/json

{

"type": "sms",

"caller": 4369912345,

"callee": 4310001,

"status": "ACCEPT",

"callId": "abcd",

"token": "PCC-aijfeoi"

}

The target URL of the request: /api/partycallcontrols. The type parameter must have a value of sms.

2. The ngcp-api module responds with 200 OK HTTP status if it properly understood the request.

3. The ngcp-api updates the status of the SM in the database so that the SM may be forwarded to the recipient.

4. The kannel-smsbox module on Sipwise C5 Proxy will query the central database for SMs to be delivered and will forward

the SM towards an SMSC, via Sipwise C5 LB.

17.4.5 Configuration of PCC

The configuration of the PCC feature is done via the main configuration file: /etc/ngcp-config/config.yml. The relevant

section is: apps.party_call_control, the example below shows the default values of the parameters.

490

The Sipwise C5 PRO Handbook mr6.5.11 491 / 601

apps:

party_call_control:

accepted_reply: 200*

enable: no

pcc_server_url: https://127.0.0.1:9090/pcc/${prefix}${callee}${suffix}

request_timeout: ’30’

trigger_on_hangup: yes

The configuration parameters are:

• accepted_reply: defines the value of status data element (in the PCC server’s POST request sent to /api/party

callcontrols API resource) that means the "accepted" status of the call. For instance the handbook showed the value

ACCEPT in previous sections, instead of the default 200*

• enable: must be set to yes in order to enable the PCC feature

• pcc_server_url: the URL, pointing to the PCC server, where HTTP POST requests must be sent. The variables ${pre

fix}, ${callee} and ${suffix} will be replaced with actual values when a request is sent. Please do not change this

part of the URL! Possible values are:

– prefix = calls, suffix = initiate

– prefix = calls, suffix = terminate

– prefix = voicemail, suffix = notify

– prefix = sms, suffix = in

– callee = <called_party_num>

• request_timeout: time in seconds until Sipwise C5 will wait for an HTTP reply from the PCC server, once Sipwise C5 has

sent a request to it

• trigger_on_hangup: if set to yes, Sipwise C5 will send a "terminate" request to the PCC server at the end of the call

17.4.6 Troubleshooting of PCC

The Sipwise C5 will provide logs of its activities that are very useful for troubleshooting the call processing with PCC feature. This

section will provide examples from various log files that can help to find potential problems in call setup.

17.4.6.1 Kamailio Proxy Log

PCC activation at ngcp-sems module

Oct 17 17:00:45 prx01a proxy[3206]: NOTICE: <script>: Call to PCC (Party Call Control) - R= ←↩
sip:2133339@192.168.10.11:5060;user=phone ID=1849964028_125696279@10.0.0.121 UA=’<null>’

Call accepted by PCC server

491

The Sipwise C5 PRO Handbook mr6.5.11 492 / 601

Oct 17 17:00:16 prx01a proxy[3210]: NOTICE: <script>: NAT-Reply - S=301 - Accepted M=INVITE ←↩
IP=192.168.10.12:5080 (192.168.10.12:5080) ID=1850250074_83465152@10.0.0.121 UA=’<null ←↩

>’

Oct 17 17:00:16 prx01a proxy[3210]: INFO: <script>: Received 200 OK (Accepted) from PCC ←↩
Server, routing the call to its original callee - ID=1850250074_83465152@10.0.0.121 UA ←↩
=’<null>’

17.4.6.2 SEMS Log

Initiate call at PCC

Oct 17 17:10:47 prx01a sems[5059]: [#7f73237f7700] [mod_py_log, PyDSM.cpp:42] INFO: PCC ←↩
http request to http://example.com/pcc/calls/4366811112222/initiate - callid 1851794724 ←↩
_134068006@10.0.0.121

Oct 17 17:10:47 prx01a sems[5059]: [#7f73237f7700] [mod_py_log, PyDSM.cpp:42] INFO: PCC ←↩
form data: {’actualMsisdn’: ’4369933334444’, ’actualClir’: ’0’, ’token’: ’PCC-12DBBD25 ←↩
-59E61D770001841C-237F7700’, ’callingMsisdn’: ’4366811112222’, ’callId’: ’1851794724 ←↩
_134068006@10.0.0.121’} - callid 1851794724_134068006@10.0.0.121

Oct 17 17:10:47 prx01a sems[5059]: [#7f73237f7700] [mod_py_log, PyDSM.cpp:42] INFO: PCC ret ←↩
: 0 num_handles: 1

Oct 17 17:10:47 prx01a sems[5059]: [#7f73237f7700] [mod_py_log, PyDSM.cpp:42] INFO: RT: 0 1 ←↩
0 [] []

...

Oct 17 17:10:47 prx01a sems[5059]: [#7f73237f7700] [mod_py_log, PyDSM.cpp:42] INFO: RT: 0 0 ←↩
0 [<pycurl.Curl object at 0x7f7378067c50>] []

Oct 17 17:10:47 prx01a sems[5059]: [#7f73237f7700] [mod_py_log, PyDSM.cpp:42] INFO: PCC ←↩
reply for callid 1851794724_134068006@10.0.0.121: 200

Call accepted by PCC server

Oct 17 17:10:51 prx01a sems[5059]: [#7f7323efe700] [execute, XMLRPC2DI.cpp:714] INFO: ←↩
XMLRPC2DI ’postDSMEvent’: function ’postDSMEvent’

Oct 17 17:10:51 prx01a sems[5059]: [#7f7323efe700] [execute, XMLRPC2DI.cpp:718] INFO: ←↩
params: <[’PCC-12DBBD25-59E61D770001841C-237F7700’, [[’cmd’, ’handleCall’], [’callid’, ←↩
’1851794724_134068006@10.0.0.121’], [’caller’, ’4369933334444’], [’callee’, ←↩
’4366811112222’], [’status’, ’ACCEPT’]]]>

Oct 17 17:10:51 prx01a sems[5059]: [#7f7323efe700] [execute, XMLRPC2DI.cpp:724] INFO: ←↩
result: <[200, ’OK’]>

Oct 17 17:10:51 prx01a sems[5059]: [#7f73237f7700] [execute, DSMCoreModule.cpp:521] INFO: ←↩
FSM: ’PCC RESULT -- ACCEPT’

Terminate call at PCC

Oct 17 17:10:53 prx01a sems[5059]: [#7f73235f5700] [mod_py_log, PyDSM.cpp:42] INFO: PCC ←↩
http request to http://example.com/pcc/calls/4366811112222/terminate - callid 1851794724 ←↩
_134068006@10.0.0.121

492

The Sipwise C5 PRO Handbook mr6.5.11 493 / 601

Oct 17 17:10:53 prx01a sems[5059]: [#7f73235f5700] [mod_py_log, PyDSM.cpp:42] INFO: PCC ←↩
form data: {’actualMsisdn’: ’4369933334444’, ’callId’: ’1851794724_134068006@10 ←↩
.0.0.121’, ’callingMsisdn’: ’4366811112222’, ’reason’: ’CANCEL’, ’token’: ’PCC-12DBBD25 ←↩
-59E61D770001841C-237F7700’, ’actualClir’: ’0’} - callid 1851794724_134068006@10.0.0.121

17.4.6.3 Sipwise C5 Panel Log

SM notification at PCC server

Oct 18 09:10:16 web01a ngcp-panel: INFO: pcc is set to 1 for prov subscriber id 18451

Oct 18 09:10:16 web01a ngcp-panel: INFO: >>>> source check for booking.com passed, continue ←↩
with time check

Oct 18 09:10:16 web01a ngcp-panel: INFO: >>>> time check for 1508310615 passed, use ←↩
destination set

Oct 18 09:10:16 web01a ngcp-panel: INFO: >>>> proceed sms forwarding

Oct 18 09:10:16 web01a ngcp-panel: INFO: >>>> forward sms to 4369933334444

Oct 18 09:10:16 web01a ngcp-panel: INFO: sending pcc request for sms with id 305125 to http ←↩
://example.com/pcc/sms/4366811112222/in

Oct 18 09:10:16 web01a ngcp-panel: INFO: sending pcc request succeeded

Oct 18 09:10:16 web01a ngcp-panel: INFO: status for pcc sms of 305125 is BUSY, don’t ←↩
forward sms

In the last line the status is BUSY. The purpose of this is to prevent forwarding the SM to the mobile phone of the recipient.

Otherwise, in order to let Sipwise C5 forward the message to the recipient, the status is ACCEPT.

17.4.6.4 REST API Log

Call accepted by PCC server

Oct 18 10:19:39 web01a ngcp-panel: INFO: IP=192.168.10.20 CALLED=API[POST]/api/ ←↩
partycallcontrols/ TX=14EE9C4CD2599A70 USER=username DATA={} MSG="" LOG="{"type":"pcc"," ←↩
caller":"4365033334444","callee":"4366811112222","status":"ACCEPT","token":"PCC-273C2CDA ←↩
-59E70E96000BE0C4-231F1700","callid":"406885946_117428858@10.0.0.121"}"

Oct 18 10:19:39 web01a ngcp-panel: INFO: IP=192.168.10.20 CALLED=API[POST 200]/api/ ←↩
partycallcontrols/ TX=14EE9C4CD2599A70 USER=username DATA={} MSG="" LOG=""

SM accepted by PCC server

Oct 18 10:20:30 web01a ngcp-panel: INFO: IP=192.168.10.20 CALLED=API[POST]/api/ ←↩
partycallcontrols/ TX=14EE9C58CEA4D960 USER=username DATA={} MSG="" LOG="{"type":"sms"," ←↩
caller":"15556666","callee":"4366811112222","status":"ACCEPT","token":"1482d9e2-a9fc-40 ←↩
ee-bdaf-de6f7fc239f8","callid":"305175"}"

Oct 18 10:20:30 web01a ngcp-panel: INFO: IP=192.168.10.20 CALLED=API[POST 200]/api/ ←↩
partycallcontrols/ TX=14EE9C58CEA4D960 USER=username DATA={} MSG="" LOG=""

493

The Sipwise C5 PRO Handbook mr6.5.11 494 / 601

17.4.6.5 Voicemail Notification Log

The voicemail notifier script (/usr/bin/vmnotify) writes its log messages into the system log (/var/log/syslog). An

example:

Oct 18 09:53:34 prx01a vmnotify[20072]: Arguments: default 4366811112222 1 0 0 0 ←↩
4365033334444 2017-10-18T09:53:34+0200 8

Where the Arguments are:

• default: Asterisk voicemail context

• the voicemail box owner

• 1: number of new messages

• 0: number of old messages

• 0: number of urgent messages

• 0: message ID of the latest message

• who left the message (caller)

• date and time of the message

• 8: duration of the message in seconds

494

The Sipwise C5 PRO Handbook mr6.5.11 495 / 601

A Basic Call Flows

A.1 General Call Setup

Figure 155: General Call Setup

Sipwise C5 performs the following checks when processing a call coming from a subscriber and terminated at a peer:

• Checks if the IP address where the request came from is in the list of trusted IP addresses. If yes, this IP address is taken as

the identity for authentication. Otherwise, Sipwise C5 performs the digest authentication.

• When the subscriber is authorized to make the call, Sipwise C5 applies the Inbound Rewrite Rules for the caller and the

callee assigned to the subscriber (if any). If there are no Rewrite Rules assigned to the subscriber, the ones assigned to the

subscriber’s domain are applied. On this stage the platform normalises the numbers from the subscriber’s format to E.164.

• Matches the callee (called number) with local subscribers.

– If it finds a matching subscriber, the call is routed internally. In this case, Sipwise C5 applies the Outbound Rewrite Rules

associated with the callee (if any). If there are no Rewrite Rules assigned to the callee, the ones assigned to the callee’s

domain are applied.

– If it does not find a matching subscriber, the call goes to a peer as described below.

• Queries the LNP database to find out if the number was ported or not.For details of LNP queries refer to the Local Number

Porting Section 6.5 chapter.

– If it was ported, Sipwise C5 applies the LNP Rewrite Rules to the called number.

• Based on the priorities of peering groups and peering rules (see Section 5.6.2.3 for details), Sipwise C5 selects peering groups

for call termination and defines their precedence.

495

The Sipwise C5 PRO Handbook mr6.5.11 496 / 601

• Within every peering group the weight of a peering server defines its probability to receive the call for termination. Thus, the

bigger the weight of a server, the higher the probability that Sipwise C5 will send the call to it.

• Applies the Outbound Rewrite Rules for the caller and the callee assigned to a peering server when sending the call to it.

A.2 Endpoint Registration

Figure 156: Registration Call-Flow

The subscriber endpoint starts sending a REGISTER request, which gets challenged by a 401. After calculating the response of

the authentication challenge, it sends the REGISTER again, including the authentication response. The SIP proxy looks up the

credentials of the subscriber in the database, does the same calculation, and if the result matches the one from the subscriber,

the registration is granted.

The SIP proxy writes the content of the Contact header (e.g. sip:me@1.2.3.4:1234;transport=UDP) into its location

table (in case of NAT the content is changed by the SIP load-balancer to the IP/port from where the request was received), so

it knows where the reach a subscriber in case on an inbound call to this subscriber (e.g. sip:someuser@example.org is

mapped to sip:me@1.2.3.4:1234;transport=UDP and sent out to this address).

If NAT is detected, the SIP proxy sends a OPTION message to the registered contact every 30 seconds, in order to keep the

NAT binding on the NAT device open. Otherwise, for subsequent calls to this contact, Sipwise C5 wouldn’t be able to reach the

endpoint behind NAT (NAT devices usually drop a UDP binding after not receiving any traffic for ~30-60 seconds).

496

The Sipwise C5 PRO Handbook mr6.5.11 497 / 601

Figure 157: NAT-Ping Call-Flow

By default, a subscriber can register 5 contacts for an Address of Record (AoR, e.g. sip:someuser@example.org).

497

The Sipwise C5 PRO Handbook mr6.5.11 498 / 601

498

The Sipwise C5 PRO Handbook mr6.5.11 499 / 601

A.3 Basic Call

Figure 158: Basic Call Call-Flow

499

The Sipwise C5 PRO Handbook mr6.5.11 500 / 601

The calling party sends an INVITE (e.g. sip:someuser@example.org) via the SIP load-balancer to the SIP proxy. The proxy

replies with an authorization challenge in the 407 response, and the calling party sends the INVITE again with authentication

credentials. The SIP proxy checks if the called party is a local user. If it is, and if there is a registered contact found for this

user, then (after various feature-related tasks for both the caller and the callee) the Request-URI is replaced by the URI of the

registered contact (e.g. sip:me@1.2.3.4:1234;transport=UDP). If it’s not a local user but a numeric user, a proper

PSTN gateway is being selected by the SIP proxy, and the Request-URI is rewritten accordingly (e.g. sip:+43123456789@

2.3.4.5:5060).

Once the proxy has finished working through the call features of both parties involved and has selected the final destination for the

call, and - optionally - has invoked the Media Relay for this call, the INVITE is sent to the SIP B2BUA. The B2BUA creates a new

INVITE message from scratch (using a new Call-ID and a new From-Tag), copies only various and explicitly allowed SIP headers

from the old message to the new one, filters out unwanted media capabilities from the SDP body (e.g. to force audio calls to use

G.711 as a codec) and then sends the new message via the SIP load-balancer to the called party.

SIP replies from the called party are passed through the elements back to the calling party (replacing various fields on the B2BUA

to match the first call leg again). If a reply with an SDP body is received by the SIP proxy (e.g. a 183 or a 200), the Media Relay

is invoked again to prepare the ports for the media stream.

Once the 200 is routed from the called party to the calling party, the media stream is fully negotiated, and the endpoints can start

sending traffic to each outer (either end-to-end or via the Media Relay). Upon reception of the 200, the SIP proxy writes a start

record for the accounting process. The 200 is also acknowledged with an ACK message from the calling party to the called party,

according to the SIP 3-way handshake.

Either of the parties can tear down the media session at any time by sending a BYE, which is passed through to the other

party. Once the BYE reaches the SIP proxy, it instructs the Media Relay to close the media ports, and it writes a stop record for

accounting purposes. Both the start- and the stop-records are picked up by the mediator service in a regular interval and are

converted into a Call Detail Record (CDR), which will be rated by the rate-o-mat process and can be billed to the calling party. For

calls made by subscribers on a prepaid plan, rating occurs at call runtime and is actually done by the B2BUA (which is necessary

to properly support multiple parallel calls by the same subscriber). The final rating data is then passed on to rate-o-mat which will

update the CDRs accordingly.

A.4 Session Keep-Alive

The SIP B2BUA acts as refresher for the Session-Timer mechanism as defined in RFC 4028. If the endpoints indicate support

for the UPDATE method during call-setup, then the SIP B2BUA will use an UPDATE message if enabled per peer, domain or

subscriber via Provisioning to check if the endpoints are still alive and responsive. Both endpoints can renegotiate the timer

within a configurable range. All values can be tuned using the Admin Panel or the APIs using Peer-, Domain- and Subscriber-

Preferences.

Tip

Keep in mind that the values being used in the signaling are always half the value being configured. So if you want to send a

keep-alive every 300 seconds, you need to provision sst_expires to 600.

If one of the endpoints doesn’t respond to the keep-alive messages or answers with 481 Call/Transaction Does Not

Exist, then the call is torn down on both sides. This mechanism prevents excessive over-billing of calls if one of the endpoints

500

mailto:43123456789@2.3.4.5
mailto:43123456789@2.3.4.5

The Sipwise C5 PRO Handbook mr6.5.11 501 / 601

is not reachable anymore or "forgets" about the call. The BYE message sent by the B2BUA triggers a stop-record for accounting

and also closes the media ports on the Media Relay to stop the call.

Beside the Session-Timer mechanism to prevent calls from being lost or kept open, there is a maximum call length of 21600

seconds per default defined in the B2BUA. This is a security/anti-fraud mechanism to prevent overly long calls causing excessive

costs.

A.5 Voicebox Calls

Figure 159: Voicebox Call-Flow

Calls to the Voicebox (both for callers leaving a voicemail message and for voicebox owners managing it via the IVR menu) are

passed directly from the SIP proxy to the App-Server without a B2BUA. The App-Server maintains its own timers, so there is no

risk of over-billing or overly long calls.

In such a case where an endpoint talks via the Media Relay to a system-internal endpoint, the Media Relay bridges the media

streams between the public in the system-internal network.

In case of an endpoint leaving a new message on the voicebox, the Message-Waiting-Indication (MWI) mechanism triggers the

sending of a unsolicited NOTIFY message, passing the number of new messages in the body. As soon as the voicebox owner

501

The Sipwise C5 PRO Handbook mr6.5.11 502 / 601

dials into his voicebox (e.g. by calling sip:voicebox@example.org from his SIP account), another NOTIFY message is

sent to his devices, resetting the number of new messages.

Important

The Sipwise C5 does not require your device to subscribe to the MWI service by sending a SUBSCRIBE (it would rather

reject it). On the other hand, the endpoints need to accept unsolicited NOTIFY messages (that is, a NOTIFY without a

valid subscription), otherwise the MWI service will not work with these endpoints.

502

The Sipwise C5 PRO Handbook mr6.5.11 503 / 601

B Sipwise C5 configs overview

B.1 config.yml Overview

/etc/ngcp-config/config.yml is the main configuration YAML file used by Sipwise C5. After every changes it need to

run the command ngcpcfg apply "my commit message" to apply changes (followed by ngcpcfg push in the PRO

version to apply changes to sp2). The following is a brief description of the main variables contained into /etc/ngcp-config/

config.yml file.

B.1.1 apps

This section contains parameters for the additional applications that may be activated on Sipwise C5.

apps:

malicious_call: no

party_call_control:

accepted_reply: 200*

enable: no

pcc_server_url: https://127.0.0.1:9090/pcc/${prefix}${callee}${suffix}

request_timeout: ’30’

trigger_on_hangup: yes

• malicious_call: If set to yes, the Malicious Call Identification (MCID) application will be enabled.

• party_call_control.accepted_reply: Defines the value of status data element that means the "accepted" status of the call.

• party_call_control.enable: Must be set to yes in order to enable the PCC feature.

• party_call_control.pcc_server_url: The URL, pointing to the PCC server, where HTTP POST requests must be sent. Do not

change the variable references ${prefix}, ${callee} and ${suffix}!

• party_call_control.request_timeout: Time in seconds until Sipwise C5 will wait for an HTTP reply from the PCC server, once

Sipwise C5 has sent a request to it.

• party_call_control.trigger_on_hangup: If set to yes, Sipwise C5 will send a "terminate" request to the PCC server at the end of

the call.

