
Sipwise GmbH

The sip:carrier Handbook mr5.5.7

Sipwise GmbH
<support@sipwise.com>

The sip:carrier Handbook mr5.5.7 ii

Contents

1 Introduction 1

1.1 About this Handbook . 1

1.2 What is the sip:carrier? . 1

1.3 The Advantages of the sip:carrier . 1

1.4 Who is the sip:carrier for? . 2

1.5 Getting Help . 2

1.5.1 Phone Support . 2

1.5.2 Ticket System . 2

2 System Architecture 3

2.1 Hardware Architecture . 3

2.2 Component Architecture . 4

2.2.1 Provisioning . 5

2.2.2 Signaling and Media Relay . 8

2.2.3 Scaling beyond one Hardware Chassis . 10

2.2.4 Architecture for central core and local satellites . 11

3 VoIP Service Administration Concepts 13

3.1 Contacts . 13

3.2 Resellers . 13

3.3 SIP Domain . 14

3.3.1 Additional SIP Domains . 14

3.4 Contracts . 15

3.5 Customers . 15

3.5.1 Residential and SOHO customers . 15

3.5.2 Business customers with the Cloud PBX service . 16

3.5.3 SIP Trunking . 17

3.5.4 Mobile subscribers . 17

ii

The sip:carrier Handbook mr5.5.7 iii

3.5.5 Pre-paid subscribers who use your calling cards . 17

3.6 Subscribers . 17

3.7 SIP Peerings . 18

4 VoIP Service Configuration Scenario 20

4.1 Creating a SIP Domain . 20

4.2 Creating a Customer . 21

4.3 Creating a Subscriber . 26

4.4 Domain Preferences . 30

4.5 Subscriber Preferences . 33

4.6 Creating Peerings . 34

4.6.1 Creating Peering Groups . 34

4.6.2 Creating Peering Servers . 36

4.6.3 Authenticating and Registering against Peering Servers . 45

4.7 Configuring Rewrite Rule Sets . 48

4.7.1 Inbound Rewrite Rules for Caller . 51

4.7.2 Inbound Rewrite Rules for Callee . 53

4.7.3 Outbound Rewrite Rules for Caller . 54

4.7.4 Outbound Rewrite Rules for Callee . 55

4.7.5 Emergency Number Handling . 55

4.7.6 Assigning Rewrite Rule Sets to Domains and Subscribers . 58

4.7.7 Creating Dialplans for Peering Servers . 59

4.7.8 Call Routing Verification . 59

5 Features 65

5.1 Managing System Administrators . 65

5.1.1 Configuring Administrators . 65

5.1.2 Access Rights of Administrators . 66

5.2 Access Control for SIP Calls . 69

5.2.1 Block Lists . 69

iii

The sip:carrier Handbook mr5.5.7 iv

5.2.2 NCOS Levels . 71

5.2.3 IP Address Restriction . 78

5.3 Call Forwarding and Call Hunting . 79

5.3.1 Setting a simple Call Forward . 79

5.3.2 Advanced Call Hunting . 79

5.4 Local Number Porting . 86

5.4.1 Local LNP Database . 86

5.4.2 External LNP via LNP API . 89

5.5 Emergency Mapping . 93

5.5.1 Emergency Mapping Description . 95

5.5.2 Emergency Mapping Configuration . 95

5.6 Emergency Priorization . 101

5.6.1 Call-Flow with Emergency Mode Enabled . 102

5.6.2 Configuration of Emergency Mode . 105

5.6.3 Activating Emergency Mode . 106

5.7 Header Manipulation . 107

5.7.1 Header Filtering . 107

5.7.2 Codec Filtering . 108

5.7.3 Enable History and Diversion Headers . 108

5.8 SIP Trunking with SIPconnect . 109

5.8.1 User provisioning . 109

5.8.2 Inbound calls routing . 109

5.8.3 Number manipulations . 109

5.8.4 Registration . 112

5.9 Trusted Subscribers . 113

5.10 Peer Probing . 113

5.10.1 Introduction to Peer Probing Feature . 113

5.10.2 Configuration of Peer Probing . 114

iv

The sip:carrier Handbook mr5.5.7 v

5.10.3 Monitoring of Peer Probing . 116

5.10.4 Further Details for Advanced Users . 116

5.11 Fax Server . 117

5.11.1 Fax2Mail Architecture . 117

5.11.2 Sendfax and Mail2Fax Architecture . 118

5.12 Voicemail System . 119

5.12.1 Accessing the IVR Menu . 119

5.12.2 IVR Menu Structure . 120

5.12.3 Type Of Messages . 121

5.12.4 Folders . 122

5.12.5 Voicemail Languages Configuration . 122

5.12.6 Flowcharts with Voice Prompts . 123

5.13 Configuring Subscriber IVR Language . 128

5.14 Sound Sets . 128

5.14.1 Configuring Early Reject Sound Sets . 129

5.15 Conference System . 134

5.15.1 Configuring Call Forward to Conference . 135

5.15.2 Configuring Conference Sound Sets . 135

5.15.3 Joining the Conference . 137

5.15.4 Conference Flowchart with Voice Prompts . 137

5.16 Malicious Call Identification (MCID) . 139

5.16.1 Setup . 139

5.16.2 Usage . 140

5.16.3 Advanced configuration . 140

5.17 Subscriber Profiles . 140

5.17.1 Subscriber Profile Sets . 140

5.18 SIP Loop Detection . 143

5.19 Call-Through Application . 143

v

The sip:carrier Handbook mr5.5.7 vi

5.19.1 Administrative Configuration . 144

5.19.2 Call Flow . 146

5.20 Calling Card Application . 147

5.20.1 Administrative Configuration . 148

5.20.2 Call Flow . 150

5.21 Invoices and Invoice Templates . 151

5.21.1 Invoices Management . 151

5.21.2 Invoice Templates . 153

5.21.3 Invoices Generation . 163

5.22 Email Reports and Notifications . 165

5.22.1 Email events . 165

5.22.2 Initial template values and template variables . 165

5.22.3 Password reset email template . 165

5.22.4 New subscriber notification email template . 166

5.22.5 Invoice email template . 167

5.22.6 Email templates management . 168

5.23 The Vertical Service Code Interface . 170

5.23.1 Vertical Service Codes for PBX customers . 170

5.23.2 Configuration of Vertical Service Codes . 171

5.23.3 Voice Prompts for Vertical Service Code Configuration . 171

5.24 Handling WebRTC Clients . 172

5.25 XMPP and Instant Messaging . 173

5.26 Call Recording . 173

5.26.1 Introduction to Call Recording Function . 173

5.26.2 Information on Files and Directories . 174

5.26.3 Configuration . 175

5.26.4 REST API . 179

5.27 SMS (Short Message Service) on Sipwise NGCP . 180

vi

The sip:carrier Handbook mr5.5.7 vii

5.27.1 Configuration . 182

5.27.2 Monitoring, troubleshooting . 183

5.27.3 REST API . 190

6 Customer Self-Care Interface and Menus 191

6.1 The Customer Self-Care Web Interface . 191

6.1.1 Login Procedure . 191

6.1.2 Site Customization . 191

6.2 The Voicemail Menu . 197

7 Billing Configuration 198

7.1 Billing Profiles . 198

7.1.1 Creating Billing Profiles . 198

7.1.2 Creating Billing Fees . 200

7.1.3 Creating Off-Peak Times . 202

7.2 Prepaid Accounting . 204

7.3 Fraud Detection and Locking . 205

7.3.1 Fraud Lock Levels . 205

7.4 Billing Customizations . 206

7.4.1 Billing Networks . 207

7.4.2 Profile Mapping Schedule . 209

7.4.3 Profile Packages . 212

7.4.4 Vouchers . 223

7.4.5 Top-up . 226

7.4.6 Balance Overviews . 227

7.4.7 Usage Examples . 231

7.5 Notes on Billing and Call Rating . 233

7.6 Billing Data Export . 234

7.6.1 Glossary of Terms . 234

7.6.2 File Name Format . 235

vii

The sip:carrier Handbook mr5.5.7 viii

7.6.3 File Format . 235

7.6.4 File Transfer . 248

8 Provisioning REST API Interface 249

8.1 API Workflows for Customer and Subscriber Management . 249

8.2 API performance considerations . 254

9 Configuration Framework 255

9.1 Configuration templates . 255

9.1.1 .tt2 and .customtt.tt2 files . 255

9.1.2 .prebuild and .postbuild files . 256

9.1.3 .services files . 257

9.2 config.yml, constants.yml and network.yml files . 258

9.3 ngcpcfg and its command line options . 258

9.3.1 apply . 258

9.3.2 build . 258

9.3.3 commit . 258

9.3.4 decrypt . 259

9.3.5 diff . 259

9.3.6 encrypt . 259

9.3.7 help . 259

9.3.8 initialise . 259

9.3.9 pull . 259

9.3.10 push . 259

9.3.11 services . 259

9.3.12 status . 260

10 Network Configuration 261

10.1 General Structure . 261

10.1.1 Available Host Options . 262

viii

The sip:carrier Handbook mr5.5.7 ix

10.1.2 Interface Parameters . 263

10.2 Advanced Network Configuration . 264

10.2.1 Extra SIP Sockets . 264

10.2.2 Extra SIP and RTP Sockets . 265

10.2.3 Cluster Sets . 268

11 Licenses 272

11.1 What is Subject to Licensing? . 272

11.2 How Licensing Works . 272

11.3 How to Configure Licenses . 273

11.4 How to Monitor License Client . 273

12 Software Upgrade 274

12.1 Release Notes . 274

12.2 Overview . 275

12.3 Planning a software upgrade . 276

12.4 Preparing the software upgrade . 277

12.4.1 Log into the standby management server (web01a/db01a). 277

12.4.2 Log into the remaining servers . 279

12.5 Upgrading the sip:carrier . 280

12.5.1 Preparing for maintenance mode . 280

12.5.2 Upgrading ONLY the first standby management node "A" (web01a/db01a) 282

12.5.3 Upgrading the standby database node "A" (db*a) . 283

12.5.4 Upgrading other standby nodes "A" (lb*a/prx*a) . 284

12.5.5 Promote ALL standby nodes "A" to active. 284

12.5.6 Upgrading ALL standby nodes "B" (web*b/db*b/lb*b/prx*b) . 285

12.6 Post-upgrade steps . 285

12.6.1 Disabling maintenance mode . 285

12.6.2 Post-upgrade checks . 286

ix

The sip:carrier Handbook mr5.5.7 x

13 Backup, Recovery and Database Maintenance 287

13.1 sip:carrier Backup . 287

13.1.1 What data to back up . 287

13.1.2 The built-in backup solution . 287

13.2 Recovery . 288

13.3 Reset Database . 288

13.4 Accounting Data (CDR) Cleanup . 288

13.4.1 Cleanuptools Configuration . 289

13.4.2 Accounting Database Cleanup . 289

13.4.3 Exported CDR Cleanup . 292

14 Platform Security, Performance and Troubleshooting 293

14.1 Sipwise SSH access to sip:carrier . 293

14.2 Firewalling . 293

14.2.1 Firewall framework . 293

14.2.2 NGCP firewall configuration . 295

14.2.3 IPv4 System rules . 295

14.2.4 Custom rules . 299

14.2.5 Example firewall configuration section . 299

14.3 Password management . 300

14.3.1 The "root" account . 300

14.3.2 The "administrator" account . 300

14.3.3 The "cdrexport" account . 301

14.3.4 The MySQL "root" user . 301

14.3.5 The "ngcpsoap" account . 301

14.4 SSL certificates. 301

14.5 Securing your sip:carrier against SIP attacks . 302

14.5.1 Denial of Service . 302

14.5.2 Bruteforcing SIP credentials . 303

x

The sip:carrier Handbook mr5.5.7 xi

14.6 Topology Hiding . 304

14.6.1 Introduction to Topology Hiding on NGCP . 304

14.6.2 Configuration of Topology Hiding . 304

14.6.3 Considerations for Topology Hiding . 305

14.7 System Requirements and Performance . 305

14.8 Troubleshooting . 307

14.8.1 Collecting call information from logs . 310

14.8.2 Collecting SIP traces . 311

15 Monitoring and Alerting 312

15.1 Internal Monitoring . 312

15.1.1 Process monitoring via monit . 312

15.1.2 System monitoring via Telegraf . 312

15.1.3 NGCP-specific monitoring via ngcp-witnessd . 312

15.1.4 Monitoring data in InfluxDB . 313

15.2 Statistics Dashboard . 313

15.3 External Monitoring Using SNMP . 314

15.3.1 Overview and Initial Setup . 314

15.3.2 Details . 314

16 Extensions and Additional Modules 320

16.1 Cloud PBX . 320

16.1.1 PBX Device Provisioning . 320

16.1.2 Preparing PBX Rewrite Rules . 322

16.1.3 Creating Customers and Pilot Subscribers . 326

16.1.4 Creating Regular PBX Subscribers . 336

16.1.5 Assigning Subscribers to a Device . 342

16.1.6 Configuring Sound Sets for the Customer PBX . 350

16.1.7 Auto-Attendant Function . 352

16.1.8 Configuring Call Queues . 358

xi

The sip:carrier Handbook mr5.5.7 xii

16.1.9 Device Auto-Provisioning Security . 360

16.1.10Device Bootstrap and Resync Workflows . 362

16.1.11Device Provisioning and Deployment Workflows . 370

16.1.12List of available pre-configured devices . 373

16.1.13Phone features . 377

16.1.14Shared line appearance . 409

16.2 Sipwise sip:phone App (SIP client) . 409

16.2.1 Zero Config Launcher . 410

16.2.2 Mobile Push Notification . 414

16.3 Lawful Interception . 435

16.3.1 Introduction . 435

16.3.2 Architecture and Configuration of LI Service . 437

16.3.3 X1, X2 and X3 Interface Specification . 444

16.4 3rd Party Call Control . 458

16.4.1 Introduction . 458

16.4.2 Details of Call Processing with PCC . 459

16.4.3 Voicemail Notification . 465

16.4.4 Incoming Short Message Acceptance . 467

16.4.5 Configuration of PCC . 469

16.4.6 Troubleshooting of PCC . 470

A Basic Call Flows 474

A.1 General Call Setup . 474

A.2 Endpoint Registration . 475

A.3 Basic Call . 478

A.4 Session Keep-Alive . 479

A.5 Voicebox Calls . 480

B NGCP configs overview 482

B.1 config.yml Overview . 482

xii

The sip:carrier Handbook mr5.5.7 xiii

B.1.1 apps . 482

B.1.2 asterisk . 482

B.1.3 autoprov . 484

B.1.4 backuptools . 484

B.1.5 bootenv . 485

B.1.6 cdrexport . 486

B.1.7 checktools . 487

B.1.8 cleanuptools . 489

B.1.9 cluster_sets . 490

B.1.10 database . 491

B.1.11 faxserver . 491

B.1.12 general . 491

B.1.13 haproxy . 492

B.1.14 heartbeat . 492

B.1.15 intercept . 492

B.1.16 kamailio . 493

B.1.17 lnpd . 504

B.1.18 mediator . 505

B.1.19 modules . 505

B.1.20 nginx . 505

B.1.21 ntp . 506

B.1.22 ossbss . 506

B.1.23 pbx (only with additional cloud PBX module installed) . 508

B.1.24 prosody . 508

B.1.25 pushd . 508

B.1.26 qos . 511

B.1.27 rate-o-mat . 511

B.1.28 redis . 511

xiii

The sip:carrier Handbook mr5.5.7 xiv

B.1.29 reminder . 512

B.1.30 rsyslog . 512

B.1.31 rtpproxy . 513

B.1.32 security . 514

B.1.33 sems . 515

B.1.34 sms . 516

B.1.35 snmpagent . 518

B.1.36 sshd . 518

B.1.37 sudo . 518

B.1.38 voisniff . 519

B.1.39 www_admin . 521

B.2 constants.yml Overview . 523

B.3 network.yml Overview . 523

C NGCP-Faxserver Configuration 527

C.1 Faxserver Components . 527

C.2 Enabling Faxserver . 527

C.3 Fax Templates Configuration . 528

C.4 Fax Services Configuration per Subscriber . 528

C.5 Fax2Mail and SendFax Settings . 529

C.6 Mail2Fax Settings . 530

C.7 Sending Fax from Web Panel . 532

C.8 Faxserver Mail2Fax Configuration . 533

C.9 Sending Fax Using E-mail Clients . 533

C.10 Managing Faxes via the REST API . 534

C.10.1 Configuring Fax Settings . 534

C.10.2 Sending a Fax . 535

C.10.3 Receiving a Fax . 535

C.10.4 Configuring Mail2Fax Settings . 536

xiv

The sip:carrier Handbook mr5.5.7 xv

C.10.5 Using Advanced Faxserver and Mail2Fax Settings via the REST API . 537

C.11 Troubleshooting . 538

C.11.1 Session ID (SID) . 538

C.11.2 Fax Storage Location . 539

C.12 Adjusting the PBX Devices Configuration . 540

C.12.1 Setting up Device Models . 541

C.12.2 Uploading Device Firmwares . 544

C.12.3 Creating Device Configurations . 545

C.12.4 Creating Device Profiles . 547

D RTC:engine 549

D.1 Overview . 549

D.2 RTC:engine enabling . 549

D.2.1 Enabling services via CLI . 549

D.2.2 Enabling via Panel for resellers and subscribers . 550

D.2.3 Create RTC:engine session . 550

D.3 RTC:engine protocol details . 551

D.3.1 Terminology . 551

D.3.2 Messages . 552

D.3.3 Account . 554

D.3.4 Call . 558

D.3.5 Session . 564

E comx-fileshare-service 566

E.1 Overview . 566

E.2 Configuration and Usage . 566

E.2.1 Change authentication method . 566

E.2.2 Database Structure . 567

E.3 Activation of Filesharing Service on NGCP . 568

E.4 Message Sequence Chart . 569

xv

The sip:carrier Handbook mr5.5.7 xvi

E.4.1 Simple Message Sequence . 569

E.4.2 Detailed Message Sequence . 570

E.5 API of Filesharing Service . 570

E.5.1 HTTP Authentication . 570

E.5.2 Upload and Download with Simple Identification . 571

E.5.3 Upload and Download with Session Identification . 571

E.5.4 Curl Example for Simple Upload Request . 571

E.5.5 Upload Parameters . 571

E.5.6 Number of Possible Downloads . 573

F NGCP Internals 574

F.1 Pending reboot marker . 574

F.2 Redis id constants . 574

F.2.1 InfluxDB monitoring keys . 575

F.3 Enum preferences . 576

xvi

The sip:carrier Handbook mr5.5.7 1 / 577

1 Introduction

1.1 About this Handbook