Tip

See the Section 17.4.5 section of the handbook for more details on PCC configuration.

B.1.2 asterisk

The following is the asterisk section:

503

The Sipwise C5 PRO Handbook mr6.5.11 504 / 601

asterisk:

log:

facility: local6

rtp:

maxport: 20000

minport: 10000

sip:

bindport: 5070

dtmfmode: rfc2833

voicemail:

enable: ’no’

fromstring: ’Voicemail server’

greeting:

busy_custom_greeting: ’/home/user/file_no_extension’

busy_overwrite_default: ’no’

busy_overwrite_subscriber: ’no’

unavail_custom_greeting: ’/home/user/file_no_extension’

unavail_overwrite_default: ’no’

unavail_overwrite_subscriber: ’no’

mailbody: ’You have received a new message from ${VM_CALLERID} in voicebox ${VM_MAILBOX ←↩
} on ${VM_DATE}.’

mailsubject: ’[Voicebox] New message ${VM_MSGNUM} in voicebox ${VM_MAILBOX}’

max_msg_length: 180

maxgreet: 60

maxmsg: 30

maxsilence: 0

min_msg_length: 3

normalize_match: ’^00|\+([1-9][0-9]+)$’

normalize_replace: ’$1’

serveremail: voicebox@sip.sipwise.com

• log.facility: rsyslog facility for asterisk log, defined in /etc/asterisk/logger.conf.

• rtp.maxport: RTP maximum port used by asterisk.

• rtp.minport: RTP minimum port used by asterisk.

• sip.bindport: SIP asterisk internal bindport.

• voicemail.greetings.*: set the audio file path for voicemail custom unavailable/busy greetings

• voicemail.mailbody: Mail body for incoming voicemail.

• voicemail.mailsubject: Mail subject for incoming voicemail.

• voicemail.max_msg_length: Sets the maximum length of a voicemail message, in seconds.

• voicemail.maxgreet: Sets the maximum length of voicemail greetings, in seconds.

• voicemail.maxmsg: Sets the maximum number of messages that may be kept in any voicemail folder.

504

The Sipwise C5 PRO Handbook mr6.5.11 505 / 601

• voicemail.min_msg_length: Sets the minimum length of a voicemail message, in seconds.

• voicemail.maxsilence: Maxsilence defines how long Asterisk will wait for a contiguous period of silence before terminating an

incoming call to voice mail. The default value is 0, which means the silence detector is disabled and the wait time is infinite.

• voicemail.serveremail: Provides the email address from which voicemail notifications should be sent.

• voicemail.normalize_match: Regular expression to match the From number for calls to voicebox.

• voicemail.normalize_replace: Replacement string to return, in order to match an existing voicebox.

B.1.3 autoprov

The following is the autoprovisioning section:

autoprov:

hardphone:

skip_vendor_redirect: ’no’

server:

bootstrap_port: 1445

ca_certfile: ’/etc/ngcp-config/ssl/client-auth-ca.crt’

host: localhost

port: 1444

server_certfile: ’/etc/ngcp-config/ssl/myserver.crt’

server_keyfile: ’/etc/ngcp-config/ssl/myserver.key’

ssl_enabled: ’yes’

softphone:

config_lockdown: 0

webauth: 0

• autoprov.skip_vendor_redirect: Skip phone vendor redirection to the vendor provisioning web site.

B.1.4 backuptools

The following is the backup tools section:

backuptools:

cdrexport_backup:

enable: ’no’

etc_backup:

enable: ’no’

mail:

address: noc@company.org

error_subject: ’[ngcp-backup] Problems detected during daily backup’

log_subject: ’[ngcp-backup] Daily backup report’

send_errors: ’no’

send_log: ’no’

mysql_backup:

505

The Sipwise C5 PRO Handbook mr6.5.11 506 / 601

enable: ’no’

exclude_dbs: ’syslog sipstats information_schema’

rotate_days: 7

storage_dir: ’/ngcp-data/backup/ngcp_backup’

temp_backup_dir: ’/tmp/ngcp_backup’

• backuptools.cdrexport_backup.enable: Enable backup of cdrexport (.csv) directory.

• backuptools.etc_backup.enable: Enable backup of /etc/* directory.

• backuptools.mail.address: Destination email address for backup emails.

• backuptools.mail.error_subject: Subject for error emails.

• backuptools.mail.log_subjetc: Subject for daily backup report.

• backuptools.mail.send_error: Send daily backup error report.

• backuptools.mail.send_log: Send daily backup log report.

• backuptools.mysql_backup.enable: Enable daily mysql backup.

• backuptools.mysql_backup.exclude_dbs: exclude mysql databases from backup.

• backuptools.rotate_days: Number of days backup files should be kept. All files older than specified number of days are deleted

from the storage directory.

• backuptools.storage_dir: Storage directory of backups.

• backuptools.storage_group: Name of the group that backup files should be owned by.

• backuptools.storage_user: Name of the user that backup files should be owned by.

• backuptools.temp_backup_dir: Temporary storage directory of backups.

B.1.5 cdrexport

The following is the cdr export section:

cdrexport:

daily_folder: ’yes’

export_failed: ’no’

export_incoming: ’no’

exportpath: ’/home/jail/home/cdrexport’

full_names: ’yes’

monthly_folder: ’yes’

• cdrexport.daily_folder: Set yes if you want to create a daily folder for CDRs under the configured path.

• cdrexport.export_failed: Export CDR for failed calls.

506

The Sipwise C5 PRO Handbook mr6.5.11 507 / 601

• cdrexport.export_incoming: Export CDR for incoming calls.

• cdrexport.exportpath: The path to store CDRs in .csv format.

• cdrexport.full_names: Use full namen for CDRs instead of short ones.

• cdrexport.monthly_folder: Set yes if you want to create a monthly folder (ex. 201301 for January 2013) for CDRs under config-

ured path.

B.1.6 checktools

The following is the check tools section:

checktools:

active_check_enable: ’1’

asr_ner_statistics: ’1’

collcheck:

cpuidle: ’0.1’

dfused: ’0.9’

eximmaxqueue: ’15’

kamminshmem: ’1048576’

lbminshmem: ’1048576’

loadlong: ’2’

loadmedium: ’2’

loadshort: ’3’

maxage: 30

memused: 0.98

siptimeout: ’15’

sslcert_timetoexpiry: ’30’

sslcert_whitelist: []

swapfree: 0.02

exim_check_enable: ’1’

force: ’0’

kamailio_check_concurrent_calls_enable: ’1’

kamailio_check_dialog_active_enable: ’1’

kamailio_check_dialog_early_enable: ’1’

kamailio_check_dialog_incoming_enable: ’1’

kamailio_check_dialog_local_enable: ’1’

kamailio_check_dialog_outgoing_enable: ’1’

kamailio_check_dialog_relay_enable: ’1’

kamailio_check_shmem_enable: ’1’

kamailio_check_usrloc_regdevices_enable: ’1’

kamailio_check_usrloc_regusers_enable: ’1’

monitor_peering_groups: ’1’

mpt_check_enable: ’0’

mysql_check_enable: ’1’

mysql_check_replication: ’1’

mysql_replicate_check_interval: ’3600’

mysql_replicate_check_tables:

507

The Sipwise C5 PRO Handbook mr6.5.11 508 / 601

- accounting

- billing

- carrier

- kamailio

- ngcp

- provisioning

- prosody

- rtcengine

- stats

mysql_replicate_ignore_tables:

- accounting.acc_backup

- accounting.acc_trash

- kamailio.acc_backup

- kamailio.acc_trash

- ngcp.pt_checksums_sp1

- ngcp.pt_checksums_sp2

- ngcp.pt_checksums

oss_check_provisioned_subscribers_enable: ’1’

sip_check_enable: ’1’

sipstats_check_num_packets: ’1’

sipstats_check_num_packets_perday: ’1’

sipstats_check_partition_size: ’1’

snmpd:

communities:

public:

- localhost

trap_communities:

public:

- localhost

• checktools.collcheck.cpuidle: Sets the minimum value for CPU usage (0.1 means 10%).

• checktools.collcheck.dfused: Sets the maximun value for DISK usage (0.9 means 90%).

• checktools.collcheck.loadlong/loadlong/loadshort: Max values for load (long, short, medium term).

• checktools.collcheck.maxage: Max age in seconds.

• checktools.collcheck.memused: Sets the maximun value for MEM usage (0.7 means 70%).

• checktools.collcheck.siptimeout: Max timeout for sip options.

• checktools.collcheck.swapfree: Sets the minimum value for SWAP free (0.5 means 50%).

• checktools.exim_check_enable: Exim queue check plugin for ngcp-witnessd.

• checktools.active_check_enable: Active node check plugin for ngcp-witnessd.

• checktools.asr_ner_statistics: enable/Disable ASR/NER statistics.

• checktools.force: Perform checks even if not active from ngcp-check-active command.

508

The Sipwise C5 PRO Handbook mr6.5.11 509 / 601

• checktools.kamailio_check_*: Enable/Disable SNMP collective check pluglin for Kamailio.

• checktools.mpt_check_enable: MPT raid SNMP check plugin.

• checktools.mysql_check_enable: Enable/disable MySQL check SNMP plugin.

• checktools.mysql_check_replication: Enable/disable MySQL replication check.

• checktools.mysql_replicate_check_interval: MySQL replication check interval in seconds.

• checktools.mysql_replicate_check_tables: List of tables that need to be checked for replication issues.

• checktools.mysql_replicate_ignore_tables: List of tables that need to be ignored during replication check.

• checktools.oss_check_provisioned_subscribers_enable: OSS provisioned subscribers count plugin.

• checktools.sip_check_enable/sipstats_check_*: Enable/Disable SIP check plugins.

• checktools.snmpd.communities.*: Sets the SNMP community and sources. Entries (i.e. the sources) under a community (like

public in the example) are in a list format, each line starting with "-" and followed by the source address.

• checktools.snmpd.trap_communities.*: Sets the SNMP TRAP community and destination for traps sent by NGCP. Format is the

same as for checktools.snmpd.communities.

B.1.7 cleanuptools

The following is the cleanup tools section:

cleanuptools:

acc_cleanup_days: 90

archive_targetdir: ’/ngcp-data/backups/cdr’

binlog_days: 15

cdr_archive_months: 2

cdr_backup_months: 2

cdr_backup_retro: 3

compress: gzip

delete_old_cdr_files:

enable: ’no’

max_age_days: 30

paths:

-

max_age_days: ~

path: ’/home/jail/home/*/20[0-9][0-9][0-9][0-9]/[0-9][0-9]’

remove_empty_directories: ’yes’

wildcard: ’yes’

-

max_age_days: ~

path: ’/home/jail/home/cdrexport/resellers/*/20[0-9][0-9][0-9][0-9]/[0-9][0-9]’

remove_empty_directories: ’yes’

wildcard: ’yes’

-

509

The Sipwise C5 PRO Handbook mr6.5.11 510 / 601

max_age_days: ~

path: ’/home/jail/home/cdrexport/system/20[0-9][0-9][0-9][0-9]/[0-9][0-9]’

remove_empty_directories: ’yes’

wildcard: ’yes’

sql_batch: 10000

trash_cleanup_days: 30

• cleanuptools.acc_cleanup_days: CDR records in acc table in kamailio database will be deleted after this time

• cleanuptools.binlog_days: Time after MySQL binlogs will be deleted.

• cleanuptools.cdr_archive_months: How many months worth of records to keep in monthly CDR backup tables, instead of

dumping them into archive files and dropping them from database.

• cleanuptools.cdr_backup_months: How many months worth of records to keep in the current cdr table, instead of moving them

into the monthly CDR backup tables.

• cleanuptools.cdr_backup_retro: How many months to process for backups, going backwards in time and skipping cdr_backu

p_months months first, and store them in backup tables. Any older record will be left untouched.

• cleanuptools.delete_old_cdr_files:

– enable: Enable (yes) or disable (no) exported CDR cleanup.

– max_age_days: Gives the expiration time of the exported CDR files in days. There is a general value which may be overridden

by a local value provided at a specific path. The local value is valid for the particular path only.

– paths: an array of path definitions

* path: a path where CDR files are to be found and deleted; this may contain wildcard characters

* wildcard: Enable (yes) or disable (no) using wildcards in the path

* remove_empty_directories: Enable (yes) or disable (no) removing empty directories if those are found in the given path

* max_age_days: the local expiration time value for files in the particular path

• cleanuptools.sql_batch: How many records to process within a single SQL statement.

• cleanuptools.trash_cleanup_days: Time after CDRs from acc_trash and acc_backup tables in kamailio database will

be deleted.

For the description of cleanuptools please visit Cleanuptools Description Section 14.5 section of the handbook.

B.1.8 cluster_sets

The following is the cluster sets section:

cluster_sets:

default:

dispatcher_id: 50

default_set: default

type: central

510

The Sipwise C5 PRO Handbook mr6.5.11 511 / 601

• cluster_sets.<label>: an arbitrary label of the cluster set; in the above example we have default

• cluster_sets.<label>.dispatcher_id: a unique, numeric value that identifies a particular cluster set

• cluster_sets.default_set: selects the default cluster set

• cluster_sets.type: the type of cluster set; can be central or distributed

B.1.9 database

The following is the database section:

database:

bufferpoolsize: 24768M

• database.bufferpoolsize: Innodb_buffer_pool_size value in /etc/mysql/my.cnf

B.1.10 faxserver

The following is the fax server section:

faxserver:

enable: yes

fail_attempts: ’3’

fail_retry_secs: ’60’

mail_from: ’Sipwise C5 FaxServer <voipfax@ngcp.sipwise.local>’

• faxserver.enable: yes/no to enable or disable ngcp-faxserver on the platform respectively.

• faxserver.fail_attempts: Amount of attempts to send a fax after which it is marked as failed.

• faxserver.fail_retry_secs: Amount of seconds to wait between "fail_attemts".

• faxserver.mail_from: Sets the e-mail From Header for incoming fax.

B.1.11 general

The following is the general section:

general:

adminmail: adjust@example.org

companyname: sipwise

lang: en

maintenance: no

production: yes

timezone: localtime

511

The Sipwise C5 PRO Handbook mr6.5.11 512 / 601

• general.adminmail: Email address used by monit to send notifications to.

• general.companyname: Label used in SNMPd configuration.

• general.lang: Sets sounds language (e.g: de for German)

• general.production: Label to hint self-check scripts about installation mode.

• general.maintenance: maintenance mode necessary for safe upgrades.

• general.timezone: Sipwise C5 Timezone

B.1.12 heartbeat

The following is the heartbeat section:

heartbeat:

hb_watchdog:

action_max: 5

enable: ’yes’

interval: 10

transition_max: 10

pingnodes:

- 10.60.1.1

- 192.168.3.4

• heartbeat.hb_watchdog.enable: Enable heartbeat watchdog in order to prevent and fix split brain scenario.

• heartbeat.hb_watchdog.action_max: Max errors before taking any action.

• heartbeat.hb_watchdog.interval: Interval in secs for the check.

• heartbeat.hb_watchdog.transition_max: Max checks in transition state.

• heartbeat.pingnodes: List of pingnodes for heartbeat. Minimum 2 entries, otherwise by default Sipwise C5 will set the default

gateway and DNS servers as pingnodes.

B.1.13 intercept

The following is the legal intercept section:

intercept:

captagent:

port: 18090

schema: http

enable: ’no’

• intercept.captagent.enable: Enable captagent for Lawful Interception (addiotional Sipwise C5 module).

512

The Sipwise C5 PRO Handbook mr6.5.11 513 / 601

B.1.14 kamailio

The following is the kamailio section:

kamailio:

lb:

cfgt: no

debug:

enable: no

modules:

- level: ’1’

name: core

- level: ’3’

name: xlog

debug_level: ’1’

dns:

dns_sctp_pref: 1

dns_tcp_pref: 1

dns_tls_pref: 1

dns_try_naptr: no

dns_udp_pref: 1

use_dns_cache: on

external_sbc: []

extra_sockets: ~

max_forwards: ’70’

mem_log: ’1’

mem_summary: ’12’

nattest_exception_ips:

- 1.2.3.4

- 5.6.7.8

pkg_mem: ’16’

port: ’5060’

remove_isup_body_from_replies: no

sdp_line_filter:

enable: no

remove_line_startswith: []

security:

dos_ban_enable: yes

dos_ban_time: ’300’

dos_reqs_density_per_unit: ’50’

dos_sampling_time_unit: ’5’

dos_whitelisted_ips: []

dos_whitelisted_subnets: []

failed_auth_attempts: ’3’

failed_auth_ban_enable: yes

failed_auth_ban_time: ’3600’

topoh:

enable: no

513

The Sipwise C5 PRO Handbook mr6.5.11 514 / 601

mask_callid: no

mask_ip: 127.0.0.8

shm_mem: ’64’

skip_contact_alias_for_ua_when_tcp:

enable: no

user_agent_patterns: []

start: yes

strict_routing_safe: no

syslog_options: yes

tcp_children: 1

tcp_max_connections: ’2048’

tls:

enable: no

port: ’5061’

sslcertfile: /etc/ngcp-config/ssl/myserver.crt

sslcertkeyfile: /etc/ngcp-config/ssl/myserver.key

udp_children: 1

proxy:

allow_info_method: no

allow_msg_method: no

allow_peer_relay: no

allow_refer_method: no

always_anonymize_from_user: no

authenticate_bye: no

block_useragents:

action: reject

enable: no

mode: blacklist

ua_patterns: []

cf_depth_limit: ’10’

cfgt: no

check_prev_forwarder_as_upn: no

children: 1

debug:

enable: no

modules:

- level: ’1’

name: core

- level: ’3’

name: xlog

debug_level: ’1’

default_expires: ’3600’

default_expires_range: ’30’

dlg_timeout: ’43200’

early_rejects:

block_admin:

announce_code: ’403’

announce_reason: Blocked by Admin

514

The Sipwise C5 PRO Handbook mr6.5.11 515 / 601

block_callee:

announce_code: ’403’

announce_reason: Blocked by Callee

block_caller:

announce_code: ’403’

announce_reason: Blocked by Caller

block_contract:

announce_code: ’403’

announce_reason: Blocked by Contract

block_in:

announce_code: ’403’

announce_reason: Block in

block_out:

announce_code: ’403’

announce_reason: Blocked out

block_override_pin_wrong:

announce_code: ’403’

announce_reason: Incorrect Override PIN

callee_busy:

announce_code: ’486’

announce_reason: Busy Here

callee_offline:

announce_code: ’480’

announce_reason: Offline

callee_tmp_unavailable:

announce_code: ’480’

announce_reason: Temporarily Unavailable

callee_tmp_unavailable_gp:

announce_code: ’480’

announce_reason: Unavailable

callee_tmp_unavailable_tm:

announce_code: ’408’

announce_reason: Request Timeout

callee_unknown:

announce_code: ’404’

announce_reason: Not Found

cf_loop:

announce_code: ’480’

announce_reason: Unavailable

emergency_invalid:

announce_code: ’404’

announce_reason: Emergency code not available in this region

emergency_unsupported:

announce_code: ’403’

announce_reason: Emergency Calls Not Supported

invalid_speeddial:

announce_code: ’484’

announce_reason: Speed-Dial slot empty

515

The Sipwise C5 PRO Handbook mr6.5.11 516 / 601

locked_in:

announce_code: ’403’

announce_reason: Callee locked

locked_out:

announce_code: ’403’

announce_reason: Caller locked

max_calls_in:

announce_code: ’486’

announce_reason: Busy

max_calls_out:

announce_code: ’403’

announce_reason: Maximum parallel calls exceeded

no_credit:

announce_code: ’402’

announce_reason: Insufficient Credit

peering_unavailable:

announce_code: ’503’

announce_reason: PSTN Termination Currently Unavailable

reject_vsc:

announce_code: ’403’

announce_reason: VSC Forbidden

relaying_denied:

announce_code: ’403’

announce_reason: Relaying Denied

unauth_caller_ip:

announce_code: ’403’

announce_reason: Unauthorized IP detected

emergency_priorization:

enable: no

register_fake_200: yes

register_fake_expires: ’3600’

reject_code: ’503’

reject_reason: Temporary Unavailable

retry_after: ’3600’

enum_suffix: e164.arpa.

expires_range: ’30’

filter_100rel_from_supported: no

filter_failover_response: 408|500|503

foreign_domain_via_peer: no

fritzbox:

enable: no

prefixes:

- 0$avp(caller_ac)

- $avp(caller_cc)$avp(caller_ac)

- \+$avp(caller_cc)$avp(caller_ac)

- 00$avp(caller_cc)$avp(caller_ac)

special_numbers:

- ’112’

516

The Sipwise C5 PRO Handbook mr6.5.11 517 / 601

- ’110’

- 118[0-9]{2}

ignore_auth_realm: no

ignore_subscriber_allowed_clis: no

keep_original_to: no

latency_limit_action: ’100’

latency_limit_db: ’500’

latency_log_level: ’1’

latency_runtime_action: 1000

lnp:

add_reply_headers:

enable: no

number: P-NGCP-LNP-Number

status: P-NGCP-LNP-Status

api:

add_caller_cc_to_lnp_dst: no

invalid_lnp_routing_codes:

- ^EE00

- ^DD00

keepalive_interval: ’3’

lnp_request_blacklist: []

lnp_request_whitelist: []

port: ’8991’

reply_error_on_lnp_failure: no

request_timeout: ’1000’

server: localhost

tcap_field_fci: end.components.0.invoke.parameter

tcap_field_lnp: ConnectArg.destinationRoutingAddress.0

tcap_field_opcode: end.components.0.invoke.opCode

enable: no

skip_callee_lnp_lookup_from_any_peer: no

type: api

lookup_peer_destination_domain_for_pbx: no

loop_detection:

enable: no

expire: ’1’

max: ’5’

max_expires: ’43200’

max_gw_lcr: ’128’

max_registrations_per_subscriber: ’5’

mem_log: ’1’

mem_summary: ’12’

min_expires: ’60’

nathelper:

sipping_from: sip:pinger@sipwise.local

nathelper_dbro: no

natping_interval: ’30’

natping_processes: 1

517

The Sipwise C5 PRO Handbook mr6.5.11 518 / 601

nonce_expire: ’300’

pbx:

hunt_display_fallback_format: ’[H %s]’

hunt_display_fallback_indicator: $var(cloud_pbx_hg_ext)

hunt_display_format: ’[H %s]’

hunt_display_indicator: $var(cloud_pbx_hg_displayname)

hunt_display_maxlength: 8

ignore_cf_when_hunting: no

skip_busy_hg_members:

enable: no

redis_key_name: totaluser

peer_probe:

available_treshold: ’1’

enable: yes

from_uri_domain: probe.ngcp.local

from_uri_user: ping

interval: ’10’

method: OPTIONS

reply_codes: class=2;class=3;code=403;code=404;code=405

timeout: ’5’

unavailable_treshold: ’1’

perform_peer_failover_on_tm_timeout: yes

perform_peer_lcr: no

pkg_mem: ’32’

port: ’5062’

presence:

enable: yes

max_expires: ’3600’

reginfo_domain: example.org

proxy_lookup: no

push:

apns_alert: New call

apns_sound: incoming_call.xaf

report_mos: yes

set_ruri_to_peer_auth_realm: no

shm_mem: ’125’

start: yes

store_recentcalls: no

syslog_options: yes

tcp_children: 1

tm:

fr_inv_timer: ’180000’

fr_timer: ’9000’

treat_600_as_busy: yes

use_enum: no

usrloc_dbmode: ’1’

voicebox_first_caller_cli: yes

518

The Sipwise C5 PRO Handbook mr6.5.11 519 / 601

• kamailio.lb.cfgt: Enable/disable unit test config file execution tracing.

• kamailio.lb.debug.enable: Enable per-module debug options.

• kamailio.lb.debug.modules: List of modules to be traced with respective debug level.

• kamailio.lb.debug_level: Default debug level for kamailio-lb.

• kamailio.lb.dns.use_dns_cache: Enable/disable use of internal DNS cache.

• kamailio.lb.dns.dns_udp_pref: Set preference for each protocol when doing NAPTR lookups.In order to use remote site prefer-

ences set all dns_*_pref to the same positive value (e.g. dns_udp_pref=1, dns_tcp_pref=1, dns_tls_pref=1, dns_sctp_pref=1).

To completely ignore NAPTR records for a specific protocol, set the corresponding protocol preference to -1.

• kamailio.lb.dns.dns_tcp_pref: See above.

• kamailio.lb.dns.dns_tls_pref: See above.

• kamailio.lb.dns.dns_sctp_pref: See above.

• kamailio.lb.dns.dns_try_naptr: Enable NAPTR support according to RFC 3263.

• kamailio.lb.external_sbc: SIP URI of external SBC used in the Via Route option of peering server.

• kamailio.lb.extra_sockets: Add here extra sockets for Load Balancer.

• kamailio.lb.max_forwards: Set the value for the Max Forwards SIP header for outgoing messages.

• kamailio.lb.mem_log: Specifies on which log level the memory statistics will be logged.

• kamailio.lb.mem_summary: Parameter to control printing of memory debugging information on exit or SIGUSR1 to log.

• kamailio.lb.nattest_exception_ips: List of IPs that don’t need the NAT test.

• kamailio.lb.shm_mem: Shared memory used by Kamailio Load Balancer.

• kamailio.lb.pkg_mem: PKG memory used by Kamailio Load Balancer.

• kamailio.lb.port: Default listen port.

• kamailio.lb.remove_isup_body_from_replies: Enable/disable stripping of ISUP part from the message body.

• kamailio.lb.sdp_line_filter.enable: Enable/Disable filter of SDP lines in all the SIP messages.

• kamailio.lb.sdp_line_filter.remove_line_startswith: List of the SDP lines that should be removed. Attention: it removes all SDP

attribute lines beginning with the listed strings in all media streams.

• kamailio.lb.security.dos_ban_enable: Enable/Disable DoS Ban.

• kamailio.lb.security.dos_ban_time: Sets the ban time.

• kamailio.lb.security.dos_reqs_density_per_unit: Sets the requests density per unit (if we receive more then * lb.dos_reqs_density_per_unit

within dos_sampling_time_unit the user will be banned).

• kamailio.lb.security.dos_sampling_time_unit: Sets the DoS unit time.

• kamailio.lb.security.dos_whitelisted_ips: Write here the whitelisted IPs.

519

The Sipwise C5 PRO Handbook mr6.5.11 520 / 601

• kamailio.lb.security.dos_whitelisted_subnets: Write here the whitelisted IP subnets.

• kamailio.lb.security.failed_auth_attempts: Sets how many authentication attempts allowed before ban.

• kamailio.lb.security.failed_auth_ban_enable: Enable/Disable authentication ban.

• kamailio.lb.security.failed_auth_ban_time: Sets how long a user/IP has be banned.

• kamailio.lb.topoh.enable: Enable topology hiding module (see the Topology Hiding Section 15.6 subchapter for a detailed de-

scription).

• kamailio.lb.topoh.mask_callid: if set to yes, the SIP Call-ID header will also be encoded.

• kamailio.lb.topoh.mask_ip: an IP address that will be used to create valid SIP URIs, after encoding the real/original header

content.

• kamailio.lb.start: Enable/disable kamailio-lb service.

• kamailio.lb.strict_routing_safe: Enable strict routing handle feature.

• kamailio.lb.syslog_options: Enable/disable logging of SIP OPTIONS messages to kamailio-options-lb.log.

• kamailio.lb.tcp_children: Number of TCP worker processes.

• kamailio.lb.tcp_max_connections: Maximum number of open TCP connections.

• kamailio.lb.tls.enable: Enable TLS socket.

• kamailio.lb.tls.port: Set TLS listening port.

• kamailio.lb.tls.sslcertificate: Path for the SSL certificate.

• kamailio.lb.tls.sslcertkeyfile: Path for the SSL key file.

• kamailio.lb.udp_children: Number of UDP worker processes.

• kamailio.proxy.allow_info_method: Allow INFO method.

• kamailio.proxy.allow_msg_method: Allow MESSAGE method.

• kamailio.proxy.allow_peer_relay: Allow peer relay. Call coming from a peer that doesn’t match a local subscriber will try to go

out again, matching the peering rules.

• kamailio.proxy.allow_refer_method: Allow REFER method. Enable it with caution.

• kamailio.proxy.always_anonymize_from_user: Enable anonymization of full From URI (as opposed to just From Display-name

part by default), has same effect as enabling the preference anonymize_from_user for all peers.

• kamailio.proxy.authenticate_bye: Enable BYE authentication.

• kamailio.proxy.block_useragents.action: one of [drop, reject] - Whether to silently drop the request from matching User-

Agent or reject with a 403 message.

• kamailio.proxy.block_useragents.enable: Enable/disable the User-Agent blocking.

• kamailio.proxy.block_useragents.mode: one of [whitelist, blacklist] - Sets the mode of ua_patterns list evaluation

(whitelist: block requests coming from all but listed User-Agents, blacklist: block requests from all listed User-Agents).

520

The Sipwise C5 PRO Handbook mr6.5.11 521 / 601

• kamailio.proxy.block_useragents.ua_patterns: List of User-Agent string patterns that trigger the block action.

• kamailio.proxy.cf_depth_limit: CF loop detector. How many CF loops are allowed before drop the call.

• kamailio.proxy.cfgt: Enable/disable unit test config file execution tracing.

• kamailio.proxy.check_prev_forwarder_as_upn: Enable/disable validation of the forwarder’s number taken from the Diversion

or History-Info header.

• kamailio.proxy.children: Number of UDP worker processes.

• kamailio.proxy.debug.enable: Enable per-module debug options.

• kamailio.proxy.debug.modules: List of modules to be traced with respective debug level.

• kamailio.proxy.debug_level: Default debug level for kamailio-proxy.

• kamailio.proxy.default_expires: Default expires value in seconds for a new registration (for REGISTER messages that contains

neither Expires HFs nor expires contact parameters).

• kamailio.proxy.default_expires_range: This parameter specifies that the expiry used for the registration should be randomly

chosen within default_expires_range seconds of the default_expires parameter.

• kamailio.proxy.dlg_timeout: Dialog timeout in seconds (by default 43200 sec - 12 hours).

• kamailio.proxy.early_rejects: Customize here the response codes and sound prompts for various reject scenarios. See the

subchapter Configuring Early Reject Sound Sets Section 6.15.1 for a detailed description.

• kamailio.proxy.emergency_prioritization.enable: Enable an emergency mode support.

• kamailio.proxy.emergency_prioritization.register_fake_200: When enabled, generates a fake 200 response to REGISTER from

non-prioritized subscriber in emergency mode.

• kamailio.proxy.emergency_prioritization.register_fake_expires: Expires value for the fake 200 response to REGISTER.

• kamailio.proxy.emergency_prioritization.reject_code: Reject code for the non-emergency request.

• kamailio.proxy.emergency_prioritization.reject_reason: Reject reason for the non-emergency request.

• kamailio.proxy.emergency_prioritization.retry_after: Retry-After value when rejecting the non-emergency request.

Tip

In order to learn about details of emergency priorization function of NGCP please refer to Section 6.7 part of the handbook.

• kamailio.proxy.enum_suffix: Sets ENUM suffix - don’t forget . (dot).

• kamailio.proxy.expires_range: Set randomization of expires for REGISTER messages (similar to default_expires_range but

applies to received expires value).

• kamailio.proxy.filter_100rel_from_supported: Enable filtering of 100rel from Supported header, to disable PRACK.

• kamailio.proxy.filter_failover_response: Specify the list of SIP responses that trigger a failover on the next available peering

server.

521

The Sipwise C5 PRO Handbook mr6.5.11 522 / 601

• kamailio.proxy.foreign_domain_via_peer: Enable/disable of routing of calls to foreign SIP URI via peering servers.

• kamailio.proxy.fritzbox.enable: Enable detection for Fritzbox special numbers. Ex. Fritzbox add some prefix to emergency

numbers.

• kamailio.proxy.fritzbox.prefixes: Fritybox prefixes to check. Ex. 0$avp(caller_ac)

• kamailio.proxy.fritzbox.special_numbers: Specifies Fritzbox special number patterns. They will be checked with the prefixes

defined. Ex. 112, so the performed check will be sip:0$avp(caller_ac)112@ if prefix is 0$avp(caller_ac)

• kamailio.proxy.ignore_auth_realm: Ignore SIP authentication realm.

• kamailio.proxy.ignore_subscriber_allowed_clis: Set to yes to ignore the subscriber’s allowed_clis preference so that the

User-Provided CLI is only checked against customer’s allowed_clis preference.

• kamailio.proxy.latency_limit_action: Limit of runtime in ms for config actions. If a config action executed by cfg interpreter takes

longer than this value, a message is printed in the logs.

• kamailio.proxy.latency_limit_db: Limit of runtime in ms for DB queries. If a DB operation takes longer than this value, a warning

is printed in the logs.

• kamailio.proxy.latency_log_level: Log level to print the messages related to latency. Defaut is 1 (INFO).

• kamailio.proxy.latency_runtime_action: Limit of runtime in ms for SIP message processing cycle. If the SIP message processing

takes longer than this value, a warning is printed in the logs.

• kamailio.proxy.keep_original_to: Not used now.

• kamailio.proxy.lnp.add_reply_headers.enable: Enable/disable dedicated headers to be added after LNP lookup.

• kamailio.proxy.lnp.add_reply_headers.number: Name of the header that will contain the LNP number.

• kamailio.proxy.lnp.add_reply_headers.status: Name of the header that will contain the LNP return code (200 if OK, 500/480/. . .

if an error/timeout is occurred).

• kamailio.proxy.lnp.api.add_caller_cc_to_lnp_dst: Enable/disable adding of caller country code to LNP routing number of the

result (no by default, LNP result in E.164 format is assumed).

• kamailio.proxy.lnp.api.invalid_lnp_routing_codes [only for api type]: number matching pattern for routing numbers that repre-

sent invalid call destinations; an announcement is played in that case and the call is dropped.

• kamailio.proxy.lnp.api.keepalive_interval: Not used now.

• kamailio.proxy.lnp.api.lnp_request_whitelist [only for api type]: list of matching patterns of called numbers for which LNP lookup

must be done.

• kamailio.proxy.lnp.api.lnp_request_blacklist [only for api type]: list of matching patterns of called numbers for which LNP lookup

must not be done.

• kamailio.proxy.lnp.api.port: Not used now.

• kamailio.proxy.lnp.api.reply_error_on_lnp_failure: Specifies whether platform should drop the call in case of LNP API server

failure or continue routing the call to the original callee without LNP.

522

The Sipwise C5 PRO Handbook mr6.5.11 523 / 601

• kamailio.proxy.lnp.api.request_timeout [only for api type]: timeout in milliseconds while Proxy waits for the response of an LNP

query from Sipwise LNP daemon.

• kamailio.proxy.lnp.api.server: Not used now.

• kamailio.proxy.lnp.api.tcap_field_fci: path of the FCI INFO in the received tcap message

• kamailio.proxy.lnp.api.tcap_field_lnp: path of the LNP NUMBER in the received tcap/inap message

• kamailio.proxy.lnp.api.tcap_field_opcode: path of the FCI OPCODE in the received tcap message

• kamailio.proxy.lnp.enable: Enable/disable LNP (local number portability) lookup during call setup.

• kamailio.proxy.lnp.skip_callee_lnp_lookup_from_any_peer: if set to yes, the destination LNP lookup is skipped (has same effect

as enabling preference skip_callee_lnp_lookup_from_any_peer for all peers).

• kamailio.proxy.lnp.type: method of LNP lookup; valid values are: local (local LNP database) and api (LNP lookup through

external gateways). PLEASE NOTE: the api type of LNP lookup is only available for Sipwise C5 PRO / CARRIER installations.

• kamailio.proxy.lookup_peer_destination_domain_for_pbx: one of [yes, no, peer_host_name] - Sets the content of destina-

tion_domain CDR field for calls between CloudPBX subscribers. In case of no this field contains name of CloudPBX domain;

yes: peer destination domain; peer_host_name: human-readable name of the peering server.

• kamailio.proxy.loop_detection.enable: Enable the SIP loop detection based on the combination of SIP-URI, To and From header

URIs.

• kamailio.proxy.loop_detection.expire: Sampling interval in seconds for the incoming INVITE requests (by default 1 sec).

• kamailio.proxy.loop_detection.max: Maximum allowed number of SIP requests with the same SIP-URI, To and From header

URIs within sampling interval. Requests in excess of this limit will be rejected with 482 Loop Detected response.

• kamailio.proxy.max_expires: Sets the maximum expires in seconds for registration.

• kamailio.proxy.max_gw_lcr: Defines the maximum number of gateways in lcr_gw table

• kamailio.proxy.max_registrations_per_subscriber: Sets the maximum registration per subscribers.

• kamailio.proxy.mem_log: Specifies on which log level the memory statistics will be logged.

• kamailio.proxy.mem_summary: Parameter to control printing of memory debugging information on exit or SIGUSR1 to log.

• kamailio.proxy.min_expires: Sets the minimum expires in seconds for registration.

• kamailio.proxy.nathelper.sipping_from: Set the From header in OPTIONS NAT ping.

• kamailio.proxy.nathelper_dbro: Default is "no". This will be "yes" on CARRIER in order to activate the use of a read-only

connection using LOCAL_URL

• kamailio.proxy.natping_interval: Sets the NAT ping interval in seconds.

• kamailio.proxy.natping_processes: Set the number of NAT ping worker processes.

• kamailio.proxy.nonce_expire: Nonce expire time in seconds.

523

The Sipwise C5 PRO Handbook mr6.5.11 524 / 601

• kamailio.proxy.pbx.hunt_display_fallback_format: Default is [H %s]. Sets the format of the hunt group indicator that is sent as

initial part of the From Display Name when subscriber is called as a member of PBX hunt group if the preferred format defined

by the hunt_display_format and hunt_display_indicator can not be used (as in the case of not provisioned

subscriber settings). The %s part is replaced with the value of the hunt_display_fallback_indicator variable.

• kamailio.proxy.pbx.hunt_display_fallback_indicator: The internal kamailio variable that sets the number or extension of the hunt

group. Default is $var(cloud_pbx_hg_ext) which is populated during call routing with the extension of the hunt group.

• kamailio.proxy.pbx.hunt_display_format: Default is [H %s]. Sets the format of hunt group indicator that is sent as initial part of

the From Display Name when subscriber is called as a member of PBX hunt group. This is the preferred (default) indicator

format with Display Name, where the %s part is replaced with the value of the hunt_display_indicator variable.

• kamailio.proxy.pbx.hunt_display_indicator: The internal kamailio variable that contains the preferred identifier of the hunt group.

Default is $var(cloud_pbx_hg_displayname) which is populated during call routing with the provisioned Display Name

of the hunt group.

• kamailio.proxy.pbx.hunt_display_maxlength: Default is 8. Sets the maximum length of the variable used as the part of hunt

group indicator in Display Name. The characters beyond this limit are truncated in order for hunt group indicator and calling

party information to fit on display of most phones.

• kamailio.proxy.pbx.ignore_cf_when_hunting: Default is no. Whether to disregard all individual call forwards (CFU, CFB, CFT

and CFNA) of PBX extensions when they are called via hunt groups. Note that call forwards configured to local services such

as Voicebox or Conference are always skipped from group hunting.

• kamailio.proxy.pbx.skip_busy_hg_members.enable: Default is no. Whether to skip the subscribers that have busy status when

routing the calls to huntgroups.

• kamailio.proxy.pbx.skip_busy_hg_members.redis_key_name: one of [totaluser, activeuser] - Sets the internal redis

key name that contains the number of active calls for the user.

• kamailio.proxy.peer_probe.enable: Enable the peer probing, must be also checked per individual peer in the panel/API.

• kamailio.proxy.peer_probe.interval: Peer probe interval in seconds.

• kamailio.proxy.peer_probe.timeout: Peer probe response wait timeout in seconds.

• kamailio.proxy.peer_probe.reply_codes: Defines the response codes that are considered successful response to the configured

probe request, e.g. class=2;class=3;code=403;code=404;code=405, with class defining a code range.

• kamailio.proxy.peer_probe.unavailable_treshold: Defines after how many failed probes a peer is considered unavailable.

• kamailio.proxy.peer_probe.available_treshold: Defines after how many successful probes a peer is considered available.

• kamailio.proxy.peer_probe.from_uri_user: From-userpart for the probe requests.

• kamailio.proxy.peer_probe.from_uri_domain From-hostpart for the probe requests.

• kamailio.proxy.peer_probe.method: [OPTIONS|INFO] - Request method for probe request.

Tip

You can find more information about peer probing configuration in Section 6.11.2 of the handbook.

524

The Sipwise C5 PRO Handbook mr6.5.11 525 / 601

• kamailio.proxy.perform_peer_failover_on_tm_timeout: Specifies the failover behavior when maximum ring timeout (fr_inv_timer)

has been reached. In case it is set to yes: failover to the next peer if any; in case of no stop trying other peers.