This handbook describes the architecture and the operational steps to install, operate and modify the Sipwise sip:carrier.

In various chapters, it describes the system architecture, the installation and upgrade procedures and the initial configuration

steps to get your first users online. It then dives into advanced preference configurations such as rewrite rules, call blockings, call

forwards, etc.

There is a description of the customer self-care interface, how to configure the billing system and how to provision the system via

the provided APIs.

Finally, it describes the internal configuration framework, the network configuration and gives hints about tweaking the system for

security and performance.

1.2 What is the sip:carrier?

The sip:carrier is a SIP based Open Source Class5 VoIP soft-switch platform providing rich telephony services. It offers a wide

range of features to end users (call forwards, voicemail, conferencing, call blocking, click-to-dial, call-lists showing near-realtime

accounting information, etc.), which can be configured by them using the customer-self-care web interface. For operators, it offers

a fully web-based administrative panel, allowing them to configure users, peerings, billing profiles, etc., as well as viewing real-time

statistics of the system. For tight integration into existing infrastructures, it provides a powerful REST API.

The sip:carrier comes pre-installed on six+ servers in one+ IBM Flex Chassis, see Section 2. Apart from your product specific

configuration, there is no initial configuration or installation to be done to get started.

1.3 The Advantages of the sip:carrier

Opposed to other free VoIP software, the sip:carrier is not a single application, but a whole software platform, the Sipwise NGCP

(Sipwise Next Generation Communication Platform), which is based on Debian GNU/Linux.

Using a highly modular design approach, the NGCP leverages popular open-source software like MySQL, NGINX, Kamailio,

SEMS, Asterisk, etc. as its core building blocks. These blocks are glued together using optimized and proven configurations

and workflows and are complemented by functionality developed by Sipwise to provide fully-featured and easy to operate VoIP

services.

The installed applications are managed by the NGCP Configuration Framework, which makes it possible to change system pa-

rameters in a single place, so administrators don’t need to have any knowledge of the dozens of different configuration files of

the different packages. This provides a very easy and bullet-proof way of operating, changing and tweaking the otherwise quite

complex system.

Once configured, integrated web interfaces are provided for both end users and administrators to use the sip:carrier. By using the

provided provisioning and billing APIs, it can be integrated tightly into existing OSS/BSS infrastructures to optimize workflows.

1

The sip:carrier Handbook mr5.5.7 2 / 577

1.4 Who is the sip:carrier for?

The sip:carrier is specifically tailored to companies who want to provide fully-featured SIP-based VoIP service without having to

go through the steep learning curve of SIP signalling, integrating the different building blocks to make them work together in a

reasonable way. The sip:carrier is already deployed all around the world by all kinds of VoIP operators, using it as Class5 soft-

switch, as Class4 termination platform or even as Session Border Controller with all kinds of access networks, like Cable, DSL,

WiFi and Mobile networks.

1.5 Getting Help

1.5.1 Phone Support

Depending on your support contract, you are eligible to contact our Support Team by phone either in business hours or around

the clock. Business hours refer to the UTC+1 time zone (Europe/Vienna). Please check your support contract to find out the type

of support you’ve purchased.

Before calling our Support Team, please also open a ticket in our Ticket System and provide as much detail as you can for us to

understand the problems, fix them and investigate the cause. Please provide the number of your newly created ticket when asked

by our support personnel on the phone.

You can find phone numbers, Ticket System URL, and account information in your support contract. Please make this information

available to the persons in your company maintaining the sip:carrier.

1.5.2 Ticket System

Depending on your support contract, you can create either a limited or an unlimited amount of support tickets on our Web-based

Ticket System. Please provide as much information as possible when opening a ticket, especially the following:

• WHAT is affected (e.g. the whole system is unreachable, or customers can’t register or place calls)

• WHO is affected (e.g. all customers, only parts of it, and WHICH parts - only customers in a particular domain or customers

with specific devices, etc.)

• WHEN did the problem occur (time frames, or after the firmware of specific devices types have been updated, etc.)

Our Support Team will ask further questions via the Ticket System along the way of troubleshooting your issue. Please provide

the information as soon as possible to solve your issue promptly.

2

The sip:carrier Handbook mr5.5.7 3 / 577

2 System Architecture

2.1 Hardware Architecture

The sip:carrier starts with a minimum deployment of 50.000 subscribers, requiring one chassis with two web servers, two db

servers, two load balancers and two proxies. A fully deployed sip:carrier for 200.000 subscribers fills the chassis up with 14

servers, containing two web servers, two db servers, two load balancers and 8 proxies.

Figure 1: Hardware setup for single chassis

The system is based on an IBM Flex Chassis taking up rack space of 10U with 14 computing nodes based on IBM x240 servers.

Figure 2: Chassis front view

3

The sip:carrier Handbook mr5.5.7 4 / 577

All nodes are equipped equally with two hard disks in Raid-1 mode.

Figure 3: Chassis back view

The power supply is designed fully redundant in an N+N fashion with N=3, for example to feed 3 PSUs with normal power and 3

PSUs with UPS power.

Figure 4: Chassis switch module

Each chassis is equipped with two EN2092 Gigabit Ethernet switches providing 10 1GbE uplinks each. Four 10GbE uplinks are

optional and need to be licensed separately if needed.

2.2 Component Architecture

The sip:carrier is composed by a cluster of four different node types, which are all deployed in active/standby pairs:

• Web-Servers (web1a/web1b): Provide northbound interfaces (CSC, API) via HTTPS for provisioning

• DB-Servers (db1a/db1b): Provide the central persistent SQL data store for customer data, peering configuration, billing data

etc.

• Proxy-Servers (proxy1a/proxy1b .. proxy4a/proxy4b): Provide the SIP and XMPP signalling engines, application servers and

media relays to route Calls and IM/Presence and serve media to the endpoints.

4

The sip:carrier Handbook mr5.5.7 5 / 577

• Load-Balancers (lb1a/lb1b): Provide a perimeter for SIP and XMPP signalling.

Figure 5: Architecture Overview

The system is provisioned via the web servers on a central pair of db servers. Signalling is entering the system via the lb servers to

a cluster of proxies, which in turn communicate directly (caching and shared data) and indirectly (static provisioning data replicated

via master/slave) with the db servers. Each pair of proxy is capable of handling any subscriber, so subscribers are not bound to

specific "home proxies". Once a call starts on a proxy pair, it is ensured that the full range of services is provided on that pair

(voicemail, media, billing, . . .) until call-teardown. Failures on an active proxy node cause a fail-over to the corresponding stand-by

node within the proxy pair, taking over the full signalling and media without interruptions.

2.2.1 Provisioning

Any HTTPS traffic for provisioning (web interfaces, northbound APIs) but also for phone auto-provisioning enters the platform on

the active web server. The web server runs an nginx instance acting as a reverse proxy for the ngcp-panel process, which in turn

provides the provisioning functionality.

5

The sip:carrier Handbook mr5.5.7 6 / 577

The web server is connected to the db server pair, which provides a persistent relational data store via MySQL and a high-

performance system cache using Redis key-value store.

2.2.1.1 API and Web Interface

Figure 6: Web Server Overview

The web server pair is an active/standby pair of nodes connected via heartbeat. If one of the servers fail (by losing connection to

the outside while the standby server is still connected, or caused by a hardware failure, or if it’s down due to maintenance), the

standby server takes over the shared IP address of the active node and continues serving the provisioning interface.

6

The sip:carrier Handbook mr5.5.7 7 / 577

2.2.1.2 Provisioning Database

Figure 7: DB Server Overview

The db server pair is another active/standby pair with automatic fail-over. Nodes in the pair are running a MySQL master/master

replication with replication integrity checks to ensure data redundancy and safety. Any changes via provisioning interfaces are

stored in the MySQL cluster. The second service is a redis master/slave replication with automatic master propagation on fail-

over. This redis cluster is used as a high-performance volatile system cache for various components which need to share state

information across nodes.

2.2.1.3 Persistent MySQL Database

The MySQL instances on the db nodes synchronize via row-based master/master replication. In theory, any of the two servers in

the pair can be used to write data to the database, however in practice a shared IP is used towards clients accessing the service,

so only one node will receive the write requests. This is done to ensure transparent and instant convergence of the db cluster on

fail-over for the clients.

On top of that, the first node of the db pair also acts as a master in a master/slave replication towards all proxy nodes in the

system. That way, proxies can access read-only provisioning data directly from their local databases, resulting in reduced latency

and significant off-loading of read queries on the central db cluster.

7

The sip:carrier Handbook mr5.5.7 8 / 577

2.2.1.4 Central Redis Cache

A redis master/slave setup is used to provide a high-perfomance key/value storage for global system data shared across proxies.

This includes concurrent call counters for customers and subscribers, as a subscriber could place two simultaneous calls via two

different proxy pairs.

2.2.2 Signaling and Media Relay

Any signalling traffic enters and leaves the system via load balancers, which act as a perimeter towards the customer devices and

performs NAT handling, DoS and DDoS mitigation. New connections are routed to a random pair of proxy servers, which do the

actual routing for SIP and XMPP. The proxy servers also engage media relays for voice and video streams, which bypass the load

balancers and communicate directly with the customer devices for performance reasons.

2.2.2.1 Load Balancing of Signalling

Figure 8: Load Balancer Overview

A node in a load balancer pair runs two services besides the usual heartbeat.

One is a state-less instance of kamailio, providing an extremely fast relay of SIP messages. Kamailio takes care of converting

8

The sip:carrier Handbook mr5.5.7 9 / 577

TCP and TLS connections from the customer devices to UDP for internal communication towards proxies, and it performs far-end

NAT traversal by inspecting the SIP messages and comparing it to the actual source address where packets have been received

from, then modifying the SIP messages accordingly. If a SIP message is received by the load balancer, it distinguishes between

new and ongoing SIP transactions by inspecting the To-Tags of a message, and it determines whether the message is part of

an established dialog by inspecting the Route header. Sanity checks are performed on the headers to make sure the call flows

adhere to certain rules for not being able to bypass any required element in the routing path. In-dialog messages are routed to the

corresponding proxy servers according to the Route defined in the message. Messages initiating a new transaction and/or dialog

(registrations, calls etc) are routed to a randomly selected proxy. The selection algorithm is based on a hash over the Call-ID of

the message, so the same proxy sending a authentication challenge to an endpoint will receive the authenticated message again.

The second service running on a load balancer is haproxy, which is acting as load balancing instance for XMPP messages. The

same way the SIP load balancer routes SIP messages to the corresponding proxy, the haproxy passes XMPP traffic on to the

proxy maintaining a session with a subscriber, or randomly selects a proxy in case of a new connection while automatically failing

over on timeouts.

2.2.2.2 Message Routing and Media Relay

Figure 9: Proxy Server Overview

Proxy servers also come in pairs, and by default there are four pairs of proxies in a standard sip:carrier setup.

The proxies are responsible for doing the actual SIP routing and media handling and the XMPP presence and chat message

deliveries. Each proxy pair can handle any subscriber on the overall system, compared to the concept of "home proxies" in other

architectures. The advantage of this approach is that the overall system can be scaled extremely easily by adding more proxy

pairs without having to redistribute subscribers.

9

The sip:carrier Handbook mr5.5.7 10 / 577

Once a load balancer sends a new message to a proxy, the SIP transaction and/or dialog gets anchored to this proxy. That way

it is ensured that a call starting on a proxy is also ended on the same proxy. Hence, the full range of feature handling like media

relay, voicemail, fax, billing and rating is performed on this proxy. So, there is no a central point for various tasks, potentially leading

to a non-scalable bottleneck. Due to the anchoring, proxies come in pairs and replicate all internal state information to the standby

node via redis. In case of fail-over, the full signalling and media are moved to the standby node without interruption.

The complete static subscriber information like authentication credentials, number mappings, feature settings etc. are replicated

from the db cluster down to the local MySQL instance of the proxies. The ratio of db read requests of static subscriber data versus

reading and writing volatile and shared data is around 15:1, and this approach moves the majority of the static read operations

from the central db cluster to the local proxy db.

Volatile and shared information needed by all proxies in the cluster is read from and written to the db cluster. This mainly includes

SIP registration information and XMPP connection information.

Billing and rating is also performed locally on the proxies, and only completed CDRs (rated or unrated depending on whether rating

is enabled) are transferred to the central db cluster for consumption via the northbound interfaces.