• kamailio.proxy.perform_peer_lcr: Enable/Disable Least Cost Routing based on peering fees.

• kamailio.proxy.pkg_mem: PKG memory used by Kamailio Proxy.

• kamailio.proxy.shm_mem: Shared memory used by Kamailio Proxy.

• kamailio.proxy.port: SIP listening port.

• kamailio.proxy.presence.enable: Enable/disable presence feature

• kamailio.proxy.presence.max_expires: Sets the maximum expires value for PUBLISH/SUBSCRIBE message. Defines expiration

of the presentity record.

• kamailio.proxy.presence.reginfo_domain: Set FQDN of Sipwise C5 domain used in callback for mobile push.

• kamailio.proxy.push.apns_alert: Set the content of alert field towards APNS.

• kamailio.proxy.push.apns_sound: Set the content of sound field towards APNS.

• kamailio.proxy.report_mos: Enable MOS reporting in the log file.

• kamailio.proxy.set_ruri_to_peer_auth_realm: Set R-URI using peer auth realm.

• kamailio.proxy.start: Enable/disable kamailio-proxy service.

• kamailio.proxy.store_recentcalls: Store recent calls to redis (used by Malicious Call Identification application).

• kamailio.proxy.syslog_options: Enable/disable logging of SIP OPTIONS messages to kamailio-options-proxy.log.

• kamailio.proxy.tcp_children: Number of TCP worker processes.

• kamailio.proxy.tm.fr_inv_timer: Set INVITE transaction timeout if no final reply for an INVITE arrives after a provisional message

was received (ringing timeout).

• kamailio.proxy.tm.fr_timer: Set INVITE transaction timeout if the destination is not responding with provisional response mes-

sage.

• kamailio.proxy.treat_600_as_busy: Enable the 6xx response handling according to RFC3261. When enabled, the 6xx response

should stop the serial forking. Also, CFB will be triggered or busy prompt played as in case of 486 Busy response.

• kamailio.proxy.use_enum: Enable/Disable ENUM feature.

• kamailio.proxy.usrloc_dbmode: Set the mode of database usage for persistent contact storage.

• kamailio.proxy.voicebox_first_caller_cli: When enabled the previous forwarder’s CLI will be used as caller CLI in case of chained

Call Forwards.

525

The Sipwise C5 PRO Handbook mr6.5.11 526 / 601

B.1.15 lnpd

The following section defines configuration of LNP daemon, that is used when LNP queries are served by external gateways→
the so called LNP API mode.

lnpd:

config:

daemon:

foreground: ’false’

json-rpc:

ports:

- ’8095’

loglevel: ’6’

sip:

port: ’5095’

threads: ’4’

instances:

default:

module: sigtran

destination: 0.0.0.0

from-domain: voip.example.com

headers:

- header: INAP-Service-Key

value: ’2’

reply:

tcap: raw-tcap

enable: no

• lnpd.enable: Enable/disable LNP daemon

• lnpd.config: details are shown in Configuration of LNP daemon Section 6.5.2.4

B.1.16 mediator

The following is the mediator section:

mediator:

interval: 10

• mediator.interval: Running interval of mediator.

B.1.17 modules

The following is the modules section:

526

The Sipwise C5 PRO Handbook mr6.5.11 527 / 601

modules:

- enable: no

name: dummy

options: numdummies=2

• modules: list of configs needed for load kernel modules on boot.

• enable: Enable/disable loading of the specific module (yes/no)

• name: kernel module name

• options: kernel module options if needed

B.1.18 nginx

The following is the nginx section:

nginx:

status_port: 8081

xcap_port: 1080

• nginx.status_port: Status port used by nginx server

• nginx.xcap_port: XCAP port used by nginx server

B.1.19 ntp

The following is the ntp server section:

ntp:

servers:

- 0.debian.pool.ntp.org

- 1.debian.pool.ntp.org

- 2.debian.pool.ntp.org

- 3.debian.pool.ntp.org

• ntp.servers: Define your NTP server list.

B.1.20 ossbss

The following is the ossbss section:

ossbss:

apache:

port: 2443

527

The Sipwise C5 PRO Handbook mr6.5.11 528 / 601

proxyluport: 1080

restapi:

sslcertfile: ’/etc/ngcp-panel/api_ssl/api_ca.crt’

sslcertkeyfile: ’/etc/ngcp-panel/api_ssl/api_ca.key’

serveradmin: support@sipwise.com

servername: "\"myserver\""

ssl_enable: ’yes’

sslcertfile: ’/etc/ngcp-config/ssl/myserver.crt’

sslcertkeyfile: ’/etc/ngcp-config/ssl/myserver.key’

frontend: ’no’

htpasswd:

-

pass: ’{SHA}w4zj3mxbmynIQ1jsUEjSkN2z2pk=’

user: ngcpsoap

logging:

apache:

acc:

facility: daemon

identity: oss

level: info

err:

facility: local7

level: info

ossbss:

facility: local0

identity: provisioning

level: DEBUG

web:

facility: local0

level: DEBUG

provisioning:

allow_ip_as_domain: 1

allow_numeric_usernames: 0

auto_allow_cli: 1

carrier:

account_distribution_function: roundrobin

prov_distribution_function: roundrobin

credit_warnings:

-

domain: example.com

recipients:

- nobody@example.com

threshold: 1000

faxpw_min_char: 0

log_passwords: 0

no_logline_truncate: 0

pw_min_char: 6

routing:

528

The Sipwise C5 PRO Handbook mr6.5.11 529 / 601

ac_regex: ’[1-9]\d{0,4}’

cc_regex: ’[1-9]\d{0,3}’

sn_regex: ’[1-9]\d+’

tmpdir: ’/tmp’

• ossbss.frontend: Enable disable SOAP interface. Set value to fcgi to enable old SOAP interface.

• ossbss.htpasswd: Sets the username and SHA hashed password for SOAP access. You can generate the password using the

following command: htpasswd -nbs myuser mypassword.

• ossbss.provisioning.allow_ip_as_domain: Allow or not allow IP address as SIP domain (0 is not allowed).

• ossbss.provisioning.allow_numeric_usernames: Allow or not allow numeric SIP username (0 is not allowed).

• ossbss.provisioning.faxpw_min_char: Minimum number of characters for fax passwords.

• ossbss.provisioning.pw_min_char: Minimum number of characters for sip passwords.

• ossbss.provisioning.log_password: Enable logging of passwords.

• ossbss.provisioning.routing: Regexp for allowed AC (Area Code), CC (Country Code) and SN (Subscriber Number).

B.1.21 pbx (only with additional cloud PBX module installed)

The following is the PBX section:

pbx:

bindport: 5085

enable: ’no’

highport: 55000

lowport: 50001

media_processor_threads: 10

session_processor_threads: 10

xmlrpcport: 8095

• pbx.enable: Enable Cloud PBX module.

B.1.22 prosody

The following is the prosody section:

prosody:

ctrl_port: 5582

log_level: info

• prosody.ctrl_port: XMPP server control port.

• prosody.log_level: Prosody loglevel.

529

The Sipwise C5 PRO Handbook mr6.5.11 530 / 601

B.1.23 pushd

The following is the pushd section:

pushd:

apns:

enable: yes

endpoint: api.push.apple.com

endpoint_port: 0

extra_instances:

- certificate: ’/etc/ngcp-config/ssl/PushCallkitCert.pem’

enable: yes

key: ’/etc/ngcp-config/ssl/PushCallkitKey.pem’

type: callkit

http2_jwt:

ec_key: ’/etc/ngcp-config/ssl/AuthKey_ABCDE12345.pem’

ec_key_id: ’ABCDE12345’

enable: yes

issuer: ’VWXYZ67890’

tls_certificate: ’’

tls_key: ’’

topic: ’com.example.appID’

legacy:

certificate: ’/etc/ngcp-config/ssl/PushChatCert.pem’

feedback_endpoint: feedback.push.apple.com

feedback_interval: ’3600’

key: ’/etc/ngcp-config/ssl/PushChatKey.pem’

socket_timeout: 0

domains:

- apns:

endpoint: api.push.apple.com

extra_instances:

- certificate: ’/etc/ngcp-config/ssl/PushCallkitCert-example.com.pem’

enable: no

key: ’/etc/ngcp-config/ssl/PushCallkitKey-example.com.pem’’

type: callkit

http2_jwt:

ec_key: ’/etc/ngcp-config/ssl/AuthKey_54321EDCBA.pem’

ec_key_id: ’54321EDCBA’

issuer: ’09876ZYXWV’

tls_certificate: ’’

tls_key: ’’

topic: ’com.example.otherAppID’

legacy:

certificate: ’/etc/ngcp-config/ssl/PushChatCert-example.com.pem’

feedback_endpoint: feedback.push.apple.com

key: ’/etc/ngcp-config/ssl/PushChatKey-example.com.pem’

domain: example.com

530

The Sipwise C5 PRO Handbook mr6.5.11 531 / 601

enable: yes

gcm:

key: ’google_api_key_for_example.com_here’

enable: yes

gcm:

enable: yes

key: ’google_api_key_here’

priority:

call: high

groupchat: normal

invite: normal

message: normal

muc:

exclude: []

force_persistent: ’true’

owner_on_join: ’true’

one_device_per_subscriber: no

port: 45060

processes: 4

ssl: yes

sslcertfile: /etc/ngcp-config/ssl/CAsigned.crt

sslcertkeyfile: /etc/ngcp-config/ssl/CAsigned.key

unique_device_ids: no

• pushd.enable: Enable/Disable the Push Notification feature.

• pushd.apns.enable: Enable/Disable Apple push notification.

• pushd.apns.endpoint: API endpoint hostname or address. Should be one of api.push.apple.com or api.development.push.apple.com

for the newer HTTP2/JWT based protocol, or one of gateway.push.apple.com or gateway.sandbox.push.apple.com for the legacy

protocol.

• pushd.apns.endpoint_port: API endpoint port. Normally 443 or alternatively 2197 for the newer HTTP2/JWT based protocol, or

2195 for the legacy protocol.

• pushd.apns.legacy: Contains all options specific to the legacy APNS protocol. Ignored when HTTP2/JWT is in use.

• pushd.apns.legacy.certificate: Specify the Apple certificate for push notification https requests from Sipwise C5 to an endpoint.

• pushd.apns.legacy.key: Specify the Apple key for push notification https requests from Sipwise C5 to an endpoint.

• pushd.apns.legacy.feedback_endpoint: Hostname or address of the APNS feedback service. Normally one of feedback.push.apple.com

or feedback.sandbox.push.apple.com.

• pushd.apns.legacy.feedback_interval: How often to poll the feedback service, in seconds.

• pushd.apns.extra_instances: If the iOS app supports Callkit push notifications, they can be enabled here and the required

separate certificate and key can be specified. Ignored if HTTP2/JWT is enabled.

• pushd.http2_jwt: Contains all options specific to the newer HTTP2/JWT based APNS API protocol.

531

The Sipwise C5 PRO Handbook mr6.5.11 532 / 601

• pushd.http2_jwt.ec_key: Name of file that contains the elliptic-curve (EC) cryptographic key provided by Apple, in PEM format.

• pushd.http2_jwt.ec_key_id: 10-digit identification string of the EC key in use.

• pushd.http2_jwt.enable: Master switch for the HTTP2/JWT based protocol. Disables the legacy protocol when enabled.

• pushd.http2_jwt.issuer: Issuer string for the JWT token. Normally the 10-digit team ID string for which the EC key was issued.

• pushd.http2_jwt.tls_certificate: Optional client certificate to use for the TLS connection.

• pushd.http2_jwt.tls_key: Optional private key for the client certificate to use for the TLS connection.

• pushd.http2_jwt.topic: Topic string for the JWT token. Normally the bundle ID for the iOS app.

• pushd.gcm.enable: Enable/Disable Google push notification.

• pushd.gcm.key: Specify the Google key for push notification https requests from Sipwise C5 to an endpoint.

• pushd.domains: Supports a separate set of push configurations (API keys, certificates, etc) for all subscribers of the given

domain.

• pushd.muc.exclude: list of MUC room jids excluded from sending push notifications.

• pushd.muc.force_persistent: Enable/Disable MUC rooms to be persistent. Needed for Sipwise C5 app to work with other clients.

• pushd.muc.owner_on_join: Enable/Disable all MUC participants to be owners of the MUC room. Needed for Sipwise C5 app to

work with other clients.

• pushd.ssl: The security protocol Sipwise C5 uses for https requests from the app in the push notification process.

• pushd.sslcertfile: The trusted certificate file purchased from a CA

• pushd.sslcertkeyfile: The key file that purchased from a CA

• pushd.unique_device_ids: Allows a subscriber to register the app and have the push notification enabled on more than one

mobile device.

B.1.24 qos

The QoS section allows configuring the ToS (Type of Service) feature:

qos:

tos_rtp: 184

tos_sip: 184

• qos.tos_rtp: a ToS value for RTP traffic.

• qos.tos_sip: a ToS value for SIP traffic.

Tip

The ToS byte includes both DSCP and ECN bits. So, specify the DSCP value multiplied by four (46x4=184) and, optionally, add

the required ECN value to it (1, 2 or 3).

Set the rtpproxy.control_tos parameter higher than zero to enable ToS.

532

The Sipwise C5 PRO Handbook mr6.5.11 533 / 601

B.1.25 rate-o-mat

The following is the rate-o-mat section:

rateomat:

enable: ’yes’

loopinterval: 10

splitpeakparts: 0

• rateomat.enable: Enable/Disable Rate-o-mat

• rateomat.loopinterval: How long we shall sleep before looking for unrated CDRs again.

• rateomat.splitpeakparts: Whether we should split CDRs on peaktime borders.

B.1.26 redis

The following is the redis section:

redis:

database_amount: 16

port: 6379

syslog_ident: redis

• redis.database_amout: Set the number of databases in redis. The default database is DB 0.

• redis.port: Accept connections on the specified port, default is 6379

• redis.syslog_ident: Specify the syslog identity.

B.1.27 reminder

The following is the reminder section:

reminder:

retries: 2

retry_time: 60

sip_fromdomain: voicebox.sipwise.local

sip_fromuser: reminder

wait_time: 30

weekdays: ’2, 3, 4, 5, 6, 7’

• reminder.retries: How many times the reminder feature have to try to call you.

• reminder.retry_time: Seconds between retries.

• reminder.wait_time: Seconds to wait for an answer.

533

The Sipwise C5 PRO Handbook mr6.5.11 534 / 601

B.1.28 rsyslog

The following is the rsyslog section:

rsyslog:

elasticsearch:

action:

resumeretrycount: ’-1’

bulkmode: ’on’

dynSearchIndex: ’on’

enable: ’yes’

queue:

dequeuebatchsize: 300

size: 5000

type: linkedlist

external_address:

external_log: 0

external_loglevel: warning

external_port: 514

external_proto: udp

ngcp_logs_preserve_days: 93

• rsyslog.elasticsearch.enable: Enable/Disable Elasticsearch web interface

• rsyslog.external_address: Set the remote rsyslog server.

• rsyslog.ngcp_logs_preserve_days: Specify how many days to preserve old rotated log files in /var/log/ngcp/old path.

B.1.29 rtpproxy

The following is the rtp proxy section:

rtpproxy:

allow_userspace_only: yes

cdr_logging_facility: ’’

control_tos: 0

delete_delay: 30

dtls_passive: no

enable: yes

final_timeout: 0

firewall_iptables_chain: ’’

graphite:

interval: 600

prefix: rtpengine.

server: ’’

log_level: ’6’

maxport: ’44999’

minport: ’30000’

534

The Sipwise C5 PRO Handbook mr6.5.11 535 / 601

num_threads: 0

prefer_bind_on_internal: no

recording:

enable: no

mp3_bitrate: ’48000’

nfs_host: 192.168.1.1

nfs_remote_path: /var/recordings

output_dir: /var/lib/rtpengine-recording

output_format: wav

output_mixed: yes

output_single: yes

resample: no

resample_to: ’16000’

spool_dir: /var/spool/rtpengine

rtcp_logging_facility: ’’

rtp_timeout: ’60’

rtp_timeout_onhold: ’3600’

• rtpproxy.allow_userspace_only: Enable/Disable the user space failover for rtpengine (yes means enable). By default rtpengine

works in kernel space.

• rtpproxy.cdr_logging_facility: If set, rtpengine will produce a CDR-like syslog line after each call finishes. Must be set to a valid

syslog facility string (such as daemon or local0).

• rtpproxy.control_tos: If higher than 0, the control messages port uses the configured ToS (Type of Service) bits. See the QoS

section below for details.

• rtpproxy.delete_delay: After a call finishes, rtpengine will wait this many seconds before cleaning up resources. Useful for

possible late branched calls.

• rtpproxy.dtls_passive: If enabled, rtpengine will always advertise itself as a passive role in DTLS setup. Useful in WebRTC

scenarios if used behind NAT.

• rtpproxy.final_timeout: If set, any calls lasting longer than this many seconds will be terminated, no matter the circumstances.

• rtpproxy.firewall_iptables_chain: If set, rtpengine will create an iptables rule for each individual media port opened in this chain.

• rtpproxy.graphite.interval: Interval in seconds between sending updates to the Graphite server.

• rtpproxy.graphite.prefix: Graphite keys will be prefixed with this string. Must include a separator character (such as a trailing dot)

if one should be used.

• rtpproxy.graphite.server: Graphite server to send periodic statistics updates to. Disabled if set to an empty string. Must be in

format IP:port or hostname:port.

• rtpproxy.log_level: Verbosity of log messages. The default 6 logs everything except debug messages. Increase to 7 to log

everything, or decrease to make logging more quiet.

• rtpproxy.maxport: Maximum port used by rtpengine for RTP traffic.

• rtpproxy.minport: Minimum port used by rtpengine for RTP traffic.

535

The Sipwise C5 PRO Handbook mr6.5.11 536 / 601

• rtpproxy.num_threads: Number of worker threads to use. If set to 0, the number of CPU cores will be used.

• rtpproxy.recording.enable: Enable support for call recording.

• rtpproxy.recording.mp3_bitrate: If saving audio as MP3, bitrate of the output file.

• rtpproxy.recording.nfs_host: Mount an NFS share from this host for storage.

• rtpproxy.recording.nfs_remote_path: Remote path of the NFS share to mount.

• rtpproxy.recording.output_dir: Local mount point for the NFS share.

• rtpproxy.recording.output_format: Either wav for PCM output or mp3.

• rtpproxy.recording.output_mixed: Create output audio files with all contributing audio streams mixed together.

• rtpproxy.recording.output_single: Create separate audio files for each contributing audio stream.

• rtpproxy.recording.resample: Resample all audio to a fixed bitrate (yes or no).

• rtpproxy.recording.resample_to: If resampling is enabled, resample to this sample rate.

• rtpproxy.recording.spool_dir: Local directory for temporary metadata file storage.

• rtpproxy.rtcp_logging_facility: If set, rtpengine will write the contents of all received RTCP packets to syslog. Must be set to a

valid syslog facility string (such as daemon or local0).

• rtpproxy.rtp_timeout: Consider a call dead if no RTP is received for this long (60 seconds).

• rtpproxy.rtp_timeout_onhold: Maximum limit in seconds for an onhold (1h).

B.1.30 security

The following is the security section. Usage of the firewall subsection is described in Section 15.2:

security:

firewall:

enable: no

logging:

days_kept: ’7’

enable: yes

file: /var/log/firewall.log

tag: NGCPFW

nat_rules4: ~

nat_rules6: ~

policies:

forward: DROP

input: DROP

output: ACCEPT

rules4: ~

rules6: ~

536

The Sipwise C5 PRO Handbook mr6.5.11 537 / 601

• security.firewall.enable: Enable/disable iptables configuration and rule generation for IPv4 and IPv6 (default: no)

• security.firewall.logging.days_kept: Number of days logfiles are kept on the system before being deleted (log files are rotated

daily, default: 7)

• security.firewall.logging.enable: Enables/disables logging of all packets dropped by Sipwise C5 firewall (default: yes)

• security.firewall.logging.file: File firewall log messages go to (default: /var/log/firewall.log)

• security.firewall.logging.tag: String prepended to all log messages (internally DROP is added to any tag indicating the action

triggering the message, default: NGCPFW)

• security.firewall.nat_rules4: Optional list of IPv4 firewall rules added to table nat using iptables-persistent syntax (default:

undef)

• security.firewall.nat_rules6: Optional list of IPv6 firewall rules added to table nat using iptables-persistent syntax (default:

undef)

• security.firewall.policies.forward: Default policy for iptables FORWARD chain (default: DROP)

• security.firewall.policies.input: Default policy for iptables INPUT chain (default: DROP)

• security.firewall.policies.output: Default policy for iptables OUTPUT chain (default: ACCEPT)

• security.firewall.rules4: Optional list of IPv4 firewall rules added to table filter using iptables-persistent syntax (default:

undef)

• security.firewall.rules6: Optional list of IPv6 firewall rules added to table filter using iptables-persistent syntax (default:

undef)

B.1.31 sems

The following is the SEMS section:

sems:

bindport: 5080

conference:

enable: ’yes’

max_participants: 10

debug: ’no’

highport: 50000

lowport: 40001

media_processor_threads: 10

prepaid:

enable: ’yes’

sbc:

calltimer_enable: ’yes’

calltimer_max: 3600

outbound_timeout: 6000

sdp_filter:

codecs: PCMA,PCMU,telephone-event

537

The Sipwise C5 PRO Handbook mr6.5.11 538 / 601

enable: ’yes’

mode: whitelist

session_timer:

enable: ’yes’

max_timer: 7200

min_timer: 90

session_expires: 300

session_processor_threads: 10

vsc:

block_override_code: 80

cfb_code: 90

cfna_code: 93

cft_code: 92

cfu_code: 72

clir_code: 31

directed_pickup_code: 99

enable: ’yes’

park_code: 97

reminder_code: 55

speedial_code: 50

unpark_code: 98

voicemail_number: 2000

xmlrpcport: 8090

• sems.conference.enable: Enable/Disable conference feature.

• sems.conference.max_participants: Sets the number of concurrent participant.

• sems.highport: Maximum ports used by sems for RTP traffic.

• sems.debug: Enable/Disable debug mode.

• sems.lowport: Minimum ports used by sems for RTP traffic.

• sems.prepaid.enable: Enable/Disable prepaid feature.

• sems.sbc.calltimer_max: Set the default maximum call duration (used if otherwise is not defined by preference).

• sems.sbc.outbound_timeout: Set INVITE transaction timeout if the destination is not responding with provisional response

message.

• sems.sbc.session_timer.enable: If set to "no" all session timer headers are stripped off without considering the session timer

related configuration done via the web interface. If set to "yes" the system uses the subscriber/peer configurations values set on

the web interface. If set to "transparent" no validation is performed on Session Timer headers, they are ignored by SEMS and

therefore negotiated end-to-end.

• sems.vsc.*: Define here the VSC codes.

538

The Sipwise C5 PRO Handbook mr6.5.11 539 / 601

B.1.32 sms

This section provides configuration of Short Message Service on the NGCP. Description of the SMS module is provided earlier in

this handbook here Section 6.29.

In the below example you can see the default values of the configuration parameters.

sms:

core:

admin_port: ’13000’

smsbox_port: ’13001’

enable: no

loglevel: ’0’

sendsms:

max_parts_per_message: ’5’

port: ’13002’

smsc:

dest_addr_npi: ’1’

dest_addr_ton: ’1’

enquire_link_interval: ’58’

host: 1.2.3.4

id: default_smsc

max_pending_submits: ’10’

no_dlr: yes

password: password

port: ’2775’

source_addr_npi: ’1’

source_addr_ton: ’1’

system_type: ’’

throughput: ’5’

transceiver_mode: ’1’

username: username

• sms.core.admin_port: Port number of admin interface of SMS core module (running on LB nodes).

• sms.core.smsbox_port: Port number used for internal communication between bearerbox module on LB nodes and smsbox

module on PRX nodes. This is a listening port of the bearerbox module (running on LB nodes).

• sms.enable: Set to yes if you want to enable SMS module.

• sms.loglevel: Log level of SMS module; the default 0 will result in writing only the most important information into the log file.

• sms.sendsms.max_parts_per_message: If the SM needs to be sent as concatenated SM, this parameter sets the max. number

of parts for a single (logical) message.

• sms.sendsms.port: Port number of smsbox module (running on PRX nodes).

• sms.smsc. : Parameters of the connection to an SMSC

– dest_addr_npi: Telephony numbering plan indicator for the SM destination, as defined by standards (e.g. 1 stands for E.164)

539

The Sipwise C5 PRO Handbook mr6.5.11 540 / 601

– dest_addr_ton: Type of number for the SM destination, as defined by standards (e.g. 1 stands for "international" format)

– enquire_link_interval: Interval of SMSC link status check in seconds

– host: IP address of the SMSC

– id: An arbitrary string for identification of the SMSC; may be used in log files and for routing SMs.

– max_pending_submits: The maximum number of outstanding (i.e. not acknowledged) SMPP operations between Sipwise C5

and SMSC. As a guideline it is recommended that no more than 10 (default) SMPP messages are outstanding at any time.

– no_dlr: Do not request delivery report; when sending an SM and this parameter is set to yes, Sipwise C5 will not request DR

for the message(s). May be required for some particular SMSCs, in order to avoid "Incorrect status report request parameter

usage" error messages from the SMSC.

– password: This is the password used for authentication on the SMSC.

– port: Port number of the SMSC where Sipwise C5 will connect to.

– source_addr_npi: Telephony numbering plan indicator for the SM source, as defined by standards (e.g. 1 stands for E.164)

– source_addr_ton: Type of number for the SM source, as defined by standards (e.g. 1 stands for "international" format)

– system_type: Defines the SMSC client category in which Sipwise C5 belongs to; defaults to "VMA" (Voice Mail Alert) when

no value is given. (No need to set any value)

– throughput: The max. number of messages per second that Sipwise C5 will send towards the SMSC. (Value type: float)

– transceiver_mode: If set to 1 (yes / true), Sipwise C5 will attempt to use a TRANSCEIVER mode connection to the SMSC. It

uses the standard transmit port of the SMSC for receiving SMs too.

– username: This is the username used for authentication on the SMSC.

B.1.33 snmpagent

The following is the SNMP Agent section:

snmpagent:

daemonize: ’1’

debug: ’0’

retrospect_interval: 30

update_interval: ’30’

• daemonize: Enable/Disable ngcp-snmp-agent daemonization.

• debug: Enable/Disable debug output.

• retrospect_interval: Sets the interval the agent will use when looking into past fetched data.

• update_interval: Sets the interval in seconds used to update the fetched data.

B.1.34 sshd

The following is the sshd section:

540

The Sipwise C5 PRO Handbook mr6.5.11 541 / 601

sshd:

listen_addresses:

- 0.0.0.0

• sshd: specify interface where SSHD should run on. By default sshd listens on all IPs found in network.yml with type ssh_ext.

Unfortunately sshd can be limited to IPs only and not to interfaces. The current option makes it possible to specify allowed IPs

(or all IPs with 0.0.0.0).

B.1.35 sudo

The following is in the sudo section:

sudo:

logging: no

max_log_sessions: 0

• logging: enable/disable the I/O logging feature of sudo. See man page of sudoreplay(8).

• max_log_sessions: when I/O logging is enabled, specifies how many log sessions per individual user sudo should keep before

it starts overwriting old ones. The default 0 means no limit.

B.1.36 voisniff

The following is the voice sniffer section:

voisniff:

admin_panel: no

daemon:

bpf: ’port 5060 or 5062 or ip6 proto 44 or ip[6:2] & 0x1fff != 0’

external_interfaces: eth0 eth1

filter:

exclude:

- active: ’0’

case_insensitive: ’1’

pattern: ’\ncseq: *\d+ +(register|notify|options)’

include: []

internal_interfaces: lo

li_x1x2x3:

call_id:

suffix:

- _pbx-1

- _b2b-1

- _xfer-1

client_certificate: ’’

enable: no

541

The Sipwise C5 PRO Handbook mr6.5.11 542 / 601

fix_checksums: no

fragmented: no

interface:

excludes: []

local_name: sipwise

x1:

port: ’18090’

mysql_dump:

enable: yes

num_threads: ’4’

mysql_dump_threads: ’4’

start: no

threads_per_interface: ’10’

partitions:

increment: ’700000’

keep: ’10’

Parameters commonly used for call statistics retrievable on the web interface and for lawful interception:

• voisniff.daemon.bpf: Sets the basic packet filter applied by voisniff-ng module when capturing packets on network interfaces.

• voisniff.deamon.external_interfaces: List of network interfaces where voisniff-ng will listen for packets.

• voisniff.deamon.internal_interfaces: List of network interfaces that voisniff-ng will ignore for capturing packets. These are used

for internal communication among Sipwise C5 modules. Default: lo (→ the loopback interface)

• voisniff.daemon.filter.exclude and voisniff.daemon.filter.include: Additional filter to determine packets that need to be excluded

from / included in capturing.

• voisniff.deamon.start: Change to yes if you want voisniff-ng start at boot. Default is no.

• voisniff.daemon.threads_per_interface: Controls how many threads per enabled sniffing interface should be launched.

Parameters used only for call statistics:

• voisniff.admin_panel: Enable/Disable call statistics on Admin interface. Default: yes.

• voisniff.daemon.mysql_dump.* and voisniff.daemon.mysql_dump_threads: These parameters determine how much resource

should be dedicated to call statistics collection and storage into the database.

• voisniff.partitions.*: These parameters determine how the collected packets are stored in the database: how big chunks are kept

in a single table (→ increment), how many tables with call data are kept in DB (→ keep).

Parameters used only for lawful interception:

• voisniff.daemon.li_x1x2x3.call_id.suffix: List of NGCP-internal Call-ID suffix patterns that should be ignored when determining

the original SIP Call-ID of an intercepted call.

• voisniff.daemon.li_x1x2x3.client_certificate: The client certificate that NGCP uses to connect over TLS to a 3rd party LI provider.

542

The Sipwise C5 PRO Handbook mr6.5.11 543 / 601

• voisniff.daemon.li_x1x2x3.enable: Set it to yes to enable LI services via X1, X2 and X3 interfaces. Default: no

• voisniff.daemon.li_x1x2x3.fix_checksums: When enabled (= yes), Sipwise C5 will calculate UDP header checksum for packets

sent out on X2 and X3 interfaces. Default: no

• voisniff.daemon.li_x1x2x3.fragmented: Determines whether voisniff-ng is allowed to send fragmented packets via X2 and X3

interfaces. Default: no

• voisniff.daemon.li_x1x2x3.interface.excludes: This is a list of interfaces that must be excluded from the interception procedures.

Default: empty list

• voisniff.daemon.li_x1x2x3.local_name: This parameter maps to the header.source field of the X2 protocol. It’s an arbitrary

string and can be used to identify the sending Sipwise C5 system. Default: sipwise

• voisniff.daemon.li_x1x2x3.private_key: The private key that Sipwise C5 uses to connect over TLS to a 3rd party LI provider.

Only necessary if the client certificate file does not include the private key.

• voisniff.daemon.li_x1x2x3.x1.port: The port number on which voisniff-ng listens for incoming X1 messages. Default: 18090

Tip

Visit Section 17.3.2.3 part of the handbook to learn more about lawful interception configuration.

B.1.37 www_admin

The following is the WEB Admin interface (www_admin) section:

www_admin:

ac_dial_prefix: 0

apache:

autoprov_port: 1444

billing_features: 1

callingcard_features: 0

callthru_features: 0

cc_dial_prefix: 00

conference_features: 1

contactmail: adjust@example.org

dashboard:

enable: 1

default_admin_settings:

call_data: 0

is_active: 1

is_master: 0

read_only: 0

show_passwords: 1

domain:

preference_features: 1

rewrite_features: 1

vsc_features: 0

543

The Sipwise C5 PRO Handbook mr6.5.11 544 / 601

fastcgi_workers: 2

fax_features: 1

fees_csv:

element_order:

- source

- destination

- direction

- zone

- zone_detail

- onpeak_init_rate

- onpeak_init_interval

- onpeak_follow_rate

- onpeak_follow_interval

- offpeak_init_rate

- offpeak_init_interval

- offpeak_follow_rate

- offpeak_follow_interval

- use_free_time

http_admin:

autoprov_port: 1444

port: 1443

serveradmin: support@sipwise.com

servername: "\"myserver\""

ssl_enable: ’yes’

sslcertfile: ’/etc/ngcp-config/ssl/myserver.crt’

sslcertkeyfile: ’/etc/ngcp-config/ssl/myserver.key’

http_csc:

autoprov_bootstrap_port: 1445

autoprov_port: 1444

port: 443

serveradmin: support@sipwise.com

servername: "\"myserver\""

ssl_enable: ’yes’

sslcertfile: ’/etc/ngcp-config/ssl/myserver.crt’

sslcertkeyfile: ’/etc/ngcp-config/ssl/myserver.key’

logging:

apache:

acc:

facility: daemon

identity: oss

level: info

err:

facility: local7

level: info

peer:

preference_features: 1

peering_features: 1

security:

544

The Sipwise C5 PRO Handbook mr6.5.11 545 / 601

password_allow_recovery: 0

password_max_length: 40

password_min_length: 6

password_musthave_digit: 0

password_musthave_lowercase: 1

password_musthave_specialchar: 0

password_musthave_uppercase: 0

password_sip_autogenerate: 0

password_sip_expose_subadmin: 1

password_web_autogenerate: 0

password_web_expose_subadmin: 1

speed_dial_vsc_presets:

vsc:

- ’*0’

- ’*1’

- ’*2’

- ’*3’

- ’*4’

- ’*5’

- ’*6’

- ’*7’

- ’*8’

- ’*9’

subscriber:

auto_allow_cli: 0

extension_features: 0

voicemail_features: 1

• www_admin.http_admin.*: Define the Administration interface and certificates.

• www_admin.http_csc.*: Define the Customers interface and certificates.

• www_admin.contactmail: Email to show in the GUI’s Error page.

B.2 constants.yml Overview

/etc/ngcp-config/constants.yml is one of the main configuration files that contains important (static) configuration

parameters, like Sipwise C5 system-user data.

Caution

Sipwise C5 platform administrator should not change content of constants.yml file unless absolutely necessary.

Please contact Sipwise Support before changing any of the parameters within the constants.yml file!

545

The Sipwise C5 PRO Handbook mr6.5.11 546 / 601

B.3 network.yml Overview

/etc/ngcp-config/network.yml is one of the main configuration files that contains network-related configuration pa-

rameters, like IP addresses and roles of the node(s) in Sipwise C5 system.

The next example shows a part of the network.yml configuration file. Explanation of all the configuration parameters is

provided in Network Configuration Section 11 section of the handbook.

Sample host configuration for Sipwise C5

sp1:

dbnode: ’1’

eth0:

dns_nameservers:

- 192.168.51.30

- 192.168.51.31

gateway: 192.168.22.1

hwaddr: 06:1e:bc:e2:ec:fb

ip: 10.0.2.15

netmask: 255.255.255.0

shared_ip: ~

shared_v6ip: ~

type:

- web_ext

- ssh_ext

- web_int

eth1:

hwaddr: 6e:7f:3a:f9:db:1f

ip: 192.168.255.251

netmask: 255.255.255.248

shared_ip:

- 192.168.255.250

shared_v6ip: ~

type:

- ha_int

- ssh_ext

eth2:

ip: 10.15.20.107

netmask: 255.255.255.0

shared_ip:

- 10.15.20.151

type:

- ssh_ext

- web_ext

- web_int

- sip_ext

- rtp_ext

- mon_ext

546

The Sipwise C5 PRO Handbook mr6.5.11 547 / 601

interfaces:

- lo

- eth0

- eth1

- eth2

lo:

advertised_ip: []

cluster_sets:

- default

hwaddr: 00:00:00:00:00:00

ip: 127.0.0.1

netmask: 255.0.0.0

shared_ip: []

shared_v6ip: []

type:

- sip_int

- web_ext

- web_int

- aux_ext

- ssh_ext

- api_int

v6ip: ’::1’

peer: sp2

role:

- proxy

- lb

- mgmt

- rtp

- db

status: ’online’

547

The Sipwise C5 PRO Handbook mr6.5.11 548 / 601

C NGCP-Faxserver Configuration

For an overview of Faxserver architecture and features, please see the Faxserver Section 6.12 chapter.

C.1 Faxserver Components

Starting from mr4.3 release there is a completely reworked fax server in a form of standalone daemon that uses Asterisk as its

transmission component. No other component — such as hylafax or iaxmodem— is necessary to send and receive faxes on

Sipwise C5 platform.

C.2 Enabling Faxserver

In order to configure functions of Sipwise C5 Faxserver one needs to update the main NGCP configuration file /etc/ngcp-

config/config.yml with the correct fax options:

faxserver:

enable: yes

fail_attempts: ’3’

fail_retry_secs: ’60’

keep_failed_fax: yes

keep_failed_fax_days: ’60’

keep_received_fax: yes

keep_received_fax_days: ’60’

keep_sent_fax: yes

keep_sent_fax_days: ’60’

mail_from: ’Sipwise C5 FaxServer <voipfax@ngcp.sipwise.local>’

Parameters are:

• enable: must be yes to enable Faxserver

• fail_...: the number and timeout of fax sending retrials

• keep_...: fax retention definitions: enabling and length in days

• mail_from: the From header in the e-mail that is sent by Fax2Mail feature when a fax is received

C.3 Fax Templates Configuration

One needs to update /etc/ngcp-config/templates/etc/ngcp-faxserver/faxserver.conf.tt2 if he wants

to use custom content in the fax and e-mail templates that are used by Faxserver to generate the actual fax or e-mail. This may

be done under the "User templates" section in the file.

Applying new Faxserver configuration

Once the above mentioned configuration files have been modified the new settings must be applied:

548

The Sipwise C5 PRO Handbook mr6.5.11 549 / 601

ngcpcfg apply ’Configured fax server’

ngcpcfg push all

C.4 Fax Services Configuration per Subscriber

Fax services must be explicitly activated for subscribers before they can send or receive faxes. This activation and the custom

settings may be set on Sipwise C5 Web panel in the following way (as an administrator):

• Go to Subscribers and find the subscriber that you want to modify settings for

• Click on Preferences button

• Select FaxFeatures

In both sections Fax2Mail and SendFax and Mail2Fax there is a field: Active. This must be changed from no to yes if the

particular fax service must be activated.

When fax services have been activated the user sees a summary of settings in FaxFeatures section on his Preferences page:

Figure 160: Fax Settings

549

The Sipwise C5 PRO Handbook mr6.5.11 550 / 601

Details of Fax2Mail, SendFax and Mail2Fax settings are described in subsequent paragraphs.

C.5 Fax2Mail and SendFax Settings

• Name in Fax Header for SendFax: optional field that contains the subscribers name on faxes sent from the Web

panel directly

• Destinations: e-mail addresses and selections of notification items that define about which event and where an e-mail is

sent; this is a list of such definitions

Figure 161: Fax2Mail Destination

The parameters for a destination are as follows:

• Destination Email: the e-mail address where the notification must be sent

• File Type: file format of faxes attached to e-mails

• Deliver Incoming Faxes: select this in order to receive incoming faxes in e-mail

• Deliver Outgoing Faxes: select this in order to receive a report about sent faxes

• Receive Reports: select this in order to receive reports about success / failure of fax transmissions

550

The Sipwise C5 PRO Handbook mr6.5.11 551 / 601

C.6 Mail2Fax Settings

A subscriber can restrict access to his Mail2Fax service with some methods, those can also be combined:

• using a secret key that is only known to him, and is inserted in every mail that he sends to Sipwise C5 to be forwarded as fax

• using an access control list (ACL) that determines from which endpoint and for which destination a mail-to-fax is accepted by

Sipwise C5 platform

• Secret Key: the secret key used to validate the sender of an e-mail; not used if left empty

• Secret Key Renew: secret key renewal period; Sipwise C5 platform will enforce renewal of the secret key when the defined

time has elapsed

• Last Secret Key Modify Time: information about the last secret key modification time

• Secret Key Renew Notify: an e-mail address where the notification about secret key modification is sent

• ACL: access control list, see the details below; this is a list of access control rules

Figure 162: Mail2Fax Access Control List

The parameters for access control rules:

• From email: this sender is allowed to use Mail2Fax service

551

The Sipwise C5 PRO Handbook mr6.5.11 552 / 601

• Received from IP: this IP address or host name must be present in From e-mail header

• Destination: either a complete phone number in E.164 format, or a regular expression ("Use Regex" checkbox must be

ticked) that may define a range of numbers. Examples: "4313334445" as a single number; "ˆ4399.+" as a regular expression:

all destinations starting with "4399"

Caution

When neither Secret Key, nor ACL is defined then Mail2Fax service will deny accepting any e-mail for sending faxes!