For SIP, the relevant instances on a proxy are kamailio acting as a stateful proxy for SIP registration and call routing, sems acting

as a back-to-back user-agent for prepaid billing and application server, rtpengine as media relay and RTP/SRTP transcoder, and

asterisk as voicemail server. XMPP is handled by an instance of prosody, and several billing processes mediate start and stop

records into CDRs and rate them according to the relevant billing profiles.

2.2.3 Scaling beyond one Hardware Chassis

Figure 10: Scaling beyond one chassis

10

The sip:carrier Handbook mr5.5.7 11 / 577

If the sip:carrier is scaled beyond 250.000 subscribers and therefore exceeds one chassis, a second chassis is put into place. This

chassis provides another two web servers, two db servers, two load balancers and 8 proxies, doubling the capacity of the system.

2.2.3.1 Scaling the DB cluster

The DB cluster is the only node type which requires a notable change on the architecture. Once more than one db pair is deployed,

the replication mechanism between db nodes changes from master/master between the nodes of the db1 pair to a synchronous

multi-master replication over all db nodes on the system using Galera. This change makes it possible to scale both read and write

requests over multiple nodes, while being transparent to all other nodes.

2.2.3.2 Scaling the proxy cluster

New proxy nodes replicate via master/slave from the first db node in the chassis as usual. Since the db cluster holds all provisioning

information of all subscribers, the proxy nodes join the cluster transparently and will start serving subscribers as soon as all

services on a new proxy are reachable from the load balancers.

2.2.3.3 Scaling the load balancers

Load balancers are completely stateless, so they start serving subscribers as soon as they are made visible to the subscribers.

This could either be done via DNS round-robin, but the better approach is to configure a DNS SRV record, which allows for more

fine-grained control like weighting load-balancer pairs and allowing fail-over from one pair to another on the client side.

The load balancers use the Path extension of SIP to make sure during SIP registration that calls targeted to a subscriber are

routed via the same load balancer pair which the subscriber used during registration for proper traversal of symmetric NAT at the

customer premise.

A SIP or XMPP request reaching a load balancer can be routed to any available proxy in the whole system, or only to proxies

belonging to the same chassis as the load balancer, depending on the system configuration.

2.2.3.4 Scaling the web servers

New web server pairs are made available to web clients via DNS round-robin. Any pair of web servers can be used to read or

write provisioning information via the web interfaces or the API.

2.2.4 Architecture for central core and local satellites

Tip

This architecture is not part of the standard deployment and is to be defined in the project plan!

11

The sip:carrier Handbook mr5.5.7 12 / 577

Figure 11: Central core with local breakouts

In case of a geographically distributed system spanning across multiple countries, different regulatory requirements have to be

met for signalling and media, especially when it comes to if, where and how subscriber traffic can be intercepted. Countries might

have the requirement to intercept traffic in the country, so the signalling and media must be anchored to an element in the country.

Also if a media stream stays within a country, it is preferred to keep the media as close to the subscribers as possible to reduce

latency, so relaying streams via a central core has to be avoided.

For this scenario, the sip:carrier makes it possible to move the load balancers directly into the countries. DNS settings for sub-

scribers within the country ensure that they will always contact those load balancers, either using separate DNS settings per

country for a SIP domain, or using GeoIP mechanisms in DNS to return the closest load balancer based on the location of the

subscriber. To anchor media to the countries, the rtpengine instances are moved from the proxies to the load balancers and are

controlled via the stateless kamailio instances on the load balancers instead of the kamailio instances on the proxies.

12

The sip:carrier Handbook mr5.5.7 13 / 577

3 VoIP Service Administration Concepts

3.1 Contacts

A contact contains information such as the name, the postal and email addresses, and others. A contact’s main purpose is to

identify entities (resellers, customers, peers and subscribers) it is associated with.

A person or an organization may represent a few entities and it is handy to create a corresponding organization’s contact be-

forehand and use it repeatedly when creating new entities. In this case we suggest populating the External # field to distinguish

between customers associated with the same contact.

Note that the only required contact field is email. For contacts associated with customers, it will be used for sending invoices and

notifications such as password reset, new subscriber creation and others. A contact for a subscriber is created automatically but

only if you specify an email address for this subscriber. It is mainly used to send notification messages, e.g. in case of a password

reset.

3.2 Resellers

The reseller model allows you to expand your presence in the market by including virtual operators in the sales chain. A virtual

operator can be a company without its own VoIP platform and even without a technical background, but with sales presence in

a market. You define such a company as a reseller in the platform: grant limited access to the administrative web interface (the

reseller administrator will only see his own customers, domains and billing profiles) and define wholesale rates for this reseller.

Then, the reseller is free to operate under its own brand, make up its retail rates, establish the customer base and resell your

services to its customers. The reseller’s profit is a margin between the wholesale and retail rates.

Let us consider an example:

• You operate in Munich and provide residential and business services.

• A company Cheap Call that has a strong presence in Frankfurt offers to resell your services under its own brand in this city.

• You define wholesale rates for Cheap Call, such as calls to Argentina at C0,03.

• Cheap Call defines its retail price and offers calls to Argentina at C0,04.

• When one of Cheap Call’s subscribers makes a 5-minute call to Argentina, this subscriber will be charged C0,20.

• You will get C0,15 revenue and Cheap Call’s profit will be C0,20 - C0,15 = C0,05.

13

The sip:carrier Handbook mr5.5.7 14 / 577

A reseller usually uses dedicated IP addresses or SIP domain names to provide services. Also, a reseller can rebrand the self-care

web interface for its customers and select languages per SIP domain that allows the reseller to operate even in multiple countries.

3.3 SIP Domain

A SIP domain represents an external Internet address where your subscribers register their SIP phones to make calls or send

messages. The SIP domain also contains particular default configuration for all the subscribers registered with this SIP domain.

A SIP domain can be a regular FQDN (e.g. sip.yourdomain.com) or a NAPTR/SRV record. Using IP addresses for SIP domains

in production is strongly discouraged.

3.3.1 Additional SIP Domains

You can create as many SIP domains as required to satisfy your networking or marketing requirements, e.g.:

• A dedicated SIP domain is suggested per CloudPBX customer.

• A separate SIP domain may be dedicated to every whitelabel reseller.

• Multiple SIP domains may be used to provide services in different countries or regions.

• Multiple SIP domains may be used to brand your own services.

14

The sip:carrier Handbook mr5.5.7 15 / 577

3.4 Contracts

A contract is a combination of a contact and a billing profile, hence it represents a business contract for your resellers and peering

partners.

Contracts can be created in advance on the Reseller and Peering Contracts page, or immediately during creation of a peer or a

reseller.

Note that the customer entity (described below) is a special type of the contract. A customer entity has an email and an invoice

templates in addition to a contact and a billing profile.

3.5 Customers

A customer is a physical or legal entity whom you provide the VoIP service with and send invoices to. Here are the main features

of a customer:

• Contains the contact and legal information. For example, an address or an email address for invoicing.

• Associated with a billing profile (to define fees per destination) and tracks the balance (used mostly for post-paid customers).

• Contains a certain number of subscribers who actually use the service and whose calls appear in the customer’s list of CDRs.

• Provides some default parameters for all its subscribers. For example, voice prompts and call restriction.

Here are two common examples of the customer model:

3.5.1 Residential and SOHO customers

With this service you provide your residential and SOHO customers with one or multiple numbers and offer the service on a

post-paid basis.

For a residential customer you usually create one customer entity with one subscriber under it. A residential customer can register

multiple devices with the same number thus having a convenient Viber or Skype-like service: any device can be used to make a

15

The sip:carrier Handbook mr5.5.7 16 / 577

call and all of them will ring simultaneously when there is an incoming call. At the end of the billing period, you send an invoice to

the customer.

For SOHO customers you usually create multiple subscribers under the same customer and assign every subscriber a dedicated

number to allow users make and receive calls. A common invoice will contain calls of all the subscribers.

3.5.2 Business customers with the Cloud PBX service

In this case you create a Customer and all the required entities under it to reflect the company’s structure: subscribers, extensions,

hunt groups, auto-attendant menus, etc.

16

The sip:carrier Handbook mr5.5.7 17 / 577

3.5.3 SIP Trunking

If a customer PBX can register itself with C5, you create a regular subscriber for it and configure a standard username/password

authentication. Multiple PBX users can then send and receive calls.

Legacy PBX devices that are not capable of passing the challenge-based authentication can be authenticated by the IP address.

Optionally, every user of such a PBX can be authenticated separately by the FROM header and the IP address. For more details,

refer to the Trusted Sources section.

3.5.4 Mobile subscribers

The pre-paid model works perfectly for mobile application users. In this case you generally create a single subscriber under a

customer.

3.5.5 Pre-paid subscribers who use your calling cards

In this case you will most likely create a single subscriber under a customer, although multiple subscribers would work as well.

In the latter case, they will share and top-up the common balance. Notice that the customer entity itself does not contain any

technical configuration for the VoIP service authentication and instead contains other entities called subscribers, which do.

3.6 Subscribers

Every subscriber represents a SIP line or a SIP trunk. For example, in the residential services a subscriber entity is dedicated to

every user. In the SIP trunking scenario, a subscriber can be used to authenticate all VoIP traffic from the remote PBX device.

In the following table logical subscriber types and their purpose are described.

Service Subscriber Type Purpose Features

Residential Regular

subscriber

A regular VoIP service Requires a DID number to receive

calls from outside of your network

Enterprise

(CloudPBX)

Pilot subscriber A base number for the enterprise

customer; Lists all extra numbers

(aliases)

Configures the rest of customer

subscribers in its self-care web

interface

17

https://www.sipwise.com/products/sipphone-sip-phone-app-for-android-and-ios

The sip:carrier Handbook mr5.5.7 18 / 577

Service Subscriber Type Purpose Features

Extension Extra numbers (DIDs, “implicit”

extensions) for the enterprise

customer

Can be dialed in different ways; The

number configuration builds on top of

the Pilot subscriber

PBX Group Forwards incoming calls to multiple

extensions

Ringing policy defines in which order

the extensions will ring

SIP Trunk Digest

authentication

Dynamically registers a remote IP

PBX device

Handles multiple users behind the IP

PBX device

IP authentication IP authentication of legacy IP PBX

devices incapable of registering with

the platform

Might require Trusted Subscriber and

Trusted Source configuration

Prepaid Regular

subscriber with

prepaid billing

profile

Authorization of services based on

customer balance; Disconnection of

calls on “zero balance”

Voucher and cache top-up; Billing

Profile Packages

Tip

Subscriber Aliases can provide Extra DIDs or extension numbers to a subscriber.

3.7 SIP Peerings

A SIP peering is your interconnection with the external VoIP or PSTN network. Usually, a VoIP service provider has at least a few

termination partners to offer its subscribers calls to virtually any landline and mobile destination.

SIP peerings also enable incoming calls to your platform. For example, if you rent a pool of DID numbers from a SIP peer and

offer them to your residential and business customers.

An interconnection with your termination partners and DID number providers can include multiple servers and enable both out-

bound and inbound calls, hence such a configuration is called a SIP peering group. You configure at least one SIP peering group

for every partner and the main principle here is that all servers in a group terminate calls to the same set of listed destinations.

Any SIP peering group is associated with a contract for reconciliation and billing purposes and includes two main technical

configurations:

• Peering Servers Represent connections to/from your SIP peering’s network. The parameters include an IP address and/or a

hostname of the remote part. For outbound calls, this is the destination address where to send calls to and for inbound calls it

is an IP authorization of the remote server.

• Outbound/Inbound Peering Rules Outbound rules define through which SIP peering group a call from a specific subscriber will

be sent for termination to a specific destination.

The example below shows four SIP peering groups with different priorities, callee prefixes (actual destinations offered by this SIP

peering) and callee / called patterns (fine-tuning which callee request URIs and caller URIs are allowed through this SIP peering

group).

18

The sip:carrier Handbook mr5.5.7 19 / 577

The figure shows how calls from premium subscribers can in the first place be routed through a dedicated SIP peering group

unavailable to regular subscribers.

See the Routing Order Selection section for details about call routing.

Inbound rules allow filtering out incoming INVITE requests arriving from the corresponding SIP peering servers.

19

The sip:carrier Handbook mr5.5.7 20 / 577

4 VoIP Service Configuration Scenario

A basic VoIP service configuration is fast, easy and straight-forward. Provided that your network and required DNS records have

been preconfigured, the configuration of a VoIP service can be done purely via the administrative web interface. The configuration

mainly includes the following steps:

• Reseller creation (optional)

• SIP domain configuration

• Customer creation

• Subscribers provisioning

Let us assume you are using the 1.2.3.4 IP address with an associated sip.yourdomain.com domain to provision VoIP services.

This allows you to provide an easy-to-remember domain name instead of the IP address as the proxy server. Also, your sub-

scribers’ URIs will look like 1234567@sip.yourdomain.com.

Tip

Using an IP address instead of an associated FQDN (domain name) for a SIP domain is not suggested as it could add extra

administrative work if you decide to relocate your servers to another datacenter or just change IP addresses.

Go to the Administrative Web Panel (Admin Panel) running on https://<ip>:1443/login/admin and follow the steps below. The

default web panel user and password are administrator, if you have not already changed it.

4.1 Creating a SIP Domain

A SIP domain is a connection point for your subscribers. The SIP domain also contains specific default configuration for all its

subscribers.

Tip

Thoroughly plan your domain names policy in advance and take into account that: 1) the name of a SIP domain cannot be

changed after creating it in the administrative web panel; 2) subscribers cannot be moved from one domain to another and

must be recreated.

To create a SIP domain, follow these steps:

1. Firstly, configure an FQDN on your DNS server for it.

The domain name must point to the physical IP address you are going to use for providing the VoIP service. A good

approach is to create an SRV record:

SIP via UDP on port 5060

SIP via TCP on port 5060

SIP via TCP/TLS on port 5061

20

The sip:carrier Handbook mr5.5.7 21 / 577

2. Create a new SIP domain in the administrative web panel.

Go to the Domains page and create a new SIP Domain using the FQDN created above.

Select a Reseller who will own the subscribers in this SIP domain. Use the default virtual reseller if you provide services

directly. Enter your SIP domain name and press Save.

3. Adjust the new SIP domain’s preferences if necessary.

You can create multiple SIP domains reusing the existing IP address or adding a new one. Extra SIP domains are required e.g., if

you would like to host a virtual operator on your platform, create separate domains for providing services in different countries or

just offer a new service.

4.2 Creating a Customer

A Customer is a special type of contract acting as legal and billing information container for SIP subscribers. A customer can have

one or more SIP subscriber entities that represent SIP lines.

Tip

For correct billing, notification and invoicing, create a customer with a single SIP subscriber for the residential service (as it

normally has only one telephone line) and a customer with multiple SIP subscribers to provide a service to a company with

many telephone lines.

To create a Customer, go to Settings→Customers.

21

The sip:carrier Handbook mr5.5.7 22 / 577

Click on Create Customer.

22

The sip:carrier Handbook mr5.5.7 23 / 577

Each Customer has a Contact — a container for the personal and legal information that identifies a private or corporate customer.

Tip

Create a dedicated Contact for every Customer as it contains specific data e.g., name, address and IBAN that identifies this

customer.

Click on Create Contact to create a new Contact.

23

The sip:carrier Handbook mr5.5.7 24 / 577

Select the required Reseller and enter the contact details (at least an Email is required), then press Save.

24

The sip:carrier Handbook mr5.5.7 25 / 577

You will be redirected back to the Customer form. The newly created Contact is selected by default now, so only select a Billing

Profile and press Save.

You will now see your first Customer in the list. Hover over the customer and click Details to make extra configuration if necessary.

25

The sip:carrier Handbook mr5.5.7 26 / 577

4.3 Creating a Subscriber

In your Customer details view, click on the Subscribers row, then click Create Subscriber.

26

The sip:carrier Handbook mr5.5.7 27 / 577

Select a SIP Domain created earlier and specify required and optional parameters:

• Domain: The domain part of the SIP URI for your subscriber.

• E164 Number: This is the telephone number mapped to the subscriber, separated into Country Code (CC), Area Code (AC)

and Subscriber Number (SN). For the first tests, you can set an imaginary number here and change it later when you get number

blocks assigned by your PSTN interconnect partner. So in our example, we’ll use 43 as CC, 99 as AC and 1001 as SN to form

the imaginary number +43 99 1001.

Tip

This number can actually be used to place calls between local subscribers, even if you don’t have any PSTN interconnection.

This comes in handy if you use phones instead of soft-clients for your tests. The format in which this number can be dialled, so

the subscriber is reached is defined in Section 4.7.

Important

NGCP allows a single subscriber to have multiple E.164 numbers to be used as aliases for receiving incoming calls.

Also, NGCP supports so-called "implicit" extensions. If a subscriber has phone number 012345, but somebody calls

012345100, then NGCP first tries to send the call to number 012345100 (even though the user is registered as 012345).

If NGCP then receives the 404 - Not Found response, it falls back to 012345 (the user-part with which the callee is

registered).

27

The sip:carrier Handbook mr5.5.7 28 / 577

• Email: An email address for sending service-related notifications to.

• Web Username: This is the user part of the username the subscriber may use to log into her Customer Self Care Interface. The

user part will be automatically suffixed by the SIP domain you choose for the SIP URI. Usually, the web username is identical to

the SIP URI, but you may choose a different naming schema.

Caution

The web username needs to be unique. The system will return a fault if you try to use the same web username twice.

• Web Password: This is the password for the subscriber to log into her Customer Self Care Interface. It must be at least 6

characters long.

• SIP Username: The user part of the SIP URI for your subscriber.

• SIP Password: The password of your subscriber to authenticate on the SIP proxy. It must be at least 6 characters long.

• Status: You can lock a subscriber here, but for creating one, you will most certainly want to use the active status.

• External ID: You can provision an arbitrary string here (e.g. an ID of a 3rd party provisioning/billing system).

• Administrative: If you have multiple subscribers in one account and set this option for one of them, this subscriber can admin-

istrate other subscribers via the Customer Self Care Interface.

28

The sip:carrier Handbook mr5.5.7 29 / 577

29

The sip:carrier Handbook mr5.5.7 30 / 577

Repeat the creation of Customers and Subscribers for all your test accounts. You should have at least 3 subscribers to test the

functionality of the NGCP.

Tip

At this point, you’re able to register your subscribers to the NGCP and place calls between these subscribers.

You should now revise the Domain and Subscriber Preferences.

4.4 Domain Preferences

The Domain Preferences are the default settings for Subscriber Preferences, so you should set proper values there if you don’t

want to configure each subscriber separately. You can later override these settings in the Subscriber Preferences if particular

subscribers need special settings. To configure your Domain Preferences, go to Settings→Domains and click on the Preferences

button of the domain you want to configure.

30

The sip:carrier Handbook mr5.5.7 31 / 577

The most important settings are in the Number Manipulations group.

Here you can configure the following:

• for incoming calls - which SIP message headers to take numbers from

• for outgoing calls - where in the SIP messages to put certain numbers to

• for both - how these numbers are normalized to E164 format and vice versa

To assign a Rewrite Rule Set to a Domain, create a set first as described in Section 4.7, then assign it to the domain by editing

the rewrite_rule_set preference.

31

The sip:carrier Handbook mr5.5.7 32 / 577

Select the Rewrite Rule Set and press Save.

32

The sip:carrier Handbook mr5.5.7 33 / 577

Then, select the field you want the User Provided Number to be taken from for inbound INVITE messages. Usually the From-

Username should be fine, but you can also take it from the Display-Name of the From-Header, and other options are available as

well.

4.5 Subscriber Preferences

You can override the Domain Preferences on a subscriber basis as well. Also, there are Subscriber Preferences which don’t have

a default value in the Domain Preferences.

To configure your Subscriber, go to Settings→Subscribers and click Details on the row of your subscriber. There, click on the

Preferences button on top.

You want to look into the Number Manipulations and Access Restrictions options in particular, which control what is used as

user-provided and network-provided calling numbers.

• For outgoing calls, you may define multiple numbers or patterns to control what a subscriber is allowed to send as user-provided

calling numbers using the allowed_clis preference.

• If allowed_clis does not match the number sent by the subscriber, then the number configured in cli (the network-provided

number) preference will be used as user-provided calling number instead.

• You can override any user-provided number coming from the subscriber using the user_cli preference.

33

The sip:carrier Handbook mr5.5.7 34 / 577

Note

Subscribers preference allowed_clis will be synchronized with subscribers primary number and aliases if oss-

bss→provisioning→auto_allow_cli is set to 1 in /etc/ngcp-config/config.yml.

Note

Subscribers preference cli will be synchronized with subscribers primary number if ossbss→provisioning→auto_sync_cli is

set to yes in /etc/ngcp-config/config.yml.

4.6 Creating Peerings

If you want to terminate calls at or allow calls from 3rd party systems (e.g. PSTN gateways, SIP trunks), you need to create SIP

peerings for that. To do so, go to Settings→Peerings. There you can add peering groups, and for each peering group add peering

servers and rules controlling which calls are routed over these groups. Every peering group needs a peering contract for correct

interconnection billing.

4.6.1 Creating Peering Groups

Click on Create Peering Group to create a new group.

In order to create a group, you must select a peering contract. You will most likely want to create one contract per peering group.

34

The sip:carrier Handbook mr5.5.7 35 / 577

Click on Create Contract create a Contact, then select a Billing Profile.

Click Save on the Contacts form, and you will get redirected back to the form for creating the actual Peering Group. Put a name,

priority and description there, for example:

• Peering Contract: select the id of the contract created before

• Name: test group

• Priority: 1

• Description: peering to a test carrier

35

The sip:carrier Handbook mr5.5.7 36 / 577

The Priority option defines which Peering Group to favor (Priority 1 gives the highest precedence) if two peering groups have

peering rules matching an outbound call. Peering Rules are described below.

Then click Save to create the group.

4.6.2 Creating Peering Servers

In the group created before, you need to add peering servers to route calls to and receive calls from. To do so, click on Details on

the row of your new group in your peering group list.

To add your first Peering Server, click on the Create Peering Server button.

36

The sip:carrier Handbook mr5.5.7 37 / 577

Figure 12: Create Peering Server

In this example, we will create a peering server with IP 2.3.4.5 and port 5060:

• Name: test-gw-1

• IP Address: 2.3.4.5

• Hostname: leave empty

• Port: 5060

• Protocol: UDP

• Weight: 1

• Via Route: None

37

The sip:carrier Handbook mr5.5.7 38 / 577

Figure 13: Peering Server Properties

Click Save to create the peering server.

Tip

The hostname field for a peering server is optional. Usually, the IP address of the peer is used as the domain part of the

Request URI. Fill in this field if a peer requires a particular hostname instead of the IP address. The IP address must always be

given though as the request will always be sent to the specified IP address, no matter what you put into the hostname field.

Tip

If you want to add a peering server with an IPv6 address, enter the address without surrounding square brackets into the IP

Address column, e.g. ::1.

You can force an additional hop (e.g. via an external SBC) towards the peering server by using the Via Route option. The available

options you can select there are defined in /etc/ngcp-config/config.yml, where you can add an array of SIP URIs in

kamailio→lb→external_sbc like this:

kamailio:

lb:

38

The sip:carrier Handbook mr5.5.7 39 / 577

external_sbc:

- sip:192.168.0.1:5060

- sip:192.168.0.2:5060

Execute ngcpcfg apply added external sbc gateways, then edit your peering server and select the hop from the

Via Route selection.

Once a peering server has been created, this server can already send calls to the system.

4.6.2.1 Outbound Peering Rules

Important

To be able to send outbound calls towards the servers in the Peering Group, you also need to define Outbound Peering

Rules. They specify which source and destination numbers are going to be terminated over this group. To create a rule,

click the Create Outbound Peering Rule button.

Figure 14: Create Outbound Peering Rule

Since the previously created peering group will be the only one in our example, we have to add a default rule to route all calls via

39

The sip:carrier Handbook mr5.5.7 40 / 577

this group. To do so, create a new peering rule with the following values:

• Callee Prefix: leave empty

• Callee Pattern: leave empty

• Caller Pattern: leave empty

• Description: Default Rule

Figure 15: Outbound Peering Rule Properties

Then click Save to add the rule to your group.

Tip

In contrast to the callee/caller pattern, the callee prefix has a regular alphanumeric string and can not contain any regular

expression.

Tip

If you set the caller or callee rules to refine what is routed via this peer, enter all phone numbers in full E.164 format, that is

<cc><ac><sn>.

Tip

The Caller Pattern field covers the whole URI including the subscriber domain, so you can only allow certain domains over this

peer by putting for example @example\.com into this field.

40

The sip:carrier Handbook mr5.5.7 41 / 577

4.6.2.2 Inbound Peering Rules

Starting from mr5.0 release, Sipwise NGCP supports filtering SIP INVITE requests sent by SIP peers. The system administrator

may define one or more matching rules for SIP URIs that are present in the headers of SIP INVITE requests, and select which SIP

header (or part of the header) must match the pattern declared in the rule.

If the incoming SIP INVITE message has the proper headers, NGCP will accept and further process the request. If the message

does not match the rule it will be rejected.

Caution

An incoming SIP INVITE message must match all the inbound peering rules so that NGCP does not reject the

request.

In order to create an inbound peering rule you have to select a peering group, press Details and then press Create Inbound

Peering Rule button.

Figure 16: Create Inbound Peering Rule

41

The sip:carrier Handbook mr5.5.7 42 / 577

An inbound peering rule has the following properties:

Figure 17: Inbound Peering Rule Properties

• Match Field: select which header and which part of that header in a SIP INVITE message will be checked for matching the

pattern

• Pattern: a POSIX regular expression that defines the accepted value of a header; example: ˆsip:.+@example\.org$

— this will match a SIP URI that contains "example.org" in the domain part

• Reject code: optional; a SIP status code that will be sent as a response to an INVITE request that does not match the

pattern; example: 403

• Reject reason: optional; an arbitrary text that will be included in the SIP response sent with the reject code

• Enabled: a flag to enable / disable the particular inbound peering rule

Note

Both of the properties Reject code and Reject reason must be left empty if a peering server (i.e. a specific IP

address) is part of more peering groups. Such a configuration is useful when an incoming SIP INVITE request needs to

be treated differently in the affected peering groups, based on its content, and that’s why if the INVITE message only partly

matches an inbound peering rule it should not simply be rejected.

When all settings for a peering group are done the details of the group look like:

42

The sip:carrier Handbook mr5.5.7 43 / 577

Figure 18: Peering Servers Overview

4.6.2.3 Routing Order Selection

The selection of peering groups and peering servers for outgoing calls is done in the following way:

1. All peering groups that meet the following criteria configured in the outbound peering rule are added to the list of routes for

a particular call:

• Callee’s username matches callee prefix

• Callee’s URI matches callee pattern

• Caller’s URI matches caller pattern

2. When all matching peering groups are selected, they are ordered by callee prefix according to the longest match basis

(sometimes referred to as the longest pattern match or maximum pattern length match). One or more peering group

with longest callee prefix match will be given first positions on the list of routes.

43

The sip:carrier Handbook mr5.5.7 44 / 577

3. Peering groups with the same callee prefix length are further ordered by Priority. Peering group(s) with the higher priorities

will occupy higher positions.

Important

Priority 1 gives the highest precedence to the corresponding peering group. Hence, a lower priority value will

put the peering group higher in the list of routes (compared to other peering groups with the same callee prefix

length).

Priority can be selected from 1 (highest) to 9 (lowest).

4. All peering servers in the peering group with the highest priority (e.g. priority 1) are tried one-by-one starting from the

highest server weight. Peering groups with lower priorities or with shorter callee prefix will be used only for fail-over.

The weight of the peering servers in the selected peering group will influence the order in which the servers within the

group will be tried for routing the outbound call. The weight of a server can be set in the range from 1 to 127.

Important

Opposite to the peering group priority, a peering server with a higher weight value has a higher precedence, but the

server weight rather sets a probability than a strict order. E.g. although a peering server with weight 127 has the highest

chance to be the first in the list of routes, another server with a lower weight (e.g. 100) sometimes will be selected first.

In order to find out this probability knowing the weights of peering servers, use the following script:

#!/usr/bin/php

<?php

// This script can be used to find out actual probabilities

// that correspond to a list of peering weights.

if ($argc < 2) {

echo "Usage: lcr_weight_test.php <list of weights (integers 1-254)>\n";

exit;

}

$iters = 10000;

$rands = array();

for ($i = 1; $i <= $iters; $i++) {

$elem = array();

for ($j = 1; $j < $argc; $j++) {

$elem["$j"] = $argv[$j] * (rand() >> 8);

}

$rands[] = $elem;

}

$sorted = array();

44

The sip:carrier Handbook mr5.5.7 45 / 577

foreach ($rands as $rand) {

asort($rand);

$sorted[] = $rand;

}

$counts = array();

for ($j = 1; $j < $argc; $j++) {

$counts["$j"] = 0;

}

foreach ($sorted as $rand) {

end($rand);

$counts[key($rand)]++;

}

for ($j = 1; $j < $argc; $j++) {

echo "Peer with weight " . $argv[$j] . " has probability " . $counts["$j"]/$iters . "\n";

}

?>

Let us say you have 2 peering servers, one with weight 1 and another with weight 2. At the end — running the script as below —

you will have the following traffic distribution:

lcr_weight_test.php 1 2

Peer with weight 1 has probability 0.2522

Peer with weight 2 has probability 0.7478

If a peering server replies with SIP codes 408, 500 or 503, or if a peering server doesn’t respond at all, the next peering server

in the current peering group is tried as a fallback. All the servers within the group are tried one after another until the call succeeds.

If no more servers are left in the current peering group, the next group which matches the outbound peering rules is used.

Note

The Sipwise NGCP may use a slightly different approach in selecting the appropriate peering server if the peer probing feature

is enabled. See the details in Section 5.10 of the handbook.

4.6.3 Authenticating and Registering against Peering Servers

4.6.3.1 Proxy-Authentication for outbound calls

If a peering server requires the sip:carrier to authenticate for outbound calls (by sending a 407 as response to an INVITE), then

you have to configure the authentication details in the Preferences view of your peer host.

45

The sip:carrier Handbook mr5.5.7 46 / 577

Figure 19: Select Peering Server Preferences

To configure this setting, open the Remote Authentication tab and edit the following three preferences:

• peer_auth_user: <username for peer auth>

• peer_auth_pass: <password for peer auth>

• peer_auth_realm: <domain for peer auth>

46

The sip:carrier Handbook mr5.5.7 47 / 577

Important

If you do NOT authenticate against a peer host, then the caller CLI is put into the From and P-Asserted-Iden

tity headers, e.g. "+4312345" <sip:+4312345@your-domain.com>. If you DO authenticate, then the

From header is "+4312345" <sip:your_peer_auth_user@your_peer_auth_realm> (the CLI is in

the Display field, the peer_auth_user in the From username and the peer_auth_realm in the From domain), and the

P-Asserted-Identity header is as usual like <sip:+4312345@your-domain.com>. So for presenting

the correct CLI in CLIP no screening scenarios, your peering provider needs to extract the correct user either from the

From Display-Name or from the P-Asserted-Identity URI-User.