C.7 Sending Fax from Web Panel

A subscriber can log in to his Customer Self Care website and send faxes directly from there. In order to do this, one needs to do

the following:

• Go to Settings→Web Fax page

Tip

The list of received faxes is also available here.

• Press Send Fax button to start entering data, such as recipient and content for the fax being sent:

552

The Sipwise C5 PRO Handbook mr6.5.11 553 / 601

Figure 163: Sending Fax from Web Panel

Both plain text message and attached files can be sent in the fax. First page(s) will contain the plain text message and the content

of attached files will follow that.

C.8 Faxserver Mail2Fax Configuration

Using Sipwise C5 Faxserver’s Mail2Fax service requires the configuration of Sipwise C5’s local mail server that is Exim. It has

to be configured in a way that it can receive mails from outside of the server, because Exim by default listens only on the local

interfaces for incoming mails.

Exim Configuration

The Sipwise C5 platform administrator must reconfigure Exim in order to enable receiving e-mails for fax sending:

sudoedit /etc/ngcp-config/config.yml # edit section ’email:’ according to your needs

sudo ngcpcfg apply ’adjust exim4 / MTA configuration’

PLEASE NOTE: When entering configuration data the following points must be kept in mind:

• operation mode has to be set to "mail sent by smarthost; no local mail"

553

The Sipwise C5 PRO Handbook mr6.5.11 554 / 601

• "mail2fax.example.org" must be added to accepted domains, where "example.org" is the domain name of Sipwise C5

platform operator

DNS Configuration

It is necessary to add a subdomain starting as mail2fax. to the list of domain names. That is where the faxes will be sent by

users to trigger Mail2Fax service.

Tip

Alternatively, edit /etc/ngcp-config/templates/etc/exim4/conf.d/router/999_mail2fax.tt2 file

and adjust it to your personal preferences. Although this is not recommended and should only be done by Sipwise support

engineers.

C.9 Sending Fax Using E-mail Clients

When sending an e-mail that should be converted to a fax, there are some points to keep in mind so that Faxserver properly

processes the e-mail.

• To header:

– must contain the subscriber’s number who is sending the fax, as the username part of the mail address

– must contain the specific domain starting with mail2fax.

• Subject header: must contain the fax destination number

• Body should consist of plain text data

• Adding attachments is possible, but only plain text and PDF formats are supported

Secret Key

In order to use the "secret key" access control feature, it should be either put in the first row of the e-mail body followed by an

empty line, or included as a plain text attachment. Once it has been validated, it will be removed from the email.

Important

Either add the secret key to the body, or attach it. Never do both as only one will be recognized and removed, leaving

the other one to be sent as part of the fax.

Mail Example

Provided there is a subscriber on Sipwise C5 platform with the 43130111 number, the destination fax is 43130222 and the secret

key is "MySecretKey":

From: User Name <username@example.org>

To: 43130111@mail2fax.example.org

554

The Sipwise C5 PRO Handbook mr6.5.11 555 / 601

Subject: 43130222

- - - - - - - - - - - - - - - - - -

MySecretKey

This is a test fax.

Cheers

C.10 Managing Faxes via the REST API

It is possible to send and receive faxes and configure fax settings using the built-in REST API interface.

In subsequent sections you can find examples of using the API for sending, receiving faxes and changing fax settings.

C.10.1 Configuring Fax Settings

C.10.1.1 Retrieving Fax Settings

The following example retrieves the fax settings for the subscriber with ID 3.

Method: GET

Content-Type: application/hal+json

https://127.0.0.1:1443/api/faxserversettings/3

The output format is as follows (only the relevant output data is shown):

"active" : true,

"destinations" : [

{

"destination" : "user@company.com",

"filetype" : "PDF14",

"incoming" : true,

"outgoing" : true,

"status" : true

}

],

"name" : null,

"password" : null

C.10.1.2 Updating Fax Settings

The following example updates a specific parameter. Namely, it deactivates the fax feature for the subscriber with ID 3.

Method: PATCH

Content-Type: application/json-patch+json

555

The Sipwise C5 PRO Handbook mr6.5.11 556 / 601

https://127.0.0.1:1443/api/faxserversettings/3

--data-binary ’[{ "op" : "replace", "path" : "/active", "value" : 0 }]’

C.10.2 Sending a Fax

The following request sends a PDF file located at /tmp/test_fax.pdf as fax to 431110002 from the subscriber with ID 3.

Method: POST

Content-Type: multipart/form-data

https://127.0.0.1:1443/api/faxes/

--form ’json={"destination" : "431110002", "subscriber_id" : 3}’ --form ’faxfile=@/tmp/ ←↩
test_fax.pdf’

C.10.3 Receiving a Fax

All received faxes are stored on the server and can be retrieved on demand. You can retrieve a stored fax by following these steps:

1. Firstly, obtain the internal ID of the fax:

Method: GET

Content-Type: application/json

https://127.0.0.1:1443/api/faxes/3

This request returns the list of stored faxes for the subscriber with ID 3. One of the available faxes is returned like this:

"callee" : "431110002",

"caller" : "431110001",

"direction" : "out",

"duration" : "0",

"filename" : "d9799276-b7d9-454f-98c3-714edf7e3072.tif",

"id" : 5,

"pages" : "1",

"quality" : "8031x7700",

"reason" : "Normal Clearing / SIP 200 OK [1/3]",

"signal_rate" : "14400",

"status" : "SUCCESS",

"subscriber_id" : 1,

"time" : "2016-07-30 09:49:59"

2. Now, to retrieve the fax with ID 5, use the following request:

556

The Sipwise C5 PRO Handbook mr6.5.11 557 / 601

Method: GET

Content-Type: application/hal+json

https://127.0.0.1:1443/api/faxerecordings/5

By default, the fax is in the TIFF format. It is also possible to request it in a different format. To retrieve the same fax in PDF14,

use the following request:

https://127.0.0.1:1443/api/faxerecordings/5?format=pdf14

C.10.4 Configuring Mail2Fax Settings

The configuration of Mail2Fax settings via the REST API is similar to the fax settings configuration.

C.10.4.1 Retrieving Mail2Fax Configuration

To get the Mail2Fax configuration for the subscriber with ID 3, use the following request:

Method: GET

Content-Type: application/hal+json

https://127.0.0.1:1443/api/mailtofaxsettings/3

The output format is as follows (only the relevant output data is shown):

"acl" : [],

"active" : false,

"secret_key" : "secretkeypassword",

"secret_key_renew" : "daily",

"secret_renew_notify" : [

{

"destination" : "user1@company.com"

}

]

C.10.4.2 Updating Mail2Fax Configuration

The following set of requests changes the Mail2Fax configuration with new secret key settings.

• Secret key value:

Method: PATCH

Content-Type: application/json-patch+json

557

The Sipwise C5 PRO Handbook mr6.5.11 558 / 601

https://127.0.0.1:1443/api/faxserversettings/3

--data-binary ’[{ "op" : "replace", "path" : "/secret_key", "value" : " ←↩
newsecretkeypassword" }]’

• Secret key renewal interval:

Method: PATCH

Content-Type: application/json-patch+json

--data-binary ’[{ "op" : "replace", "path" : "/secret_key_renew", "value" : "monthly" } ←↩
]’

• List of email addresses that receive the automatic secret key update notifications:

Method: PATCH

Content-Type: application/json-patch+json

--data-binary ’[{ "op" : "replace", "path" : "/secret_renew_notify", "value" : [{ " ←↩
destination": "user2@company.com" }, { "destination": "user3@company.com" }] }]’

C.10.5 Using Advanced Faxserver and Mail2Fax Settings via the REST API

On Sipwise C5 REST API documentation web page you can find the complete list of available Faxserver and Mail2Fax configura-

tion parameters: https://<ngcp_ip_address>:1443/api

Important

The information on the web page is relevant for your platform version and may change in next releases.

After visiting the API documentation main page, you can find the following entries related to Faxserver operations:

• Faxes (https://<ngcp_ip_address>:1443/api/#faxes)

• FaxRecordings (https://<ngcp_ip_address>:1443/api/#faxrecordings)

• FaxserverSettings (https://<ngcp_ip_address>:1443/api/#faxserversettings)

C.11 Troubleshooting

The following log file may be used to check Faxserver functionality: /var/log/ngcp/faxserver.log

558

https://<ngcp_ip_address>:1443/api
https://<ngcp_ip_address>:1443/api/#faxes
https://<ngcp_ip_address>:1443/api/#faxrecordings
https://<ngcp_ip_address>:1443/api/#faxserversettings

The Sipwise C5 PRO Handbook mr6.5.11 559 / 601

C.11.1 Session ID (SID)

Faxserver stores basic information about each processed fax in a session file. The most important element within this set of data

is the Session ID (SID) that uniquely identifies a fax throughout its lifetime.

Session ID is a long hexadecimal string (a kind of UUID) that can be read from the above mentioned Faxserver logfile, and which

itself is used also as the filename in files that belong to a specific sent / received fax. An example:

root@sp1:~# cat /ngcp-data/spool/faxserver/failed/1e480167-5de6-4cc2-948b-de58d1a0bb8c.err

created: 2016-09-06 04:41:32

caller: 111111111

callee: 222222222

file: 1e480167-5de6-4cc2-948b-de58d1a0bb8c.tif

sid: 1e480167-5de6-4cc2-948b-de58d1a0bb8c

dir: out

attempts: 0

fail_attempts: 3

fail_retry_secs: 60

quality: normal

status: FAILED

error: Internal error

modified: 2016-09-06 17:41:30

root@sp1:~#

The data element sid is the session ID. Other important elements are:

• caller and callee: these are probably searched for when trying to figure out what happened to a specific fax transmission,

if you don’t know the SID

• dir: direction of fax transmission: in’coming or ’out’going or ’mtf for mail-to-fax

• status: shows success or failure

• error: the error cause in case of failed faxes

C.11.2 Fax Storage Location

Faxserver stores all of its processed faxes at the path: /ngcp-data/spool/faxserver/... Within that directory the

most relevant subdirectories are failed and completed that store the SID file and the fax itself in TIFF format of those faxes

that failed or were successful, respectively.

559

The Sipwise C5 PRO Handbook mr6.5.11 560 / 601

C.12 Adjusting the PBX Devices Configuration

Usually, everything required for PBX devices autoprovisioning is uploaded automatically as described in Section 17.1.1. In case

you would like to introduce changes into a PBX device configuration, create a custom PBX device profile or even upload a newer

firmware, this section will help you.

The Device Management is used by admins and resellers to define the list of device models, firmwares and configurations available

for end customer usage. These settings are pre-configured for the default reseller up-front by Sipwise and have to be set up for

every reseller separately, so a reseller can choose the devices he’d like to serve and potentially tweak the configuration for them.

List of available pre-configured devices Section 17.1.13.

End customers choose from a list of Device Profiles, which are defined by a specific Device Model, a list of Device Firmwares and

a Device Configuration. The following sections describe the setup of these components.

To do so, go to Settings→Device Management.

Figure 164: Device Management

560

The Sipwise C5 PRO Handbook mr6.5.11 561 / 601

C.12.1 Setting up Device Models

A Device Model defines a specific hardware device, like the vendor, model name, the number of keys and their capabilities. For

example a Cisco SPA504G has 4 keys, which can be used for private lines, shared lines (SLA) and busy lamp field (BLF). If you

have an additional attendant console, you get 32 more buttons, which can only do BLF.

In this example, we will create a Cisco SPA504G with an additional Attendant Console.

Expand the Device Models row and click Create Device Model.

First, you have to select the reseller this device model belongs to, and define the vendor and model name.

Figure 165: Create Device Model Part 1

In the Line/Key Range section, you can define the first set of keys, which we will label Phone Keys. The name is important,

because it is referenced in the configuration file template, which is described in the following sections. The SPA504G internal

phone keys support private lines (where the customer can assign a normal subscriber, which is used to place and receive standard

phone calls), shared lines (where the customer can assign a subscriber which is shared across multiple people) and busy lamp

field (where the customer can assign other subscribers to be monitored when they get a call, and which also acts as speed dial

button to the subscriber assigned for BLF), so we enable all 3 of them.

561

The Sipwise C5 PRO Handbook mr6.5.11 562 / 601

Figure 166: Create Device Model Part 2

In order to also configure the attendant console, press the Add another Line/Key Range button to specify the attendant console

keys.

Again provide a name for this range, which will be Attendant Console 1 to match our configuration defined later. There

are 32 buttons on the attendant console, so set the number accordingly. Those 32 buttons only support BLF, so make sure to

uncheck the private and shared line options, and only check the busy lamp field option.

562

The Sipwise C5 PRO Handbook mr6.5.11 563 / 601

Figure 167: Create Device Model Part 3

The last two settings to configure are the Front Image and MAC Address Image fields. Upload a picture of the phone here in the

first field, which is shown to the customer for him to recognize easily how the phone looks like. The MAC image is used to tell the

customer where he can read the MAC address from. This could be a picture of the back of the phone with the label where the

MAC is printed, or an instruction image how to get the MAC from the phone menu.

The rest of the fields are left at their default values, which are set to work with Cisco SPAs. Their meaning is as follows:

• Bootstrap Sync URI: If a stock phone is plugged in for the first time, it needs to be provisioned somehow to let it know where to

fetch its configuration file from. Since the stock phone doesn’t know about your server, you have to define an HTTP URI here,

where the customer is connected with his web browser to set the according field.

• Bootstrap Sync HTTP Method : This setting defines whether an HTTP GET or POST is sent to the Sync URI.

• Bootstrap Sync Params: This setting defines the parameters appended to the Sync URI in case of a GET, or posted in the

request body in case of POST, when the customer presses the Sync button later on.

Finally press Save to create the new device model.

563

The Sipwise C5 PRO Handbook mr6.5.11 564 / 601

Figure 168: Create Device Model Part 4

C.12.2 Uploading Device Firmwares

A device model can optionally have one or more device firmware(s). Some devices like the Cisco SPA series don’t support direct

firmware updates from an arbitrary to the latest one, but need to go over specific firmware steps. In the device configuration

discussed next, you can return the next supported firmware version, if the phone passes the current version in the firmware URL.

Since a stock phone purchased from any shop can have an arbitrary firmware version, we need to upload all firmwares needed to

get from any old one to the latest one. In case of the Cisco SPA3x/SPA5x series, that would be the following versions, if the phone

starts off with version 7.4.x:

• spa50x-30x-7-5-1a.bin

• spa50x-30x-7-5-2b.bin

• spa50x-30x-7-5-5.bin

So to get an SPA504G with a firmware version 7.4.x to the latest version 7.5.5, we need to upload each firmware file as follows.

564

The Sipwise C5 PRO Handbook mr6.5.11 565 / 601

Open the Device Firmware row in the Device Management section and press Upload Device Firmware.

Select the device model we’re going to upload the firmware for, then specify the firmware version and choose the firmware file,

then press Save.

Figure 169: Upload Device Firmware

Repeat this step for every firmware in the list above (and any new firmware you want to support when it’s available).

C.12.3 Creating Device Configurations

Each customer device needs a configuration file, which defines the URL to perform firmware updates, and most importantly, which

defines the subscribers and features configured on each of the lines and keys. Since these settings are different for each physical

phone at all the customers, the Cloud PBX module provides a template system to specify the configurations. That way, template

variables can be used in the generic configuration, which are filled in by the system individually when a physical device fetches its

configuration file.

To upload a configuration template, open the Device Configuration row and press Create Device Configuration.

Select the device model and specify a version number for this configuration (it is only for your reference to keep track of different

565

The Sipwise C5 PRO Handbook mr6.5.11 566 / 601

versions). For Cisco SPA phones, keep the Content Type field to text/xml, since the configuration content will be served to the

phone as XML file.

For devices other than the Cisco SPA, you might set text/plain if the configuration file is plain text, or application/

octet-stream if the configuration is compiled into some binary form.

Finally paste the configuration template into the Content area and press Save.

Figure 170: Upload Device Configuration

The templates for certified device models are provided by Sipwise, but you can also write your own. The following variables can

be used in the template:

• config.url: The URL to the config file, including the device identifier (e.g. http://sip.example.org:1444/dev

ice/autoprov/config/001122334455).

• firmware.maxversion: The latest firmware version available on the system for the specific device.

• firmware.baseurl: The base URL to download firmwares (e.g. http://sip.example.org:1444/device/aut

oprov/firmware). To fetch the next newer firmware for a Cisco SPA, you can use the template line [% firmware.

baseurl %]/$MA/from/$SWVER/next.

566

The Sipwise C5 PRO Handbook mr6.5.11 567 / 601

• phone.stationname: The name of the station (physical device) the customer specifies for this phone. Can be used to show

on the display of the phone.

• phone.lineranges: An array of lines/keys as specified for the device model. Each entry in the array has the following keys:

– name: The name of the line/key range as specified in the Device Model section (e.g. Phone Keys).

– num_lines: The number of lines/keys in the line range (e.g. 4 in our Phone Keys example, or 32 in our Attendant

Console 1 example).

– lines: An array of lines (e.g. subscriber definitions) for this line range. Each entry in the array has the following keys:

* keynum: The index of the key in the line range, starting from 0 (e.g. keynum will be 3 for the 4th key of our Phone Keys

range).

* rangenum: The index of the line range, starting from 0. The order of line ranges is as you have specified them (e.g.

Phone Keys was specified first, so it gets rangenum 0, Auto Attendant 1 gets rangenum 1).

* type: The type of the line/key, on of private, shared or blf.

* username: The SIP username of the line.

* domain: The SIP domain of the line.

* password: The SIP password of the line.

* displayname: The SIP Display Name of the line.

In the configuration template, you can adjust embedded variable references for the existing variables. If you need other specific

variables, please request their development from Sipwise.

Tip

In order to change the provisioning base IP and port (default 1444), you have to access /etc/ngcp-config/config.

yml and change the value host and port under the autoprov.server section.

C.12.4 Creating Device Profiles

When the customer configures his own device, he doesn’t select a Device Model directly, but a Device Profile. A device profile

specifies which model is going to be used with which configuration version. This allows the operator to create new configuration

files and assign them to a profile, while still keeping older configuration files for reference or roll-back scenarios. It also makes

it possible to test new firmwares by creating a test device model with the new firmware and a specific configuration, without

impacting any existing customer devices.

To create a Device Profile for our phone, open the Device Profile row in the Device Management section and press Create Device

Profile.

Select the device configuration (which implicitly identifies a device model) and specify a Profile Name. This name is what the

customer sees when he is selecting a device he wants to provision, so pick a descriptive name which clearly identifies a device.

Press Save to create the profile.

567

The Sipwise C5 PRO Handbook mr6.5.11 568 / 601

Figure 171: Create Device Profile

Repeat the steps as needed for every device you want to make available to customers.

568

The Sipwise C5 PRO Handbook mr6.5.11 569 / 601

D RTC:engine

D.1 Overview

WebRTC is an open project providing browsers and mobile applications with Real-Time Communications (RTC) capabilities. The

RTC:engine protocol is a light weight messaging and signaling protocol for WebSocket clients. Technically it is a WebSocket sub

protocol. It consists of JSON messages that are used to initiate and control call dialogs, send chat messages, join and control

conferences and share files. It is similar to well known signaling protocols like SIP, but much simpler. It does not care about the

underlying network protocols, like SIP does.

D.2 RTC:engine enabling

The RTC:engine is not activated by default and needs a few steps to setup.

D.2.1 Enabling services via CLI

First you have to enable it first on your server via CLI. Connect with SSH on your server, open /etc/ngcp-config/config.yml with

your editor of choice and change the following properties:

fileshare:

enable: yes

rtcengine:

conference:

relay:

app_id: bormuth

url: http://xms.sipwise.com:81

call:

relay:

app_id: bormuth

url: http://xms.sipwise.com:81

enable: yes

expose_provisioning_api: yes

www_admin:

http_csc:

servername: ’$IP_OF_VM’

Save the config.yml file and run $ ngcpcfg apply "enable rtcengine". After the script ran, check the status of all services via $

ngcp-service summary, or $ systemctl status.

569

The Sipwise C5 PRO Handbook mr6.5.11 570 / 601

D.2.2 Enabling via Panel for resellers and subscribers

The WebRTC subscriber is just a normal subscriber which has just a different configuration in his Preferences. You need to change

the following preferences under Subscribers→Details→Preferences→NAT and Media Flow Control :

• use_rtpproxy: Always with rtpproxy as additional ICE candidate

• transport_protocol: RTP/SAVPF (encrypted SRTP with RTCP feedback)

The transport_protocol setting may change, depending on your WebRTC client/browser configuration. Supported proto-

cols are the following:

• Transparent (Pass through using the client’s transport protocol)

• RTP/AVP (Plain RTP)

• RTP/SAVP (encrypted SRTP)

• RTP/AVPF (RTP with RTCP feedback)

• RTP/SAVPF (encrypted SRTP with RTCP feedback)

• UDP/TLS/RTP/SAVP (Encrypted SRTP using DTLS)

• UDP/TLS/RTP/SAVPF (Encrypted SRTP using DTLS with RTCP feedback)

Warning

The below configuration is enough to handle a WebRTC client/browser. As mentioned, you may need to tune a little bit

your transport_protocol configuration, depending on your client/browser settings.