Tip

You will notice that these three preferences are also shown in the Subscriber Preferences for each subscriber. There you can

override the authentication details for all peer host if needed, e.g. if every user authenticates with his own separate credentials

at your peering provider.

Tip

If peer_auth_realm is set, the system may overwrite the Request-URI with the peer_auth_realm value of the peer when

sending the call to that peer or peer_auth_realm value of the subscriber when sending a call to the subscriber. Since this is

rarely a desired behavior, it is disabled by default starting with NGCP release 3.2. If you need the replacement, you should set

set_ruri_to_peer_auth_realm: ’yes’ in /etc/ngcp-config/config.yml.

47

The sip:carrier Handbook mr5.5.7 48 / 577

4.6.3.2 Registering at a Peering Server

Unfortunately, the credentials configured above are not yet automatically used to register the sip:carrier at your peer hosts. There

is however an easy manual way to do so, until this is addressed.

Configure your peering servers with the corresponding credentials in /etc/ngcp-config/templates/etc/ngcp-sems/etc/reg_agent.conf.tt2,

then execute ngcpcfg apply ’added upstream credentials’.

Important

Be aware that this will force SEMS to restart, which will drop all calls.

4.7 Configuring Rewrite Rule Sets

On the NGCP, every phone number is treated in E.164 format <country code><area code><subscriber number>. Rewrite Rule

Sets is a flexible tool to translate the caller and callee numbers to the proper format before the routing lookup and after the routing

lookup separately. The created Rewrite Rule Sets can be assigned to the domains, subscribers and peers as a preference. Here

below you can see how the Rewrite Rules are used by the system:

As from the image above, following the arrows, you will have an idea about which type of Rewrite Rules are applied during a call.

In general:

• Call from local subscriber A to local subscriber B: Inbound RR from local Domain/Subscriber A and Outbound Rewrite Rules

from local Domain/Subscriber B.

• Call from local subscriber A to the peer: Inbound RR from local Domain/Subscriber A and Outbound Rewrite Rules from the

peer.

• Call from peer to local subscriber B: Inbound RR from the Peer and Outbound Rewrite Rules from local Domain/Subscriber B.

You would normally begin with creating a Rewrite Rule Set for your SIP domains. This is used to control what an end user can dial

48

The sip:carrier Handbook mr5.5.7 49 / 577

for outbound calls, and what is displayed as the calling party on inbound calls. The subscribers within a domain inherit Rewrite

Rule Sets of that domain, unless this is overridden by a subscriber Rewrite Rule Set preference.

You can use several special variables in the Rewrite Rules, below you can find a list of them. Some examples of how to use them

are also provided in the following sections:

• ${caller_cc} : This is the value taken from the subscriber’s preference CC value under Number Manipulation

• ${caller_ac} : This is the value taken from the subscriber’s preference AC value under Number Manipulation

• ${caller_emergency_cli} : This is the value taken from the subscriber’s preference emergency_cli value under Number

Manipulation

• ${caller_emergency_prefix} : This is the value taken from the subscriber’s preference emergency_prefix value under

Number Manipulation

• ${caller_emergency_suffix} : This is the value taken from the subscriber’s preference emergency_suffix value under

Number Manipulation

• ${caller_cloud_pbx_base_cli} :This is the value taken from the Primary Number field from section Details→Master

Data of the Pilot Subscriber for a particular PBX customer.

To create a new Rewrite Rule Set, go to Settings→Rewrite Rule Sets. There you can create a Set identified by a name. This

name is later shown in your peer-, domain- and user-preferences where you can select the rule set you want to use.

Click Create Rewrite Rule Set and fill in the form accordingly.

49

The sip:carrier Handbook mr5.5.7 50 / 577

Press the Save button to create the set.

To view the Rewrite Rules within a set, hover over the row and click the Rules button.

50

The sip:carrier Handbook mr5.5.7 51 / 577

The rules are ordered by Caller and Callee as well as direction Inbound and Outbound.

Tip

In Europe, the following formats are widely accepted: +<cc><ac><sn>, 00<cc><ac><sn> and 0<ac><sn>. Also, some countries

allow the areacode-internal calls where only subscriber number is dialed to reach another number in the same area. Within this

section, we will use these formats to show how to use rewrite rules to normalize and denormalize number formats.

4.7.1 Inbound Rewrite Rules for Caller

These rules are used to normalize user-provided numbers (e.g. passed in From Display Name or P-Preferred-Identity headers)

into E.164 format. In our example, we’ll normalize the three different formats mentioned above into E.164 format.

To create the following rules, click on the Create Rewrite Rule for each of them and fill them with the values provided below.

STRIP LEADING 00 OR +

• Match Pattern: ˆ(00|\+)([1-9][0-9]+)$

• Replacement Pattern: \2

• Description: International to E.164

• Direction: Inbound

51

The sip:carrier Handbook mr5.5.7 52 / 577

• Field: Caller

REPLACE 0 BY CALLER’S COUNTRY CODE:

• Match Pattern: ˆ0([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}\1

• Description: National to E.164

• Direction: Inbound

• Field: Caller

NORMALIZE LOCAL CALLS:

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}${caller_ac}\1

• Description: Local to E.164

• Direction: Inbound

• Field: Caller

Normalization for national and local calls is possible with special variables ${caller_cc} and ${caller_ac} that can be

used in Replacement Pattern and are substituted by the country and area code accordingly during the call routing.

52

The sip:carrier Handbook mr5.5.7 53 / 577

Important

These variables are only being filled in when a call originates from a subscriber (because only then the cc/ac information

is known by the system), so you can not use them when a calls comes from a SIP peer (the variables will be just empty

in this case).

Tip

When routing a call, the rewrite processing is stopped after the first match of a rule, starting from top to bottom. If you have

two rules (e.g. a generic one and a more specific one), where both of them would match some numbers, reorder them with the

up/down arrows into the appropriate position.

4.7.2 Inbound Rewrite Rules for Callee

These rules are used to rewrite the number the end user dials to place a call to a standard format for routing lookup. In our

example, we again allow the three different formats mentioned above and again normalize them to E.164, so we put in the same

rules as for the caller.

STRIP LEADING 00 OR +

• Match Pattern: ˆ(00|\+)([1-9][0-9]+)$

• Replacement Pattern: \2

53

The sip:carrier Handbook mr5.5.7 54 / 577

• Description: International to E.164

• Direction: Inbound

• Field: Callee

REPLACE 0 BY CALLER’S COUNTRY CODE:

• Match Pattern: ˆ0([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}\1

• Description: National to E.164

• Direction: Inbound

• Field: Callee

NORMALIZE AREACODE-INTERNAL CALLS:

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}${caller_ac}\1

• Description: Local to E.164

• Direction: Inbound

• Field: Callee

Tip

Our provided rules will only match if the caller dials a numeric number. If he dials an alphanumeric SIP URI, none of our rules

will match and no rewriting will be done. You can however define rules for that as well. For example, you could allow your end

users to dial support and rewrite that to your support hotline using the match pattern ˆsupport$ and the replace pattern

43800999000 or whatever your support hotline number is.

4.7.3 Outbound Rewrite Rules for Caller

These rules are used to rewrite the calling party number for a call to an end user. For example, if you want the device of your

end user to show 0<ac><sn> if a national number calls this user, and 00<cc><ac><sn> if an international number calls, put the

following rules there.

REPLACE AUSTRIAN COUNTRY CODE 43 BY 0

• Match Pattern: ˆ43([1-9][0-9]+)$

• Replacement Pattern: 0\1

• Description: E.164 to Austria National

54

The sip:carrier Handbook mr5.5.7 55 / 577

• Direction: Outbound

• Field: Caller

PREFIX 00 FOR INTERNATIONAL CALLER

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: 00\1

• Description: E.164 to International

• Direction: Outbound

• Field: Caller

Tip

Note that both of the rules would match a number starting with 43, so reorder the national rule to be above the international

one (if it’s not already the case).

4.7.4 Outbound Rewrite Rules for Callee

These rules are used to rewrite the called party number immediately before sending out the call on the network. This gives you an

extra flexibility by controlling the way request appears on a wire, when your SBC or other device expects the called party number

to have a particular tech-prefix. It can be used on calls to end users too if you want to do some processing in intermediate SIP

device, e.g. apply legal intercept selectively to some subscribers.

PREFIX SIPSP# FOR ALL CALLS

• Match Pattern: ˆ([0-9]+)$

• Replacement Pattern: sipsp#\1

• Description: Intercept this call

• Direction: Outbound

• Field: Callee

4.7.5 Emergency Number Handling

There are 2 ways to handle calls from local subscribers to emergency numbers in NGCP:

• Simple emergency number handling: inbound rewrite rules append an emergency tag to the called number, this will be recog-

nised by NGCP’s call routing logic and the call is routed directly to a peer. Please read the next section for details of simple

emergency number handling.

• An emergency number mapping is applied: a dedicated emergency number mapping database is consulted in order to obtain

the most appropriate routing number of emergency services. This logic ensures that the caller will contact the geographically

closest emergency service. Please visit the Emergency Mapping Section 5.5 section of the handbook for more details.

55

The sip:carrier Handbook mr5.5.7 56 / 577

4.7.5.1 Simple Emergency Number Handling Overview

The overview of emergency call processing is as follows:

56

The sip:carrier Handbook mr5.5.7 57 / 577

Figure 20: Simple Emergency Call Handling
57

The sip:carrier Handbook mr5.5.7 58 / 577

Configuring Emergency Numbers is also done via Rewrite Rules.

4.7.5.2 Tagging Inbound Emergency Calls

For Emergency Calls from a subscriber to the platform, you need to define an Inbound Rewrite Rule For Callee, which adds a

prefix emergency_ to the number (and can rewrite the number completely as well at the same time). If the proxy detects a call

to a SIP URI starting with emergency_, it will enter a special routing logic bypassing various checks which might make a normal

call fail (e.g. due to locked or blocked numbers, insufficient credits or exceeding the max. amount of parallel calls).

TAG AN EMERGENCY CALL

• Match Pattern: ˆ(911|112)$

• Replacement Pattern: emergency_\1

• Description: Tag Emergency Numbers

• Direction: Inbound

• Field: Callee

To route an Emergency Call to a Peer, you can select a specific peering group by adding a peering rule with a callee prefix set to

emergency_ to a peering group.

4.7.5.3 Normalize Emergency Calls for Peers

In order to normalize the emergency number to a valid format accepted by the peer, you need to assign an Outbound Rewrite Rule

For Callee, which strips off the emergency_ prefix. You can also use the variables ${caller_emergency_cli}, ${cal

ler_emergency_prefix} and ${caller_emergency_suffix} as well as ${caller_ac} and ${caller_cc},

which are all configurable per subscriber to rewrite the number into a valid format.

NORMALIZE EMERGENCY CALL FOR PEER

• Match Pattern: ˆemergency_(.+)$

• Replacement Pattern: ${caller_emergency_prefix}${caller_ac}\1

• Description: Normalize Emergency Numbers

• Direction: Outbound

• Field: Callee

4.7.6 Assigning Rewrite Rule Sets to Domains and Subscribers

Once you have finished to define your Rewrite Rule Sets, you need to assign them. For sets to be used for subscribers, you can

assign them to their corresponding domain, which then acts as default set for all subscribers. To do so, go to Settings→Domains

and click Preferences on the domain you want the set to assign to. Click on Edit and select the Rewrite Rule Set created before.

58

The sip:carrier Handbook mr5.5.7 59 / 577

You can do the same in the Preferences of your subscribers to override the rule on a subscriber basis. That way, you can finely

control down to an individual user the dial-plan to be used. Go to Settings→Subscribers, click the Details button on the subscriber

you want to edit, the click the Preferences button.

4.7.7 Creating Dialplans for Peering Servers

For each peering server, you can use one of the Rewrite Rule Sets that was created previously as explained in Section 4.7 (keep

in mind that special variables ${caller_ac} and ${caller_cc} can not be used when the call comes from a peer). To do

so, click on the name of the peering server, look for the preference called Rewrite Rule Sets.

If your peering servers don’t send numbers in E.164 format <cc><ac><sn>, you need to create Inbound Rewrite Rules for each

peering server to normalize the numbers for caller and callee to this format, e.g. by stripping leading + or put them from national

into E.164 format.

Likewise, if your peering servers don’t accept this format, you need to create Outbound Rewrite Rules for each of them, for

example to append a + to the numbers.

4.7.8 Call Routing Verification

The sip:carrier provides a utility that helps with the verification of call routing among local subscribers and peers. It is called Call

Routing Verification and employs rewrite rules and peer selection rules, in order to process calling and called numbers or SIP

users and find the appropriate peer for the destination.

59

The sip:carrier Handbook mr5.5.7 60 / 577

The Call Routing Verification utility performs only basic number processing and does not invoke the full number manipulation logic

applied on real calls. The goal is to enable testing of rewrite rules, rather than validate the complete number processing.

• What is considered during the test:

– subscriber preferences: cli and allowed_clis

– domain / subscriber / peer rewrite rules

• What is not taken into account during the test:

– other subscriber or peer preferences

– LNP (Local Number Portability) lookup on called numbers; LNP rewrite rules

You can access the utility following the path on Admin web interface: Tools→ Call Routing Verification.

Expected input data

• Caller number/uri: 2 formats are accepted in this field:

– A simple phone number in international (00431.., +431..) or E.164 (431..) format.

– A SIP URI in username@domain format (without adding "sip:" at the beginning).

• Callee number/uri: The same applies as for Caller number/uri.

• Caller Type: Select Subscriber or Peer, depending on the source of the call.

• Caller Subscriber or Caller Peer: Optionally, you can select the subscriber or peer explicitly. Without the explicit

selection, however, the Call Routing Verification tool is able to find the caller in the database, based on the provided number /

URI.

• Caller RWR Override, Callee RWR Override, Callee Peer Override: The caller / callee rewrite rules

and peer selection rules defined in domain, subscriber and peer preferences are used for call processing by default. But you

can also override them by explicitly selecting another rewrite or peer selection rule.

Examples

1. Using only phone numbers and explicit subscriber selection

• Input Data:

60

The sip:carrier Handbook mr5.5.7 61 / 577

Figure 21: Call Routing Verif. - Only Numbers - Input

• Result:

61

The sip:carrier Handbook mr5.5.7 62 / 577

Figure 22: Call Routing Verif. - Only Numbers - Result

2. Using phone number and URI, without explicit subscriber selection

• Input Data:

62

The sip:carrier Handbook mr5.5.7 63 / 577

Figure 23: Call Routing Verif. - Number and URI - Input

• Result:

63

The sip:carrier Handbook mr5.5.7 64 / 577

Figure 24: Call Routing Verif. - Number and URI - Result

64

The sip:carrier Handbook mr5.5.7 65 / 577

5 Features

The sip:carrier provides plenty of subscriber features to offer compelling VoIP services to end customers, and also to cover as

many deployment scenarios as possible. In this chapter, we provide the features overview and describe their function and use

cases.

5.1 Managing System Administrators

The sip:carrier offers the platform operator with an easy to use interface to manage users with administrative privileges. Such

users are representatives of resellers, and are entitled to manage configuration of services for Customers, Subscribers, Domains,

Billing Profiles and other entities on Sipwise NGCP.

Administrators, as user accounts, are also used for client authentication on the REST API of NGCP.

There is a single administrator, whose account is enabled by default and who belongs to the default reseller. This user is the

superuser of the NGCP administrative web interface (the so-called "admin panel"), and he has the right to modify administrators

of other Resellers as well.

5.1.1 Configuring Administrators

Configuration of access rights of system administrators is possible through the admin panel of NGCP. In order to do that, please

navigate to Settings→ Administrators.

Figure 25: List of System Administrators

You have 2 options:

• If you’d like to create a new administrator user press Create Administrator button.

65

The sip:carrier Handbook mr5.5.7 66 / 577

• If you’d like to update an existing administrator user press Edit button in its row.

There are some generic attributes that have to be set for each administrator:

Figure 26: Generic System Administrator Attributes

• Reseller : each administrator user must belong to a Reseller. There is always a default reseller (ID: 1, Name: default), but

the administrator has to be assigned to his real reseller, if such an entity (other than default) exists.

• Login: the login name of the administrator user

• Password : the password of the administrator user for logging in the admin panel, or for authentication on REST API

The second set of attributes is a list of access rights that are discussed in subsequent section of the handbook.

5.1.2 Access Rights of Administrators

The various access rights of administrators are shown in the figure and summarized in the table below.

66

The sip:carrier Handbook mr5.5.7 67 / 577

Figure 27: Access Rights of System Administrators

Table 1: Access Rights of System Administrators

Label in admin list Access Right Description

not shown Is superuser The user is allowed to modify data on Reseller level and — among

others — is able to modify administrators of other resellers. There

should be only 1 user on Sipwise NGCP with this privilege.

Master Is master The user is allowed to create, delete or modify other Admins who

belong to the same Reseller.

Active Is active The user account is active, i.e. the admin user can login on the web

panel or authenticate himself on REST API; otherwise user

authentication will fail.

67

The sip:carrier Handbook mr5.5.7 68 / 577

Table 1: (continued)

Label in admin list Access Right Description

Read Only Read only The user will only be able to list various data but is not allowed to

modify anything.

• For the web interface this means that Create. . . and Edit buttons

will be hidden or disabled.

• For the REST API this means that only GET, HEAD, OPTIONS

HTTP request methods are accepted, and NGCP will reject those

targeting data modification: PUT, PATCH, POST, DELETE.

Show Passwords Show passwords The user sees subscriber passwords (in plain text) on the web

interface.

Note

Admin panel user passwords are stored in an unreadable way (cryp-

tographic hash digest) in the database, while subscriber passwords

are basically always stored in plain text. The latter happens on pur-

pose, e.g. to make subscriber data migration possible.

Show CDRs Call data This privilege has effect on 2 items that will be displayed on admin

panel of NGCP, when Subscriber→ Details is selected:

1. PBX Groups list

2. Captured Dialogs list

Show Billing Info Billing data Some REST API resources that are related to billing are disabled:

HTTP requests on /api/vouchers, /api/topupcash and /

api/topupvoucher resources are rejected.

Lawful Intercept Lawful

intercept

If the privilege is selected then the REST API for interceptions (that is:

/api/interceptions) is enabled; if the privilege is not selected

then the interceptions API is disabled.

Note

This means that besides enabling LI in config.yml configura-

tion file one also needs to enable the API via the LI privilege of an

administrator user, so that NGCP can really provide LI service.

68

The sip:carrier Handbook mr5.5.7 69 / 577

5.2 Access Control for SIP Calls

There are two different methods to provide fine-grained call admission control to both subscribers and admins. One is Block Lists,

where you can define which numbers or patterns can be called from a subscriber to the outbound direction and which numbers

or patterns are allowed to call a subscriber in the inbound direction. The other is NCOS Levels, where the admin predefines rules

for outbound calls, which are grouped in certain levels. The subscriber can then just choose the level, or the admin can restrict a

subscriber to a certain level. Also sip:carrier offers some options to restrict the IP addresses that subscriber is allowed to use the

service from. The following sections describe these features in detail.

5.2.1 Block Lists

Block Lists provide a way to control which users/numbers can call or be called, based on a subscriber level, and can be found in

the Call Blockings section of the subscriber preferences.

Block Lists are separated into Administrative Block Lists (adm_block_*) and Subscriber Block Lists (block_*). They both have

the same behaviour, but Administrative Block Lists take higher precedence. Administrative Block Lists are only accessible by the

system administrator and can thus be used to override any Subscriber Block Lists, e.g. to block certain destinations. The following

break-down of the various block features apply to both types of lists.

69

The sip:carrier Handbook mr5.5.7 70 / 577

5.2.1.1 Block Modes

Block lists can either be whitelists or blacklists and are controlled by the User Preferences block_in_mode, block_out_mode and

their administrative counterparts.

• The blacklist mode (option is not checked tells the system to allow anything except the entries in the list. Use this mode if

you just want to block certain numbers and allow all the rest.

• The whitelist mode indicates to reject anything except the entries in the list. Use this mode if you want to enforce a strict

policy and allow only selected destinations or sources.

You can change a list mode from one to the other at any time.

5.2.1.2 Block Lists

The list contents are controlled by the User Preferences block_in_list, block_out_list and their administrative counterparts. Click

on the Edit button in the Preferences view to define the list entries.

In block list entries, you can provide shell patterns like * and []. The behavior of the list is controlled by the block_xxx_mode

feature (so they are either allowed or rejected). In our example above we have block_out_mode set to blacklist, so all calls to US

numbers and to the Austrian number +431234567 are going to be rejected.

Click the Close icon once you’re done editing your list.

70

The sip:carrier Handbook mr5.5.7 71 / 577

5.2.1.3 Block Anonymous Numbers

For incoming call, the User Preference block_in_clir and adm_block_in_clir controls whether or not to reject incoming calls with

number supression (either "[Aa]nonymous" in the display- or user-part of the From-URI or a header Privacy: id is set). This flag is

independent from the Block Mode.

5.2.2 NCOS Levels

NCOS Levels provide predefined lists of allowed or denied destinations for outbound calls of local subscribers. Compared to Block

Lists, they are much easier to manage, because they are defined on a global scope, and the individual levels can then be assigned

to each subscriber. Again there is the distinction for user- and administrative-levels.

If case of a conflict, when the Block Lists feature allows a number and NCOS Levels rejects the same number or vice versa, the

number will be rejected.

NCOS levels can either be whitelists or blacklists.

• The blacklist mode indicates to allow everything except the entries in this level. This mode is used if you want to just block

certain destinations and allow all the rest.

• The whitelist mode indicates to reject anything except the entries in this level. This is used if you want to enforce a strict

policy and allow only selected destinations.

5.2.2.1 Creating NCOS Levels

To create an NCOS Level, go to Settings→NCOS Levels and press the Create NCOS Level button.

71

The sip:carrier Handbook mr5.5.7 72 / 577

Select a reseller, enter a name, select the mode and add a description, then click the Save button.

72

The sip:carrier Handbook mr5.5.7 73 / 577

5.2.2.2 Creating Rules per NCOS Level

To define the rules within the newly created NCOS Level, click on the Patterns button of the level.

73

The sip:carrier Handbook mr5.5.7 74 / 577

There are 2 groups of patterns where you can define matching rules for the selected NCOS Level:

• NCOS Number Patterns: here you can define number patterns that will be matched against the called number and allowed or

blocked, depending on whitelist / blacklist mode. The patterns are regular expressions.

• NCOS LNP Carriers: here you can select predefined LNP Carriers that will be allowed (whitelist mode) or prohibited (blacklist

mode) to route calls to them. (See Section 5.4.1 in the handbook for the description of LNP functionality)

74

The sip:carrier Handbook mr5.5.7 75 / 577

Figure 28: NCOS Patterns List

In the NCOS Number Patterns view you can create multiple patterns to define your level, one after the other. Click on the Create

Pattern Entry Button on top and fill out the form.

Figure 29: Create NCOS Number Pattern

In this example, we block (since the mode of the level is blacklist) all numbers starting with 439. Click the Save button to save the

entry in the level.

75

The sip:carrier Handbook mr5.5.7 76 / 577

There are 2 options that help you to easily define specific number ranges that will be allowed or blocked, depending on whitelist /

blacklist mode:

• Include local area code: all subscribers within the caller’s local area, e.g. if a subscriber has country-code 43 and area-code 1,

then selecting this checkbox would result in the implicit number pattern: ˆ431.

• Intra PBX calls within same customer : all subscribers that belong to the same PBX customer as the caller himself.

In the NCOS LNP Carriers view you can select specific LNP Carriers — i.e. carriers that host the called ported numbers — that

will be allowed or blocked for routing calls to them (whitelist / blacklist mode, respectively).

Sipwise NGCP performs number matching always with the dialed number and not with the number generated after LNP lookup

that is: either the original dialed number prefixed with an LNP carrier code, or the routing number.

An example of NCOS LNP Carrier pattern definition:

Figure 30: Create NCOS LNP Carrier

In the above example we created a rule that blocks calls to "LNP_Carr1" carrier, supposing we use blacklist mode of the NCOS

Level.

Note

Currently NGCP does not support filtering of individual phone numbers in addition to LNP Carrier matching. In other words:

combining phone number and LNP Carrier patterns is not possible.

76

The sip:carrier Handbook mr5.5.7 77 / 577

Tip

There might be situations when phone number patterns may not be strictly aligned with telephony providers, for instance in

case of full number portability in a country. In such cases using NCOS LNP Carriers patterns still allows for defining NCOS

levels that allow / block calls to mobile numbers, for example. In order to achieve this goal you have to list all LNP carriers in

the NCOS patterns that are known to host mobile numbers.

5.2.2.3 Assigning NCOS Levels to Subscribers/Domains

Once you’ve defined your NCOS Levels, you can assign them to local subscribers. To do so, navigate to Settings→Subscribers,

search for the subscriber you want to edit, press the Details button and go to the Preferences View. There, press the Edit button

on either the ncos or adm_ncos setting in the Call Blockings section.

You can assign the NCOS level to all subscribers within a particular domain. To do so, navigate to Settings→Domains, select the

domain you want to edit and click Preferences. There, press the Edit button on either ncos or admin_ncos in the Call Blockings

section.

Note: if both domain and subscriber have same NCOS preference set (either ncos or adm_ncos, or both) the subscriber’s prefer-

ence is used. This is done so that you can override the domain-global setting on the subscriber level.

77

The sip:carrier Handbook mr5.5.7 78 / 577

5.2.2.4 Assigning NCOS Level for Forwarded Calls to Subscribers/Domains

In some countries there are regulatory requirements that prohibit subscribers from forwarding their numbers to special numbers

like emergency, police etc. While the sip:carrier does not deny provisioning Call Forward to these numbers, the administrator can

prevent the incoming calls from being actually forwarded to numbers defined in the NCOS list: just select the appropriate NCOS

level in the domain’s or subscriber’s preference adm_cf_ncos. This NCOS will apply only to the Call Forward from the subscribers

and not to the normal outgoing calls from them.

5.2.3 IP Address Restriction

The sip:carrier provides subscriber preference allowed_ips to restrict the IP addresses that subscriber is allowed to use the service

from. If the REGISTER or INVITE request comes from an IP address that is not in the allowed list, the sip:carrier will reject it with

a 403 message. Also a voice message can be played when the call attempt is rejected (if configured).

By default, allowed_ips is an empty list which means that subscriber is not restricted. If you want to configure a restriction, navigate

to Settings→Subscribers, search for the subscriber you want to edit, press Details and then Preferences and press Edit for the

allowed_ips preference in the Access Restrictions section.

Press the Edit button to the right of empty drop-down list.

You can enter multiple allowed IP addresses or IP address ranges one after another. Click the Add button to save each entry in

the list. Click the Delete button if you want to remove some entry.

78

The sip:carrier Handbook mr5.5.7 79 / 577

5.3 Call Forwarding and Call Hunting

The sip:carrier provides the capabilities for normal call forwarding (deflecting a call for a local subscriber to another party imme-

diately or based on events like the called party being busy or doesn’t answer the phone for a certain number of seconds) and

serial call hunting (sequentially executing a group of deflection targets until one of them succeeds). Targets can be stacked, which

means if a target is also a local subscriber, it can have another call forward or hunt group which is executed accordingly.

Call Forwards and Call Hunting Groups can either be executed unconditionally or based on a Time Set Definition, so you can

define deflections based on time period definitions (e.g. Monday to Friday 8am to 4pm etc).

5.3.1 Setting a simple Call Forward

Go to your Subscriber Preferences and click Edit on the Call Forward Type you want to set (e.g. Call Forward Unconditional).

If you select URI/Number in the Destination field, you also have to set a URI/Number. The timeout defines for how long this

destination should be tried to ring.

5.3.2 Advanced Call Hunting

Beside call forwarding to a single destination, Sipwise NGCP offers the possibility to activate call forwarding in a more sophisticated

way:

79

The sip:carrier Handbook mr5.5.7 80 / 577

• to multiple destinations (→ Destination Set)

• only during a pre-defined time set (→ Time Set)

• only for specific callers (→ Source Set)

If you want to define such more detailed call forwarding rules, you need to change into the Advanced View when editing your call

forward. There, you can select multiple Destination Set - Time Set - Source Set triples that determine all conditions under which

the call will be forwarded.

Explanation of call forward parameters

• A Destination Set is a list of destinations where the call will be routed to, one after another, according to the order of their

assigned priorities. See the Destination Sets Section 5.3.2.1 subchapter for a detailed description.

• A Time Set is a time period definition, i.e. when the call forwarding has to be active. See the Time Sets Section 5.3.2.2

subchapter for a detailed description.

• A Source Set is a list of number patterns that will be matched against the calling party number; if the calling number matches

the call forwarding will be executed. See the Source Sets Section 5.3.2.3 subchapter for a detailed description.

5.3.2.1 Configuring Destination Sets

Click on Manage Destination Sets to see a list of available sets. The quickset_cfu has been implicitly created during our creation

of a simple call forward. You can edit it to add more destinations, or you can create a new destination set.

80

The sip:carrier Handbook mr5.5.7 81 / 577

When you close the Destination Set Overview, you can now assign your new set in addition or instead of the quickset_cfu set.

Press Save to store your settings.

5.3.2.2 Configuring Time Sets

Click on Manage Time Sets in the advanced call-forward menu to see a list of available time sets. By default there are none, so

you have to create one.

81

The sip:carrier Handbook mr5.5.7 82 / 577

You need to provide a Name, and a list of Periods where this set is active. If you only set the top setting of a date field (like the

Year setting in our example above), then it’s valid for just this setting (like the full year of 2013 in our case). If you provide the

bottom setting as well, it defines a period (like our Month setting, which means from beginning of April to end of September). For

example, if a CF is set with the following timeset: "hour { 10-12 } minute { 20-30 }", the CF will be matched within the following time

ranges:

• from 10.20am to 10:30am

• from 11.20am to 11:30am

• from 12.20am to 12:30am

Important

the period is a through definition, so it covers the full range. If you define an Hour definition 8-16, then this means from

08:00 to 16:59:59 (unless you filter the Minutes down to something else).

If you close the Time Sets management, you can assign your new time set to the call forwards you’re configuring.

5.3.2.3 Configuring Source Sets

Once the Advanced View of the call forward definition has been opened, you will need to press the Manage Source Sets button

to start defining new Source Sets or managing an existing one. The following image shows the Source Set definition dialog:

82

The sip:carrier Handbook mr5.5.7 83 / 577

Figure 31: Creating a Call Forward Source Set

You will need to fill in the Name field first, then in Source field you can enter:

• A simple phone number in E.164 format

• A pattern, in order to define a range of numbers. You can use "*" (matches a string of 0 to any number of characters), "?"