In order to have a bridge between normal SIP clients (using plain RTP for example) and WebRTC client, the normal SIP clients’

preferences have to have the following configuration:

transport_protocol: RTP/AVP (Plain RTP)

This will teach Sipwise C5 to translate between Plain RTP and RTP/SAVPF when you have calls between normal SIP clients and

WebRTC clients.

D.2.3 Create RTC:engine session

D.2.3.1 Create sessions

Request:

curl -i -X POST --insecure --user SUBSCRIBER_ID:SUBSCRIBER_PW -H ’Content-Type: application ←↩
/json’ --data-binary ’{}’ https://IP_OF_VM/api/rtcsessions/

570

The Sipwise C5 PRO Handbook mr6.5.11 571 / 601

Response Header:

Location: /api/rtcsessions/7

D.2.3.2 Receive sessions

Request:

curl -i -X GET --insecure --user SUBSCRIBER_ID:SUBSCRIBER_PW -H ’Content-Type: application/ ←↩
json’ https://IP_OF_VM/api/rtcsessions/{ID_FROM_LAST_REQUEST_HEADER}

Response Header:

{

...

"rtc_app_name" : "default_default_app",

"rtc_browser_token" : "22fz8e51-ad6e-481e-a389-15c58c3fe5ac",

"rtc_network_tag" : "",

"subscriber_id" : "263"

}

Tip

Use rtc_browser_token in your cdk.Client.

D.3 RTC:engine protocol details

D.3.1 Terminology

D.3.1.1 Connector

There are two kinds of connectors. The front and the back connectors. The only front connector is the BrowserConnector. It has

access to all WebSocket connections and is responsible for delivering RCT:engine protocol messages to the WebSocket clients,

and for forwarding messages from the WebSocket clients to the router.

Currently there are four back connectors (SipConnector, XmppConnector, WebrtcConnector, ConferenceConnector). Every back

connector implements a certain communication use case.

D.3.1.2 Router

The router is very simple stateless message broker, that is responsible for delivering the messages to the right connector. To

decide where to send the message, the router takes a look at the recipient address (to) and forwards the message to the specified

connector.

571

The Sipwise C5 PRO Handbook mr6.5.11 572 / 601

D.3.1.3 User

D.3.1.4 App

An app is a scope for a certain RTC:engine integration. Every user can have multiple apps. And an app contains sessions.

D.3.1.5 Network

A network is a user wide configuration, that maps a custom network name (tag) to a certain back connector. Additionally it can

also store network specific configurations. And any account that is related to a certain network, will merge its custom configs with

the network configs, and send its messages to the specified connector.

D.3.1.6 Session

D.3.1.7 Account

An account represents the credentials for a specific network. Usually it consists of an identifier like a SIP uri (sip:user@domain.tld)

and an access token or rather a password.

D.3.1.8 Browser SDK

The Browser SDK is an abstraction layer on top of the RTC:engine protocol. It is served as bundled javascript library, and provides

convenient components and methods for all use cases.

D.3.2 Messages

A typical message created by the browser sdk contains the following fields:

{

"method": "module.action",

"from": "connector:id",

"to": "connector:id",

"session": "session",

"body": {

...

}

}

D.3.2.1 Fields

D.3.2.2 method

It is separated in two parts. The first part is the module. It is a delegation key to separate concerns in the code. The second part

is the action, which represents a specific method in a module.

572

The Sipwise C5 PRO Handbook mr6.5.11 573 / 601

D.3.2.3 from

It represents the current sender of a message. For example the user creates a new call via the browser sdk, the message would

look like this:

{

"method": "call.start",

"from": "",

"to": "webrtc:b2bua1",

"session": "session1",

"body": {

...

}

}

The content of the field is completely irrelevant, because the BrowserConnector will overwrite this field. The reason is to avoid

user manipulation.

{

"method": "call.start",

"from": "browser:ws1",

"to": "webrtc:b2bua1",

"session": "session1",

"body": {

...

}

}

D.3.2.4 to

In general this field represents the recipient of a message. The recipients address consists of two parts. First part is the prefix

that targets the connector. Second part is the identifier of the recipient.

D.3.2.5 session

If you provisioned with the RTCEngine, you get a session and its token property. The browser SDK adds this token to every

message.

D.3.2.6 body

The body contains the payload of the message. Every message type has its own body schema.

573

The Sipwise C5 PRO Handbook mr6.5.11 574 / 601

D.3.3 Account

Mainly an account consists of credentials (identifier, accessToken), that are needed to authenticate against the related network.

Its lifecycle is bound to the lifecycle of the related session.

After RTC:engine received session.open, it responds a session.validated message. This message contains all provisioned ac-

counts in its property "body.accounts".

D.3.3.1 Flow

574

The Sipwise C5 PRO Handbook mr6.5.11 575 / 601

D.3.3.2 Messages

D.3.3.3 account.connect

RTC:engine needs one message per account. The message should contain the id of the account. The id is the object key in the

accounts object from the [session.validated](../session/index.md) message.

{

"from": "",

"to": "...:...",

"method": "account.connect",

"session": "...",

"body": {

"id": "..."

}

}

D.3.3.4 account.state

This message gives state information about the authentication and registration process of the related network and the correspond-

ing connector. For example, if the related connector is the SipConnector, it creates a new SIP B2BUA in background, and notify

the browser if any state change happens.

{

"from": "...:...",

"to": "browser:...",

"method": "account.state",

"session": "...",

"body": {

"id": "...",

"reason": "...",

"state": "..."

}

}

D.3.3.5 State reasons

• OK

• CONNECTING

• DISCONNECTING

• SERVICE_UNAVAILABLE

• SERVICE_ERROR

• BAD_CONFIGURATION

575

The Sipwise C5 PRO Handbook mr6.5.11 576 / 601

• WRONG_CREDENTIALS

• CONNECTOR_UNAVAILABLE

• CONNECTOR_BUSY

• CONNECTOR_ERROR

• ACCOUNT_NOT_FOUND

D.3.3.6 States

• CONNECTED

• DISCONNECTED

576

The Sipwise C5 PRO Handbook mr6.5.11 577 / 601

577

The Sipwise C5 PRO Handbook mr6.5.11 578 / 601

D.3.4 Call

D.3.4.1 Flow

578

The Sipwise C5 PRO Handbook mr6.5.11 579 / 601

D.3.4.2 call.start

The caller sends this message to the RTC:engine to initiate a new call dialog.

{

"from": "local",

"to": ["...:..."],

"method": "call.start",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"account": "..."

"replace": true|false,

"trickle": true|false,

"target": "...",

"sdp": "..."

}

}

D.3.4.3 Body properties

D.3.4.4 id

The id is a UUID version 4 that identifies the call dialog in the system. But caller and callee never have the same.

D.3.4.5 gcid

Whereas the gcid is a system wide and end-to-end consistent call identifier. It is necessary to track the entire call dialog.

D.3.4.6 account

It contains the callers account id. [(See accounts)](../account/index.md)

D.3.4.7 replace

This property is not used yet. It should support a call handover scenario.

D.3.4.8 trickle

If is set to true, the callee expects ice candidates, before the full sdp delivered by the caller, to accelerate the negotiation process.

579

The Sipwise C5 PRO Handbook mr6.5.11 580 / 601

D.3.4.9 target

It’s the URI (sip:user@domain.tld) of the callee.

D.3.4.10 sdp

The sdp property contains a very early state of the browsers media machine. It contains no ice candidates so far.

D.3.4.11 call.alive

After the callee received the "call.start" message, it responds with a "call.alive" to the RTC:engine, immediately.

{

"from": "...",

"to": "...",

"method": "call.alive",

"session": "...",

"body": {

"id": "...",

"gcid": "..."

}

}

D.3.4.12 call.ringing

After the callee received the "call.start" message, it responds with a "call.ringing" to the RTC:engine, immediately.

{

"from": "...",

"to": "...",

"method": "call.ringing",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"account": null

}

}

D.3.4.13 call.accept

The callee sends this message after accepting the call explicitly.

{

"from": "...",

"to": "...",

580

The Sipwise C5 PRO Handbook mr6.5.11 581 / 601

"method": "call.accept",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"account": null,

"trickle": true|false,

"sdp": "..."

}

}

D.3.4.14 call.ack.accept

Caller sends this message after it received the "call.accept" message from the callee.

{

"from": "...",

"to": "...",

"method": "call.ack.accept",

"session": "...",

"body": {

"id": "...",

"gcid": "..."

}

}

D.3.4.15 call.candidate

Both, caller and callee send ice candidates immediately after initiating respectively accepting the call.

{

"from": "...",

"to": "...",

"method": "call.candidate",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"candidate": {

"payload": "...",

"type": "WEBRTC_LEGACY"

}

}

}

581

The Sipwise C5 PRO Handbook mr6.5.11 582 / 601

D.3.4.16 call.fullsdp

Both, caller and callee send this message after the ice gathering finished and all candidates are available.

{

"from": "...",

"to": "...",

"method": "call.fullsdp",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"sdp": "..."

}

}

D.3.4.17 call.change. . . .

All messages, that begin with "call.change", are important for renegotiation and glare handling.

D.3.4.18 call.change.lock.reset

D.3.4.19 call.change.lock

D.3.4.20 call.change.lock.ok

D.3.4.21 call.change.offer

D.3.4.22 call.change.answer

D.3.4.23 call.dtmf

Only works if the connector of the related account supports DTMF messages.

{

"from": "...",

"to": "...",

"method": "call.dtmf",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"dtmf": "...",

"account": null

}

}

582

The Sipwise C5 PRO Handbook mr6.5.11 583 / 601

D.3.4.24 call.end

Both, caller and callee can send this message. It forces the counter part to end and destroy the call.

{

"from": "...",

"to": "...",

"method": "call.end",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"reason": "..."

}

}

D.3.4.25 call.ack.end

The counter part, that receives the "call.end" message, sends the "call.ack.end" message.

{

"from": "...",

"to": "...",

"method": "call.ack.end",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"account": null

}

}

583

The Sipwise C5 PRO Handbook mr6.5.11 584 / 601

D.3.5 Session

D.3.5.1 Flow

D.3.5.2 Messages

D.3.5.3 session.open

{

"method": "session.open",

"from": "",

"to": "",

"session": "session1",

"body": {

"credentials": {

"userSession": "session1"

}

}

}

D.3.5.4 session.validated

This message is the response to session.open. If the session property is a valid session, you get a response where the result

property is true. In addition you get the account information to connect to the networks.

{

"method": "session.validated",

"from": "core",

584

The Sipwise C5 PRO Handbook mr6.5.11 585 / 601

"to": "browser:ws1",

"session": "session1"

"body": {

"result": true,

"accounts": {

"account1": {

"identifier": "sip:account1@foo.bar"

"target": "sip-connector:b2bua-account1",

"network": {

"tag": "sip-network"

}

}

}

},

}

If something went wrong, result is set to false and an error reason appears.

{

"method": "session.validated",

"from": "core",

"to": "browser:ws1",

"session": "session1"

"body": {

"result": false,

"reason": {

"type": "invalidToken",

"message": "Your token is not a valid user session token!"

}

}

},

}

D.3.5.5 Reason types

• invalidToken

• tokenExpired

• missingCredentials

585

The Sipwise C5 PRO Handbook mr6.5.11 586 / 601

E comx-fileshare-service

E.1 Overview

The comx-fileshare-service is a Node.js (4.4.0) based filesharing service and it is intended to be used via REST API. This service

allows you to upload arbitrary files to the server and to download/share them with a generated link.

The API can be used with in 2 ways:

• with simple identification, which means that only credentials of a user/subscriber are needed for authentication

• with session identification, which also provides for example the time-to-live (TTL) functionality besides authentication, and will

be used in combination with the RTC:engine.

E.2 Configuration and Usage

E.2.1 Change authentication method

To use Sipwise C5 subscribers as authentication against the API, you need to set it in the comx-fileshare-service config.js:

simpleUpload: {

authentication: {

enabled: true,

subscriber: true,

username: ’foo8’,

password: ’bar8’

}

}

You can now authenticate like this with the API:

curl -i -X POST --insecure --form file=@/tmp/test.txt --user ’43991002@domain.tld:x43991002 ←↩
’ \

https://$NGCP_IP:1446/rtc/fileshare/uploads

If you want to use the credentials from the config.js you need so set it to the following settings:

simpleUpload: {

authentication: {

enabled: true,

subscriber: false,

username: ’foo8’,

password: ’bar8’

}

}

In this case, the login parameter would be this:

586

The Sipwise C5 PRO Handbook mr6.5.11 587 / 601

curl -i -X POST --insecure --form file=@/tmp/test.txt --user ’foo8:bar8’ \

https://$NGCP_IP:1446/rtc/fileshare/uploads

E.2.2 Database Structure

Table information for the fileshare database:

• downloads table:

Table 28: Details of downloads Table in fileshare Database

Field Name Field Type Description

id CHAR, PRIMARY KEY Internal ID of the download action

state ENUM State of the download

uploaded_id CHAR, FOREIGN KEY External ID used for accessing the uploaded file in

uploads table

created_at DATETIME Download action creation time

updated_at DATETIME Time of last download action modification

• sessions table:

Table 29: Details of sessions Table in fileshare Database

Field Name Field Type Description

id CHAR, PRIMARY KEY Internal ID of the session

ttl INT Time-to-live value of the session (in seconds)

created_at DATETIME Session creation time

updated_at DATETIME Time of last session modification

• uploads table:

Table 30: Details of uploads Table in fileshare Database

Field Name Field Type Description

id CHAR, PRIMARY KEY Internal ID of the file entry

data LONGBLOB The file data

original_name VARCHAR Original name of the file

mime_type VARCHAR MIME type of the file

587

The Sipwise C5 PRO Handbook mr6.5.11 588 / 601

Table 30: (continued)

Field Name Field Type Description

size INT File size in bytes

ttl INT Time-to-live value of the file

state ENUM State of the file

session_id CHAR, FOREIGN KEY External ID used to access session data in

sessions table

created_at DATETIME File creation / upload time

updated_at DATETIME Time of last file modification

E.3 Activation of Filesharing Service on NGCP

The service is installed on every Sipwise C5 system, but is not activated by default. In order to activate the service with default

port 1446, connect with SSH to your server, open /etc/ngcp-config/config.yml with your editor of choice and change

the fileshare.enable property from no to yes:

fileshare:

enable: yes

external_port: 1446

Apply the new configuration in the usual way:

ngcpcfg apply ’Enabled comx-fileshare-service’

ngcpcfg push all

and check the status with ngcp-service summary. It should be now up and running.

588

The Sipwise C5 PRO Handbook mr6.5.11 589 / 601

E.4 Message Sequence Chart

E.4.1 Simple Message Sequence

Figure 172: Sequence Simple

589

The Sipwise C5 PRO Handbook mr6.5.11 590 / 601

E.4.2 Detailed Message Sequence

Figure 173: Sequence Detailed

E.5 API of Filesharing Service

E.5.1 HTTP Authentication

Type: Basic Auth

username/password

590

The Sipwise C5 PRO Handbook mr6.5.11 591 / 601

E.5.2 Upload and Download with Simple Identification

The following HTTP methods can be used to perform file upload and download:

POST /uploads // Simple upload

GET /uploads/{fileId} // Simple download

E.5.3 Upload and Download with Session Identification

The following HTTP methods can be used to perform file upload and download, and to manage sessions.

Session identification:

GET /sessions/{sessionId}/files // Get all files of a session

GET /sessions/{sessionId}/files/{fileId}/tokens/{tokenId} // Download a single file

POST /sessions // Create a new session

POST /sessions/{sessionId}/files // Create a new file entry

POST /sessions/{sessionId}/files/{fileId}/tokens // Generate a download token

PUT /sessions/{sessionId}/files/{fileId} // Upload and store a file

Simple identification:

GET /uploads/{fileId} // Get uploaded file

POST /uploads // Upload file

E.5.4 Curl Example for Simple Upload Request

curl -i -X POST --insecure --form file=@/tmp/test.txt --user ’myuser@example.com:mypass’ \

https://$NGCP_IP:1446/rtc/fileshare/uploads

E.5.5 Upload Parameters

E.5.5.1 file

The parameter file defines the path to the desired file that should be uploaded.

Caution

This upload parameter is mandatory!

Curl example:

591

The Sipwise C5 PRO Handbook mr6.5.11 592 / 601

curl -i -X POST --insecure --form file=@/tmp/test.txt https://$NGCP_IP:1446/rtc/fileshare/ ←↩
uploads

E.5.5.2 user

The parameter user defines the user to authenticate with the fileshare service.

Caution

This upload parameter is mandatory!

curl -i -X POST --insecure --user ’foo:bar’ https://$NGCP_IP:1446/rtc/fileshare/uploads

E.5.5.3 TTL

The parameter ttl defines the time-to-live (in seconds), that is how long the uploaded file will be available for download. The default

values for this parameter are defined in the configuration file:

models: {

session: {

ttl: 86400 * 7

},

upload: {

ttl: 3600

}

}

Curl example:

curl -i -X POST --insecure --form file=@/tmp/test.txt --form ttl=3600 \

--user ’foo:bar’ https://$NGCP_IP:1446/rtc/fileshare/uploads

Response from curl when TTL is expired:

{

"message": "upload expired"

}

Response in the log file when TTL is expired:

Error at /uploads/88e5905d-5d96-4750-ab3d-77a1ed26f569: message=upload expired, status=410

592

The Sipwise C5 PRO Handbook mr6.5.11 593 / 601

E.5.6 Number of Possible Downloads

There is a significant difference in the usage of the filesharing service between the approach within the RTC:engine and the simple

upload/download one:

• If you are using the simple upload and download approach, the generated download link you get for your file can be used as

many times as required, as long as the TTL is not expired.

• The approach with the Session ID, which will be used with the RTC:engine implementation, limits the download to one-time

only. This means that the generated download link can be used only once. If you plan to share the URL with multiple persons,

you have to generate one link for each recipient.

593

The Sipwise C5 PRO Handbook mr6.5.11 594 / 601

F NGCP Disk partitioning

This chapter documents possible disk partitioning on Sipwise C5 available after installation the Sipwise C5. It should be helpful to

understand the overall disk partitioning schema.

F.1 Supported IO drives

At the moment the following drives are supported: HDD, SSD, and NVMe. We recommend installing NVMe type SSD storage for

the best performance. Otherwise, install SATA SSDs for an average performance as SATA hard disks are a good option only for

test/development purpose.

The exact model and size depend on the type of the system and the load. We recommend running the initial performance test on

the selected hardware before going into production.

F.2 Hardware vs. software RAID

Depending on the specific hardware specification, Sipwise will configure either RAID 10 (HW-RAID, usually for installations with

HDDs), or software RAID (SW-RAID, generally for installations with SSDs).

F.3 The default disk partitions

The Sipwise C5 supports the modern concept of installing several releases side by side. The ability to switch between the releases

simplifies software upgrades and enables rollbacks. You can find all the benefits here here.

The new partitioning logic is simple. The code of services (e.g., kamailio, MariaDB) is separated from the data (e.g., databases,

CDR files) generated and processed by the code, and is located in a different partition of the disk. Additionally, there are two

partitions for code with different services versions. This way, the version of the code can be switched very quickly, just by rebooting

the system. The data partition will be the same for both versions of the code, and it will always be mounted and ready to be used

before the services start.