(matches any single character), "[abc]" (matches a single character that is part of the explicitly listed set: a, b or c) and "[0-9]"

(matches a single character that falls in the range 0 to 9) as wildcards, as usual in shell patterns. Examples:

– "431*" (all numbers from Vienna / Austria)

– "49176[0-5]77*" (German numbers containing fixed digits and a variable digit in 0-5 range in position 6)

– "43130120??" (numbers from Vienna with fixed prefix and 2 digits variable at the end)

• The constant string "anonymous" that indicates a suppressed calling number (CLIR)

You can add more patterns to the Source Set by pressing the Add another source button. When you finished adding all patterns,

press the Save button. You will then see the below depicted list of Source Sets:

83

The sip:carrier Handbook mr5.5.7 84 / 577

Figure 32: List of Call Forward Source Sets

As a next step you can define a Destination Set as described in Destination Sets Section 5.3.2.1 subchapter. For our example, we

have defined the following Destination Set:

Figure 33: List of Call Forward Destination Sets

A final step of defining the call forward settings is selecting a Destination, a Time and a Source Set, as shown in the image

below. Please note that there is no specific Time Set selected in our example, that means the call forward rule is valid (as shown)

<always>.

84

The sip:carrier Handbook mr5.5.7 85 / 577

Figure 34: Definition of a Call Forward with Source and Destination Sets

Once all the settings have been defined and the changes are saved, you will see the call forward entry (in our example: Call

Forward Unconditional), with the names of the selected Destination, Time and Source Sets provided, at Subscriber Preferences

→ Call Forwards location on the web interface:

Figure 35: List of Call Forward with Source and Destination Sets

85

The sip:carrier Handbook mr5.5.7 86 / 577

5.4 Local Number Porting

The Sipwise NGCP platform comes with two ways of accomplishing local number porting (LNP):

• one is populating the integrated LNP database with porting data,

• the other is accessing external LNP databases via the Sipwise LNP daemon using the LNP API.

Note

Accessing external LNP databases is available for PRO and CARRIER products only.

5.4.1 Local LNP Database

The local LNP database provides the possibility to define LNP Carriers (the owners of certain ported numbers or number blocks)

and their corresponding LNP Numbers belonging to those carriers. It can be configured on the admin panel in Settings→Number

Porting or via the API. The LNP configuration can be populated individually or via CSV import/export both on the panel and the

API.

5.4.1.1 LNP Carriers

LNP Carriers are defined by an arbitrary Name for proper identification (e.g. British Telecom) and contain a Prefix which can be

used as routing prefix in LNP Rewrite Rules and subsequently in Peering Rules to route calls to the proper carriers. The LNP

prefix is written to CDRs to identify the selected carrier for post processing and analytics purposes of CDRs. LNP Carrier entries

also have an Authoritative flag indicating that the numbers in this block belong to the carrier operating the sip:carrier. This is useful

to define your own number blocks, and in case of calls to those numbers reject the calls if the numbers are not assigned to local

subscribers (otherwise they would be routed to a peer, which might cause call loops). Finally the Skip Rewrite flag skips executing

of LNP Rewrite Rules if no number manipulation is desired for an LNP carrier.

5.4.1.2 LNP Numbers

LNP Carriers contain one or more LNP Numbers. Those LNP Numbers are defined by a Number entry in E164 format (<cc><ac><sn>)

used to match a number against the LNP database. Number matching is performed on a longest match, so you can define number

blocks without specifying the full subscriber number (e.g. a called party number 431999123 is going to match an entry 431999 in

the LNP Numbers).

For an LNP Numbers entry, an optional Routing Number can be defined. This is useful to translate e.g. premium 900 or toll-free

800 numbers to actual routing numbers. If a Routing Number is defined, the called party number is implicitly replaced by the

Routing Number and the call processing is continued with the latter. For external billing purposes, the optional Type tag of a

matched LNP number is recorded in CDRs.

An optional Start Date and End Date allows to schedule porting work-flows up-front by populating the LNP database with certain

dates, and the entries are only going to become active with those dates. Empty values for start indicate a start date in the past,

while empty values for end indicate an end time in the future during processing of a call, allowing to define infinite date ranges. As

intervals can overlap, the LNP number record with a start time closest to the current time is selected.

86

The sip:carrier Handbook mr5.5.7 87 / 577

5.4.1.3 Enabling local LNP support

In order to activate Local LNP during routing, the feature must be activated in config.yml. Set kamailio→proxy→lnp→enabled to

yes and kamailio→proxy→lnp→type to local.

5.4.1.4 LNP Routing Procedure

Calls to non-authoritative Carriers

When a call arrives at the system, the calling and called party numbers are first normalized using the Inbound Rewrite Rules for

Caller and Inbound Rewrite Rules for Callee within the rewrite rule set assigned to the calling party (a local subscriber or a peer).

If the called party number is not assigned to a local subscriber, or if the called party is a local subscriber and has the subscriber/-

domain preference lnp_for_local_sub set, the LNP lookup logic is engaged, otherwise the call proceeds without LNP lookup. The

further steps assume that LNP is engaged.

If the call originated from a peer, and the peer preference caller_lnp_lookup is set for this peer, then an LNP lookup is performed

using the normalized calling party number. The purpose for that is to find the LNP prefix of the calling peer, which is then stored as

source_lnp_prefix in the CDR, together with the selected LNP number’s type tag (source_lnp_type). If the LNP lookup does not

return a result (e.g. the calling party number is not populated in the local LNP database), but the peer preference default_lnp_prefix

is set for the originating peer, then the value of this preference is stored in source_lnp_prefix of the CDR.

Next, an LNP lookup is performed using the normalized called party number. If no number is found (using a longest match), no

further manipulation is performed.

If an LNP number entry is found, and the Routing Number is set, the called party number is replaced by the routing number. Also,

if the Authoritative flag is set in the corresponding LNP Carrier, and the called party number is not assigned to a local subscriber,

the call is rejected. This ensures that numbers allocated to the system but not assigned to subscribers are dropped instead of

routed to a peer.

Important

If the system is serving a local subscriber with only the routing number assigned (but not e.g. the premium number

mapping to this routing number), the subscriber will not be found and the call will either be rejected if the called party

premium number is within an authoritative carrier, or the call will be routed to a peer. This is due to the fact that the

subscriber lookup is performed with the dialled number, but not the routing number fetched during LNP. So make sure

to assign e.g. the premium number to the local subscriber (optionally in addition to the routing number if necessary

using alias numbers) and do not use the LNP routing number mechanism for number mapping to local subscribers.

Next, if the the LNP carrier does not have the Skip Rewriting option set, the LNP Rewrite Rules for Callee are engaged. The

rewrite rule set used is the one assigned to the originating peer or subscriber/domain via the rewrite_rule_set preference. The

variables available in the match and replace part are, beside the standard variables for rewrite rules:

• ${callee_lnp_prefix}: The prefix stored in the LNP Carrier

• ${callee_lnp_basenumber}: The actual number entry causing the match (may be shorter than the called party number

due to longest match)

87

The sip:carrier Handbook mr5.5.7 88 / 577

Typically, you would create a rewrite rule to prefix the called party number with the callee_lnp_prefix by matching ˆ([0-9]+)$

and replacing it by ${callee_lnp_prefix}\1.

Once the LNP processing is completed, the system checks for further preferences to finalize the number manipulation. If the

originating local subscriber or peer has the preference lnp_add_npdi set, the Request URI user-part is suffixed with ;npdi.

Next, if the preference lnp_to_rn is set, the Request URI user-part is suffixed with ;rn=LNP_ROUTING_NUMBER, where

LNP_ROUTING_NUMBER is the Routing Number stored for the number entry in the LNP database, and the originally called

number is kept in place. For example, if lnp_to_rn is set and the number 1800123 is called, and this number has a routing number

1555123 in the LNP database, the resulting Request-URI is sip:1800123;rn=1555123@example.org.

Finally, the destination_lnp_prefix in the CDR table is populated either by the prefix defined in the Carrier of the LNP database if

a match was found, or by the default_lnp_prefix prefrence of the destination peer or subscriber/domain.

5.4.1.5 Blocking Calls Using LNP Data

The Sipwise NGCP provides means to allow or block calls towards ported numbers that are hosted by particular LNP carriers.

Please visit Section 5.2.2.2 in the handbook to learn how this can be achieved.

5.4.1.6 Transit Calls using LNP

If a call originated from a peer and the peer preference force_outbound_calls_to_peer is set to force_nonlocal_lnp (the if callee is

not local and is ported selection in the panel), the call is routed back to a peer selected via the peering rules.

This ensures that if a number once belonged to your system and is ported out, but other carriers are still sending calls to you (e.g.

selecting you as an anchor network), the affected calls can be routed to the carrier the number got ported to.

5.4.1.7 CSV Format

The LNP database can be exported to CSV, and in the same format imported back to the system. On import, you can decide

whether to drop existing data prior to applying the data from the CSV.

The CSV file format contains the fields in the following order:

carrier_name carrier_prefix number routing_number start end authoritative skip_rewrite

Table 2: LNP CSV Format

Name Description

Carrier Name The Name in the LNP Carriers table (string, e.g. My

Carrier)

Carrier Prefix The Prefix in the LNP Carriers table (string, e.g. DD55)

Number The Number in the LNP Numbers table (E164 number, e.g.

1800666)

Routing Number The Routing Number in the LNP Numbers table (E164

number or empty, e.g. 1555666)

88

The sip:carrier Handbook mr5.5.7 89 / 577

Table 2: (continued)

Start The Start in the LNP Numbers table (YYYY-MM-DD or

empty, e.g. 2016-01-01)

End The End in the LNP Numbers table (YYYY-MM-DD or

empty, e.g. 2016-12-30)

Authoritative The Authoritative flag in the LNP Carriers table (0 or 1)

Skip Rewrite The Skip Rewrite flag in the LNP Carriers table (0 or 1)

Type The Type tag in the LNP Numbers table (alphanumeric

string, e.g. mobile)

5.4.2 External LNP via LNP API

External LNP relies on the Sipwise LNP Daemon (lnpd) which kamailio-proxy is talking to via a defined JSONRPC protocol. The

proxy sends the A and B number to lnpd, which in the current release translates it to a SIP Message sent to an external server

(typically a Squire SIP-to-INAP gateway. This external gateway is performing an SS7 INAP request to fetch the LNP result, which

is passed back as a binary blob in a 3xx response to the lnpd. The lnpd extracts the TCAP body of the response and returns the

information back to the proxy.

5.4.2.1 Enabling LNP lookup via API

In order to activate LNP lookup via API during call routing, the feature must be activated in /etc/ngcp-config/config.

yml. Set these parameters:

• kamailio→proxy→lnp→enabled : yes

• kamailio→proxy→lnp→type : api

• lnpd→enabled : yes

There is a possibility to explicitly allow (whitelist) or deny (blacklist) certain number ranges for which an LNP lookup may be done.

The relevant configuration parameters are at kamailio→proxy→lnp→lnp_request_whitelist and kamailio→
proxy→lnp→lnp_request_blacklist. For each entry in the list a POSIX regex expression may be used, see the

following example:

lnp:

lnp_request_whitelist:

- ’^9’

- ’^800’

lnp_request_blacklist:

- ’^1’

- ’^900’

- ’^110’

- ’^112’

89

The sip:carrier Handbook mr5.5.7 90 / 577

Interpretation of the above lists (that are based on numbers represented in national format):

• whitelist: do LNP lookup for any called number that starts with 9 or 800

• blacklist: do not perform LNP lookup for any called number that starts with 1, 900, 110 or 112

Important

If both whitelist and blacklist are defined, the LNP lookup is only performed when the called number matches any of the

whitelist patterns and does not match any of the blacklist patterns.

5.4.2.2 The Redundancy Feature

It is possible to set up LNP daemon to provide a kind of redundant service to the Proxy. This means the LNP daemon will send its

LNP query to more LNP serving nodes that are predefined in a list. (See Configuration of LNP daemon Section 5.4.2.3 chapter

for details.) The LNP query may happen in 2 ways:

• round-robin: LNP daemon sends the query to one of the serving nodes then waits for the response for a configurable timeout.

If it does not get the response in time, it sends the LNP query to the next serving node.

• parallel: LNP daemon sends the query to all of the serving nodes then waits for the response, and will accept the first response

that it receives.

5.4.2.3 Configuration of Sipwise LNP Daemon

LNP daemon takes its active configuration from /etc/ngcp-lnpd/config.yml file. The file is generated automatically —

when a new NGCP configuration is applied (ngcpcfg apply...) — from the main Sipwise NGCP configuration file: /etc/

ngcp-config/config.yml and a template: /etc/ngcp-config/template/etc/ngcp-lnpd/config.yml.

tt2. System administrators are only expected to modify the lnpd.config section of main configuration file /etc/ngcp-

config/config.yml.

A sample LNP daemon configuration file (/etc/ngcp-lnpd/config.yml) looks like:

daemon:

json-rpc:

ports:

- 54321

- 12345

interfaces:

- 127.0.0.1

- 192.168.1.90

- ::1

sip:

port: 5095

address: 0.0.0.0

90

The sip:carrier Handbook mr5.5.7 91 / 577

threads: 4

foreground: false

pidfile: /tmp/lnpd.pid

loglevel: 7

instances:

default:

module: sigtran

destination: 192.168.1.99

from-domain: test.example.com

headers:

- header: INAP-Service-Key

value: 2

reply:

tcap: raw-tcap

redundant:

module: sigtran

destinations:

- 192.168.1.99

- 192.168.1.95

- 192.168.1.90

mechanism: round-robin

retry-time: 30

timeout: 5

from-domain: test.example.com

headers:

- header: INAP-Service-Key

value: 2

reply:

tcap: raw-tcap

parallel:

module: sigtran

destinations:

- 192.168.1.99

- 192.168.1.95

- 192.168.1.90

mechanism: parallel

retry-time: 30

timeout: 10

from-domain: test.example.com

headers:

- header: INAP-Service-Key

value: 2

reply:

tcap: raw-tcap

mock1:

module: mock-tcap

91

The sip:carrier Handbook mr5.5.7 92 / 577

numbers:

- number: ’4311003’

routing-number: ’4318881003’

reply:

tcap: raw-tcap

The corresponding NGCP main configuration file contains:

daemon:

foreground: ’false’

json-rpc:

ports:

- ’54321’

- ’12345’

loglevel: ’7’

sip:

port: ’5095’

threads: ’4’

instances:

<< These are the same entries as in /etc/ngcp-lnpd/config.yml file >>

Description of configuration parameters in /etc/ngcp-config/config.yml file

• daemon section:

– foreground: determines if the LNP daemon runs as foreground or background process

– json-rpc.ports: port numbers where LNP daemon listens for incoming JSONRPC requests from NGCP Proxy

– loglevel: how detailed information LNP daemon writes in its log file

– sip.port: listening port number used for SIP sessions with LNP serving nodes; LNP daemon will listen on first available

(shared) IP address that is taken from /etc/ngcp-config/network.yml file

– threads: number of threads LNP daemon will use internally; this value determines how many requests the daemon can

serve in parallel

• instances section: at least one default instance must be defined here. Others are also useful for providing redundancy,

please check redundant and parallel entries above.

– module: only sigtran is used for normal operations

Important

The module mock-tcap is only meant for developers. In this case the LNP daemon does not produce a SIP

request that it sends to LNP serving nodes, but instead it uses the numbers parameter to match a called number

with a routing number. The numbers parameter contains a list of number — routing-number pairs and is used as

a database for number lookups. Finally LNP daemon returns the routing number as a response on LNP query.