New partition layout:

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 xG 0 disk # Your disk with size X Gb

|-sda1 8:1 0 1M 0 part # BIOS legacy boot

|-sda2 8:2 0 486M 0 part /boot/efi # UEFI boot

‘-sda3 8:3 0 yG 0 part # LVM partition

‘-md0 9:0 0 yG 0 raid1 # SW RAID (if requested)

|-ngcp-root 253:0 0 10G 0 lvm / # ’code’ partition

|-ngcp-fallback 253:1 0 10G 0 lvm # ’fallback’ partition

‘-ngcp-data 253:3 0 zG 0 lvm /ngcp-data # ’data’ partition

unassigned space

• 1st partition: 1M BIOS boot, for BIOS/GPT (legacy) boot

594

https://source.android.com/devices/tech/ota/ab/

The Sipwise C5 PRO Handbook mr6.5.11 595 / 601

– this allows fallback to grub-pc package (This partition must have its GUID set to 21686148-6449-6E6F-744E-656564454649

To switch to grub-pc, boot from a rescue/live CD, set to bios_grub with parted, then install grub to disk, so it properly embeds

core.img)

• 2nd partition: ~500MB EFI System, for UEFI/GPT boot

– used as /boot/efi, if EFI support is available

• 3rd partition: LVM that is divided into:

– /dev/mapper/ngcp-root with 10GB (rootfs target)

/dev/mapper/ngcp-fallback with 10GB (for rollback/install/upgrade)

– 10% or >=500MB (whichever is bigger) of the remaining space is unassigned to allow LVM snapshots during maintenance

– /dev/mapper/ngcp-data is the /ngcp-data partition with the rest of the disk space for the whole platform data (e.g., databases,

CDR files, logs, etc.)

Note

The installer can only boot from GPT and does not support msdos partitions anymore. The legacy BIOS systems can also boot

from GPT, while (U)EFI systems can only boot from GPT (and not from BIOS/legacy boot).

F.4 UEFI

UEFI installation is supported. The dedicated UEFI partition has been created on the disk during the installation (being the second

partition in the list).

F.5 Swap partition vs. file

Important

The Sipwise C5 performance heavily depends on the IO operations, hence if Swap is used (either the Swap file and/or

the Swap partition), the performance might deteriorate. We highly recommend increasing RAM if the platform uses

Swap during normal operation.

The Swap partition is no longer in use. The Sipwise C5 has been migrated to the Swap file on the data partition. It gives the

following benefits:

• more space is now available for the root, rollback and data partitions.

• the Swap file size can be easily changed on the fly (if necessary).

• the Swap file can be migrated to a new location easily: create a new Swap file with the necessary size and location using the

mkswap command and activate the new Swap file with swapon. Add the new location to /etc/fstab. Now, you can deactivate the

old swapfile with swapoff and remove it to release the disk space.

595

The Sipwise C5 PRO Handbook mr6.5.11 596 / 601

• The main reason for the Swap partition usage, used to be data fragmentation on hard disk drives (HDDs) and old types of

filesystems. For modern SSD drives, the fragmentation issue is irrelevant and the ext4 filesystem does not require manual

defragmentation either. The free space on fast SSDs is more important nowadays, as it allows storing more data.

596

The Sipwise C5 PRO Handbook mr6.5.11 597 / 601

G NGCP Internals

This chapter documents internals of Sipwise C5 that should not be usually needed, but might be helpful to understand the overall

system.

G.1 Pending reboot marker

The Sipwise C5 has the ability to mark a pending reboot for any server, using the file /var/run/reboot-required. As soon as the

file exists, several components will report about a pending reboot to the end-user. The following components report about a

pending reboot right now: ngcp-status, ngcpcfg status, motd, ngcp-upgrade. Also, ngcp-upgrade will NOT allow proceeding with

an upgrade if it notices a pending reboot. It might affect rtpengine dkms module building if there is a pending reboot requested by

a newly installed kernel, etc.

G.2 Redis id constants

The list of current Sipwise C5 Redis DB IDs:

Service central (role db) local Release Ticket Description

sems - 0 mr3.7.1+ - HA switchover

rtpengine - 1 mr3.7.1+ - HA switchover

proxy 2 - mr3.7.1+ - Counter of

hunting groups

proxy 3 - mr3.7.1+ - Concurrent dialog

counters

proxy - 4 mr3.7.1+ - List of keys of the

central counters

prosody 5 - mr3.7.1+ - XMPP cluster

sems PBX - 6 mr3.7.1+ - HA switchover

sems 7 - mr4.1.1+ MT#12707 Sems

malicious_call

app

captagent - 8 mr4.1.1+ MT#15427 Captagent

internal data

monitoring 9 - mr4.3+ MT#31 Old SNMP agent

monitoring data

(unused)

proxy 10 - mr4.3+ MT#16079 SIP Loop

detection

ngcp-panel

sessions

- 19 mr6.3+ TT#35523 Panel login

sessions

proxy usrloc 20 - mr6.2+ TT#32971 SIP registrations

proxy acc - 21 mr6.2+ TT#32971 Accounting

records

597

The Sipwise C5 PRO Handbook mr6.5.11 598 / 601

Service central (role db) local Release Ticket Description

proxy auth - 22 mr6.2+ TT#32971 Subscriber data

proxy dialog - 23 mr6.2+ TT#34100 Dialog data

G.2.1 InfluxDB monitoring keys

The InfluxDB ngcp monitoring database contains time series of several monitoring sources. The following are some of the current

measurements:

node Cluster node information.

memory System memory information.

proc_count Process counts.

monit Monit supervised processes information.

mail MTA information.

mysql MySQL database information.

kamailio Kamailio statistics information.

sip SIP statistics information.

The node measurement contains the following fields:

active Cluster node HA state (boolean: 1/0).

hb_proc_state Cluster node heartbeat process state (boolean:

stopped/running).

hb_host_state Cluster node host state (boolean: up/down).

hb_node_state Cluster node HA state (ngcp-check-active -p).

The monit measurement contains the following fields:

name The process name.

proc_status The process status.

monit_status The monit status.

pid The process ID.

ppid The process parent ID.

children The number of children.

uptime The process uptime.

cpu_percent The CPU usage in percent for this process.

cpu_percent_total The CPU usage in percent for the process group.

memory The memory in bytes for this process.

memory_total The memory in bytes for the process group.

memory_percent The memory in percent for this process.

memory_percent_total The memory in percent for the process group.

data_collected The timestamp when the data was collected.

598

The Sipwise C5 PRO Handbook mr6.5.11 599 / 601

The mysql measurement contains the following fields:

last_io_error Last IO error description.

last_sql_error Last SQL error description.

queries_per_second_average Average of queries per second.

replication_discrepancies Number of replication discrepancies.

G.3 Enum preferences

All tables are in database "provisioning".

So called "enum preferences" allow a fixed set of possible values, an enumeration, for preferences. Following the differences

between other preferences are described.

Setting the attribute "data_type" of table "voip_preferences" to "enum" marks a preferences as an enum. The list of possible

options is stored in table "voip_preferences_enum".

voip_preferences_enum is:

id

boring pkey

preference_id

Reference to table voip_preferences.

label

A label to be displayed in frontends.

value

Value that will be written to voip_[usr|dom|peer]_preferences.value

if it is NOT NULL. Will not be written if it IS NULL. This can be

used to implement a "default value" for a preference that is visible

in frontends as such (will be listed first if nothing is actually

selected), but will not be written to

voip_[usr|dom|peer]_preferences.value. Usually forcing a domain or peer

default. Should also be named clearly (eg. __"use domain default"__).

(Note: Therefore will also not be written to any kamailio table.)

usr_pref

dom_pref

peer_pref

Flag if this is to be used for [usr|dom|peer] preferences.

default_val

Flag indicating if this should be used as a default value when

creating new entities or introducing new enum preferences (both done

599

The Sipwise C5 PRO Handbook mr6.5.11 600 / 601

via triggers). (Note: For this to work, value must also be set.)

Relevant triggers:

enum_update

Propagates changes of voip_preferences_enum.value to

voip_[usr|dom|peer]_preferences.value

enum_set_default

Will create entries for default values when adding a new enum

preference. The default value is the tuple from voip_preferences_enum

WHERE default_val=1 AND value NOT NULL.

trigger voip_dom_crepl_trig

trigger voip_phost_crepl_trig

trigger voip_sub_crepl_trig

These three triggers will set possible default values (same condition

as for enum_set_default) when creating new subscribers/domains/peers.

Find a usage example in a section in db-schema/db_scripts/diff/9086.up.

600

The Sipwise C5 PRO Handbook mr6.5.11 601 / 601

H Extra Configuration Scenarios

H.1 AudioCodes devices workaround

Old AudioCodes devices suffer from a problem where they replace 127.0.0.1 address in Record-Route headers (added by

Sipwise C5’s internal components) with the device’s IP address. Supposedly, the whole range of AudioCodes devices with a

firmware version below 6.8.X are affected. As a workaround, you may enable the topos feature to stop sending Record-Route

headers out. To achieve this, execute the following commands:

ngcpcfg set /etc/ngcp-config/config.yml kamailio.lb.security.topos.enable=yes

ngcpcfg apply ’enable topos for audiocodes devs workaround’

601

	Introduction
	About this Handbook
	What is the Sipwise C5 PRO?
	The Advantages of the Sipwise C5 PRO
	Who is the Sipwise C5 PRO for?
	Getting Help
	Phone Support
	Ticket System

	Architecture
	SIP Signaling and Media Relay
	SIP Load-Balancer
	SIP Proxy/Registrar
	SIP Back-to-Back User-Agent (B2BUA)
	SIP App-Server
	Media Relay

	MySQL Database
	Redis Database
	High Availability and Fail-Over
	Overview
	Core Concepts and Configuration
	Administration

	Platform Deployment
	Hardware Specifications
	Dimensions and Weight
	Front View
	Rear View
	Power Supply Units (PSU)

	Installation Prerequisites
	Rack-Mount Installation
	Power Supply Cabling
	Network Cabling
	Internal Communication
	External Communication

	VoIP Service Administration Concepts
	Contacts
	Resellers
	SIP Domain
	Additional SIP Domains

	Contracts
	Customers
	Residential and SOHO customers
	Business customers with the Cloud PBX service
	SIP Trunking
	Mobile subscribers
	Pre-paid subscribers who use your calling cards

	Subscribers
	SIP Peerings

	VoIP Service Configuration Scenario
	Creating a SIP Domain
	Creating a Customer
	Creating a Subscriber
	Domain Preferences
	Subscriber Preferences
	Creating Peerings
	Creating Peering Groups
	Creating Peering Servers
	Authenticating and Registering against Peering Servers

	Configuring Rewrite Rule Sets
	Inbound Rewrite Rules for Caller
	Inbound Rewrite Rules for Callee
	Outbound Rewrite Rules for Caller
	Outbound Rewrite Rules for Callee
	Emergency Number Handling
	Assigning Rewrite Rule Sets to Domains and Subscribers
	Creating Dialplans for Peering Servers
	Call Routing Verification

	Features
	Managing System Administrators
	Configuring Administrators
	Access Rights of Administrators

	Access Control for SIP Calls
	Block Lists
	NCOS (Network Class of Service) Levels
	IP Address Restriction

	Call Forwarding and Call Hunting
	Call Forward Types
	Setting a simple Call Forward
	Call Forward Destinations
	Advanced Call Hunting

	Call Forking by Q value
	How it works
	Additional Information

	Local Number Porting
	Local LNP Database
	External LNP via LNP API

	Emergency Mapping
	Emergency Mapping Description
	Emergency Mapping Configuration

	Emergency Priorization
	Call-Flow with Emergency Mode Enabled
	Configuration of Emergency Mode
	Activating Emergency Mode

	Header Manipulation
	Header Filtering
	Codec Filtering
	Enable History and Diversion Headers
	User Agent Filtering

	SIP Trunking with SIPconnect
	User provisioning
	Inbound calls routing
	Number manipulations
	Registration

	Trusted Subscribers
	Peer Probing
	Introduction to Peer Probing Feature
	Configuration of Peer Probing
	Monitoring of Peer Probing
	Further Details for Advanced Users

	Fax Server
	Fax2Mail Architecture
	Sendfax and Mail2Fax Architecture

	Voicemail System
	Accessing the IVR Menu
	IVR Menu Structure
	Type Of Messages
	Folders
	Voicemail Languages Configuration
	Flowcharts with Voice Prompts

	Configuring Subscriber IVR Language
	Sound Sets
	Configuring Early Reject Sound Sets

	Conference System
	Configuring Call Forward to Conference
	Configuring Conference Sound Sets
	Joining the Conference
	Conference Flowchart with Voice Prompts

	Malicious Call Identification (MCID)
	Setup
	Usage
	Advanced configuration

	Subscriber Profiles
	Subscriber Profile Sets

	SIP Loop Detection
	Call-Through Application
	Administrative Configuration
	Call Flow

	Calling Card Application
	Administrative Configuration
	Call Flow

	Invoices and Invoice Templates
	Invoices Management
	Invoice Management via REST API
	Invoice Templates

	Email Reports and Notifications
	Email events
	Initial template values and template variables
	Password reset email template
	New subscriber notification email template
	Invoice email template
	Email templates management

	The Vertical Service Code Interface
	Vertical Service Codes for PBX customers
	Configuration of Vertical Service Codes
	Voice Prompts for Vertical Service Code Configuration

	Handling WebRTC Clients
	XMPP and Instant Messaging
	Call Recording
	Introduction to Call Recording Function
	Information on Files and Directories
	Configuration
	REST API

	Media Transcoding
	Overview
	Supported Codecs
	Configuration

	SMS (Short Message Service) on Sipwise C5
	Configuration
	Monitoring, troubleshooting
	REST API

	Customer Self-Care Interface and Menus
	The Customer Self-Care Web Interface
	Login Procedure
	Site Customization

	The Voicemail Menu

	Billing Configuration
	Billing Profiles
	Creating Billing Profiles
	Creating Billing Fees
	Creating Off-Peak Times

	Peak Time Call Rating Modes
	Introduction to Call Rating Modes
	Typical Use Cases for Call Rating Modes
	Configuration of Call Rating Modes

	Prepaid Accounting
	Fraud Detection and Locking
	Fraud Lock Levels

	Billing Customizations
	Billing Networks
	Profile Mapping Schedule
	Profile Packages
	Vouchers
	Top-up
	Balance Overviews
	Usage Examples

	Notes on Billing and Call Rating
	Billing Data Export
	Glossary of Terms
	File Name Format
	File Format
	File Transfer

	Provisioning REST API Interface
	API Workflows for Customer and Subscriber Management
	API performance considerations

	Configuration Framework
	Configuration templates
	.tt2 and .customtt.tt2 files
	.prebuild and .postbuild files
	.services files

	config.yml, constants.yml and network.yml files
	ngcpcfg and its command line options
	apply
	build
	commit
	decrypt
	diff
	encrypt
	help
	initialise
	pull
	push
	services
	status

	Network Configuration
	General Structure
	Available Host Options
	Interface Parameters

	Advanced Network Configuration
	Extra SIP Sockets
	Extra SIP and RTP Sockets
	Alternative RTP Interface Selection Using ICE
	Extended RTP Port Range Using Multiple Interfaces

	Licenses
	What is Subject to Licensing?
	How Licensing Works
	How to Configure Licenses
	How to Monitor License Client

	Software Upgrade
	Release Notes
	Overview
	Planning a software upgrade
	Preparing the software upgrade
	Log into the C5 standby node
	Check the overall system status
	Check access to license server and license validity
	Evaluate and update custom modifications
	Check system integrity
	Check the configuration framework status

	Upgrade from previous LTS release mr5.5.* to mr6.5.11
	Upgrading Sipwise C5
	License check
	Preparing for maintenance mode
	Switch to the new repositories
	Download the new packages into the approx cache (on standby node only)
	Install the package used to upgrade C5
	ngcp-upgrade options
	Upgrade the first PRO node
	The customtt files handling (if necessary)
	Promote the upgraded standby node to active
	Upgrade the second PRO node

	Post-upgrade tasks
	Migrate location entries from Mysql to Redis DB
	Disabling maintenance mode
	Post-upgrade checks

	Applying the Latest Hotfixes
	Update the approx cache on the standby node
	Apply hotfixes on the standby node
	Recheck or update the custom configuration tempates
	Promote the standby node to active
	Apply hotfixes on the second node

	Backup, Recovery and Database Maintenance
	Sipwise C5 Backup
	What data to back up
	The built-in backup solution

	Recovery
	Reset Database
	Synchronize database
	Accounting Data (CDR) Cleanup
	Cleanuptools Configuration
	Accounting Database Cleanup
	Exported CDR Cleanup

	Platform Security, Performance and Troubleshooting
	Sipwise SSH access to Sipwise C5
	Firewalling
	Firewall framework
	Sipwise C5 firewall configuration
	IPv4 System rules
	Custom rules
	Example firewall configuration section

	Password management
	The "root" account
	The "administrator" account
	The "cdrexport" account
	The MySQL "root" user
	The "ngcpsoap" account

	SSL certificates.
	Securing your Sipwise C5 against SIP attacks
	Denial of Service
	Bruteforcing SIP credentials

	Topology Hiding
	Introduction to Topology Hiding on NGCP
	Configuration of Topology Hiding
	Considerations for Topology Hiding

	System Requirements and Performance
	Troubleshooting
	Collecting call information from logs
	Collecting SIP traces

	Monitoring and Alerting
	Internal Monitoring
	Service monitoring
	System monitoring via Telegraf
	Sipwise C5 specific monitoring via ngcp-witnessd
	Monitoring data in InfluxDB

	Statistics Dashboard
	External Monitoring Using SNMP
	Overview and Initial Setup
	Details

	Extensions and Additional Modules
	Cloud PBX
	PBX Device Provisioning
	Preparing PBX Rewrite Rules
	Creating Customers and Pilot Subscribers
	Creating Regular PBX Subscribers
	Assigning Subscribers to a Device
	Configuring Sound Sets for the Customer PBX
	Auto-Attendant Function
	Cloud PBX Groups with Busy Members
	Configuring Call Queues
	Device Auto-Provisioning Security
	Device Bootstrap and Resync Workflows
	Device Provisioning and Deployment Workflows
	List of available pre-configured devices
	Phone features
	Shared line appearance

	Sipwise sip:phone App (SIP client)
	Zero Config Launcher
	Mobile Push Notification

	Lawful Interception
	Introduction
	Architecture and Configuration of LI Service
	X1, X2 and X3 Interface Specification

	3rd Party Call Control
	Introduction
	Details of Call Processing with PCC
	Voicemail Notification
	Incoming Short Message Acceptance
	Configuration of PCC
	Troubleshooting of PCC

	Basic Call Flows
	General Call Setup
	Endpoint Registration
	Basic Call
	Session Keep-Alive
	Voicebox Calls

	Sipwise C5 configs overview
	config.yml Overview
	apps
	asterisk
	autoprov
	backuptools
	cdrexport
	checktools
	cleanuptools
	cluster_sets
	database
	faxserver
	general
	heartbeat
	intercept
	kamailio
	lnpd
	mediator
	modules
	nginx
	ntp
	ossbss
	pbx (only with additional cloud PBX module installed)
	prosody
	pushd
	qos
	rate-o-mat
	redis
	reminder
	rsyslog
	rtpproxy
	security
	sems
	sms
	snmpagent
	sshd
	sudo
	voisniff
	www_admin

	constants.yml Overview
	network.yml Overview

	NGCP-Faxserver Configuration
	Faxserver Components
	Enabling Faxserver
	Fax Templates Configuration
	Fax Services Configuration per Subscriber
	Fax2Mail and SendFax Settings
	Mail2Fax Settings
	Sending Fax from Web Panel
	Faxserver Mail2Fax Configuration
	Sending Fax Using E-mail Clients
	Managing Faxes via the REST API
	Configuring Fax Settings
	Sending a Fax
	Receiving a Fax
	Configuring Mail2Fax Settings
	Using Advanced Faxserver and Mail2Fax Settings via the REST API

	Troubleshooting
	Session ID (SID)
	Fax Storage Location

	Adjusting the PBX Devices Configuration
	Setting up Device Models
	Uploading Device Firmwares
	Creating Device Configurations
	Creating Device Profiles

	RTC:engine
	Overview
	RTC:engine enabling
	Enabling services via CLI
	Enabling via Panel for resellers and subscribers
	Create RTC:engine session

	RTC:engine protocol details
	Terminology
	Messages
	Account
	Call
	Session

	comx-fileshare-service
	Overview
	Configuration and Usage
	Change authentication method
	Database Structure

	Activation of Filesharing Service on NGCP
	Message Sequence Chart
	Simple Message Sequence
	Detailed Message Sequence

	API of Filesharing Service
	HTTP Authentication
	Upload and Download with Simple Identification
	Upload and Download with Session Identification
	Curl Example for Simple Upload Request
	Upload Parameters
	Number of Possible Downloads

	NGCP Disk partitioning
	Supported IO drives
	Hardware vs. software RAID
	The default disk partitions
	UEFI
	Swap partition vs. file

	NGCP Internals
	Pending reboot marker
	Redis id constants
	InfluxDB monitoring keys

	Enum preferences

	Extra Configuration Scenarios
	AudioCodes devices workaround