– destinations: list of nodes to which LNP daemon sends the LNP query

– mechanism: either parallel or round-robin, defining the method of redundant queries

92

The sip:carrier Handbook mr5.5.7 93 / 577

– retry-time: a period of time in seconds while LNP daemon considers an LNP serving node being unreachable after an

LNP query timeout

– timeout: the period of time while LNP daemon waits for a response on an LNP query from one of the LNP serving nodes

PLEASE NOTE : retry-time and timeout are used with both the parallel and the round-robin redundancy methods

– from-domain: the domain that will be used in SIP From header when LNP daemon sends the LNP query

– headers: this is a list of header name —value pairs; these custom headers will be included in SIP request that LNP

daemon sends to an LNP serving node

– reply.tcap: determines the format of reply sent to NGCP Proxy; currently only raw-tcap is supported, which means

LNP daemon will not decode the TCAP response it gets from an LNP serving node but it forwards the raw TCAP message

body

5.5 Emergency Mapping

As opposed to the Simple Emergency Number Handling Section 4.7.5.1 solution, the Sipwise NGCP supports an advanced emer-

gency call handling method, called emergency mapping. The main idea is: instead of obtaining a statically assigned emergency

prefix / suffix from subscriber preferences, NGCP retrieves an emergency routing prefix from a central emergency call routing

table, according to the current location of the calling subscriber.

The following figure shows the overview of emergency call processing when using emergency mapping feature:

93

The sip:carrier Handbook mr5.5.7 94 / 577

Figure 36: Emergency Call Handling with Mapping
94

The sip:carrier Handbook mr5.5.7 95 / 577

5.5.1 Emergency Mapping Description

Emergency numbers per geographic location are mapped to different routing prefixes not deriveable from an area code or the

emergency number itself. This is why a global emergency mapping table related to resellers is introduced, allowing to map

emergency numbers to their geographically dependent routing numbers.

The geographic location is referenced by a location ID, which has to be populated by a north-bound provisioning system. No

towns, areas or similar location data is stored on the NGCP platform. The locations are called Emergency Containers on NGCP.

The actual emergency number mapping is done per location (per Emergency Container), using the so-called Emergency Mapping

entries. An Emergency Mapping entry assigns a routing prefix, valid only in a geographic area, to a generic emergency number

(for example 112 in Europe, 911 in the U.S.A.) or a country specific one (for example 133).

Note

As of mr4.5 version, the NGCP performs an exact match on the emergency number in the emergency routing table.

Emergency Containers may be assigned to various levels of the client hierarchy within NGCP. The following list shows such levels

with each level overriding the settings of the previous one:

1. Customer or Domain

2. Customer Location, which is a territory representing a subset of the customer’s subscribers, defined as one or more IP

subnets.

3. Subscriber

Note

Please be aware that Customer Location is not necessarily identical to the "location" identified through an Emergency Container.

Once the emergency routing prefix has been retrieved from the emergency mapping table, call processing continues in the same

way as in case of simple emergency call handling.

5.5.2 Emergency Mapping Configuration

The administrative web panel of NGCP provides the configuration interface for emergency mapping. Please navigate to Settings

→ Emergency Mapping menu item first, in order to start configuring the mapping.

An Emergency Container must be created, before the mapping entries can be defined. Press Create Emergency Container to

start this. An example of a container is shown here:

95

The sip:carrier Handbook mr5.5.7 96 / 577

Figure 37: Creating an Emergency Container

You have to select a Reseller that this container belongs to, and enter a Name for the container, which is an arbitrary text.

Tip

The platform administrator has to create as many containers as the number of different geographic areas (locations) the

subscribers are expected to be in.

As the second step of emergency mapping provisioning, the Emergency Mapping entries must be created. Press Create Emer-

gency Mapping to start this step. An example is shown here:

96

The sip:carrier Handbook mr5.5.7 97 / 577

Figure 38: Creating an Emergency Mapping Entry

The following parameters must be set:

• Container: select an emergency mapping container (i.e. a location ID)

• Code: the emergency number that subscribers will dial

• Prefix: the routing prefix that belongs to the particular emergency service within the selected location

Once all the necessary emergency mappings have been defined, the platform administrator will see a list of containers and

mapping entries:

97

The sip:carrier Handbook mr5.5.7 98 / 577

Figure 39: Emergency Mapping List

The emergency number mapping is now defined. As the next step, the platform administrator has to assign the emergency

containers to Customers / Domains / Customer Locations or Subscribers. We’ll take an example with a Customer : select the

customer, then navigate to Details→ Preferences→ Number Manipulations. In order to assign a container, press the Edit button

and then select one container from the drop-down list:

98

The sip:carrier Handbook mr5.5.7 99 / 577

Figure 40: Assigning an Emergency Mapping Container

Rewrite Rules for Emergency Mapping

Once emergency containers and emergency mapping entries are defined, the NGCP administrator has to ensure that the proper

number manipulation takes place, before initiating any emergency call towards peers.

Important

Please don’t forget to define the rewrite rules for peers — particularly: Outbound Rewrite Rules for Callee — as de-

scribed in Normalize Emergency Calls for Peers Section 4.7.5.3 section of the handbook.

5.5.2.1 Emergency Calls Not Allowed

There is a special case when the dialed number is recognized as an emergency number, but the emergency number is not

available for the geographic area the calling party is located in.

In such a case the emergency mapping lookup will return an emergency prefix, but the value of this will be NULL. Therefore the

call is rejected and an announcement is played. The announcement is a newly defined sound file referred as emergency_geo

_unavailable.

It is possible to configure the rejection code and reason in /etc/ngcp-config/config.yml file, the parameters are:

kamailio.proxy.early_rejects.emergency_invalid.announce_code and kamailio.proxy.early_r

ejects.emergency_invalid.announce_reason.

99

The sip:carrier Handbook mr5.5.7 100 / 577

5.5.2.2 Bulk Upload or Download of Emergency Mapping Entries

The Sipwise NGCP offers the possibility to upload / download emergency mapping entries in form of CSV files. This operation is

available for each reseller, and is very useful if a reseller has many mapping entries.

Downloading Emergency Mapping List

One has to navigate to Settings→ Emergency Mapping menu and then press the Download CSV button to get the list of mapping

entries in a CSV file. First the reseller must be selected, then the Download button must be pressed. As an example, the entries

shown in "Emergency Mapping List" picture above would be written in the file like here below:

EmergCont_1,133,E1_133_

EmergCont_1,144,E1_144_

EmergCont_2,133,E2_133_

The CSV file has a plain text format, each line representing a mapping entry, and contains the following fields:

• Container name, as defined in Emergency Containers

• Emergency Number

• Emergency Prefix

Uploading Emergency Mapping List

Uploading a CSV file with emergency mapping entries may be started after pressing the Upload CSV button. The following data

must be provided:

• Reseller: selected from the list

• Upload mapping: the CSV file must be selected after pressing the Choose File button

• Purge existing: an option to purge existing emergency mapping entries that belong to the selected reseller, before popu-

lating the new mapping data from the file

100

The sip:carrier Handbook mr5.5.7 101 / 577

Figure 41: Uploading Emergency Mapping Data

The CSV file for the upload has the same format as the one used for download.

5.6 Emergency Priorization

The NGCP can potentially host privileged subscribers that offer emergency or at least prioritized services (civil defence, police

etc.). In case of an emergency, the platform has to be free’d from any SIP flows (calls, registrations, presence events etc.) which

do not involve those privileged subscribers.

Such an exceptional condition is called emergency mode and it can be activated for all domains on the system, or only for

selected domains.

Once emergency mode is activated, Sipwise NGCP will immediately apply the following restrictions on new SIP requests or existing

calls:

• Any SIP requests (calls, registrations etc.) from subscribers within the affected domains, who are not marked as privileged, are

rejected.

• Any calls from peers not targeting privileged subscribers are rejected.

101

The sip:carrier Handbook mr5.5.7 102 / 577

• Any active calls which do not have a privileged subscriber involved are terminated.

Calls from non-privileged subscribers to emergency numbers are still allowed.

5.6.1 Call-Flow with Emergency Mode Enabled

Typical call-flows of emergency mode will be shown in this section of the handbook. We have the following assumptions:

• Emergency priorization has been enabled on system-level

• There is a domain for which the emergency mode has been activated

• There is a privileged subscriber in that domain

• A generic peering connection has been configured for non-emergency calls

• A dedicated peering connection has been configured for emergency calls

The examples do not show details of SIP messages, but rather give a high-level overview of the call-flows.

1. A non-privileged subscriber makes a call to another non-privileged subscriber. Result: the call will be rejected.

Figure 42: Call-flow in Emergency Mode 1. (Std to Std)

2. A non-privileged subscriber makes a call to an external subscriber (via peer). Result: the call will be rejected.

102

The sip:carrier Handbook mr5.5.7 103 / 577

Figure 43: Call-flow in Emergency Mode 2. (Std to Peer)

3. A non-privileged subscriber makes a call to a privileged subscriber. Result: the call will be accepted.

Figure 44: Call-flow in Emergency Mode 3. (Std to Priv)

103

The sip:carrier Handbook mr5.5.7 104 / 577

4. A non-privileged subscriber makes a call to an emergency number. Result: the call will be accepted.

Figure 45: Call-flow in Emergency Mode 4. (Std to Emerg)

5. A privileged subscriber makes a call to a non-privileged subscriber. Result: the call will be accepted.

Figure 46: Call-flow in Emergency Mode 5. (Priv to Std)

104

The sip:carrier Handbook mr5.5.7 105 / 577

6. A privileged subscriber makes a call to an external subscriber (via peer). Result: the call will be accepted.

Figure 47: Call-flow in Emergency Mode 6. (Priv To Peer)

5.6.2 Configuration of Emergency Mode

The platform operator has to perform 2 steps of configuration so that the emergency mode can be activated. After the configuration

is completed it is necessary to explicitly activate emergency mode, which can be accomplished as described in Section 5.6.3 later.

1. System-level Configuration

The emergency priorization function must be enabled for the whole system, otherwise emergency mode can not be activated. The

platform operator has to set kamailio.proxy.emergency_priorization.enabled configuration parameter value to

"yes" in the main configuration file /etc/ngcp-config/config.yml. Afterwards changes have to be applied in the usual

way, with the command: ngcpcfg apply "Enabled emergency priorization"

In order to learn about other parameters related to emergency priorization please refer to Section B.1.16 part of the handbook.

2. Subscriber-level Configuration

The platform operator (or any administrator user) has the capability to declare a subscriber privileged, so that the subscriber can

initiate and receive calls when emergency mode has been activated on the NGCP. In order to do that the administrator has to

navigate to Settings → Subscribers → select the subscriber → Details → Preferences → Internals → emergency_priorization

on the administrative web interface, and press the Edit button.

105

The sip:carrier Handbook mr5.5.7 106 / 577

Figure 48: Emergency Priorization of Subscriber

The checkbox emergency_priorization has to be ticked and then press the Save button.

The same privilege can be added via the REST API for a subscriber: a HTTP PUT/PATCH request must be sent on /api/

subscriberpreferences/id resource and the emergency_priorization property must be set to "true".

5.6.3 Activating Emergency Mode

The platform operator can activate emergency mode for a single or multiple domains in 3 different ways:

• via the administrative web interface

• via the REST API

• via a command-line tool

Important

The interruption of ongoing calls is only possible with the command-line tool! Activating emergency mode for domains

via the web interface or REST API will only affect upcoming calls.

1. Activate emergency mode via web interface: this way of activation is more appropriate if only a single (or just a few) domain is

affected. Please navigate to Settings→ Domains→ select a domain→ Preferences→ Internals→ emergency_mode_enabled

→ Edit.

106

The sip:carrier Handbook mr5.5.7 107 / 577

Figure 49: Activate Emergency Mode of Domain

The checkbox emergency_mode_enabled has to be ticked and then press the Save button.

2. Activate emergency mode via REST API: this way of activation is more appropriate if only a single (or just a few) domain is

affected.

For that purpose a HTTP PUT/PATCH request must be sent on /api/domainpreferences/id resource and the emerge

ncy_mode_enabled property must be set to "true".

3. Activate emergency mode using a command-line tool: the Sipwise NGCP provides a built-in script that may be used to

enable/disable emergency mode for some particular or all domains.

• Enable emergency mode:

> ngcp-emergency-mode enable <all|[domain1 domain2 ...]>

• Disable emergency mode:

> ngcp-emergency-mode disable <all|[domain1 domain2 ...]>

• Query the status of emergency mode:

> ngcp-emergency-mode status <all|[domain1 domain2 ...]>

5.7 Header Manipulation

5.7.1 Header Filtering

Adding additional SIP headers to the initial INVITEs relayed to the callee (second leg) is possible by modifying the following tem-

plate file: /etc/ngcp-config/templates/etc/ngcp-sems/etc/ngcp.sbcprofile.conf.customtt.tt2.

The following section can be changed:

header_filter=whitelist

header_list=[%IF kamailio.proxy.debug == "yes"%]P-NGCP-CFGTEST,[%END%]

P-R-Uri,P-D-Uri,P-Preferred-Identity,P-Asserted-Identity,Diversion,Privacy,

107

The sip:carrier Handbook mr5.5.7 108 / 577

Allow,Supported,Require,RAck,RSeq,Rseq,User-Agent,History-Info,Call-Info

[%IF kamailio.proxy.presence.enable == "yes"%],Event,Expires,

Subscription-State,Accept[%END%][%IF kamailio.proxy.allow_refer_method

== "yes"%],Referred-By,Refer-To,Replaces[%END%]

By default the system will remove from the second leg all the SIP headers which are not in the above list. If you want to keep

some additional/custom SIP headers, coming from the first leg, into the second leg you just need to add them at the end of the

header_list= list. After that, as usual, you need to apply and push the changes. In this way the system will keep your headers in

the INVITE sent to the destination subscriber/peer.

Warning

DO NOT TOUCH the list if you don’t know what you are doing.

5.7.2 Codec Filtering

Sometimes you may need to filter some audio CODEC from the SDP payload, for example if you want to force your subscribers

to do not talk a certain codecs or force them to talk a particular one. To achieve that you just need to change the /etc/ngcp-

config/config.yml, in the following section:

sdp_filter:

codecs: PCMA,PCMU,telephone-event

enable: yes

mode: whitelist

In the example above, the system is removing all the audio CODECS from the initial INVITE except G711 alaw,ulaw and telephone-

event. In this way the callee will be notified that the caller is able to talk only PCMA. Another example is the blacklist mode:

sdp_filter:

codecs: G729,G722

enable: yes

mode: blacklist

In this way the G729 and G722 will be removed from the SDP payload. In order to apply the changes, as usual, you need to run

ngcpcfg apply Enable CODEC filtering and push the changes .

5.7.3 Enable History and Diversion Headers

It may be useful and mandatory - specially with NGN interconnection - to enable SIP History header and/or Diversion header for

outbound requests to a peer or even for on-net calls. In order to do so, you should enable the following preferences in Domain’s

and Peer’s Preferences:

• Domain’s Prefererences: inbound_uprn = Forwarder’s NPN

108

The sip:carrier Handbook mr5.5.7 109 / 577

• Peer’s Prefererences: outbound_history_info = UPRN

• Peer’s Prefererences: outbound_diversion = UPRN

• Domain’s Prefererences: outbound_history_info = UPRN (if you want to allow History Header for on-net call as well)

• Domain’s Prefererences: outbound_diversion = UPRN (if you want to allow Diversion Header for on-net call as well)

5.8 SIP Trunking with SIPconnect

5.8.1 User provisioning

For the purpose of external SIP-PBX interconnect with sip:carrier the platform admin should create a subscriber with multiple

aliases representing the numbers and number ranges served by the SIP-PBX.

• Subscriber username - any SIP username that forms an "email-style" SIP URI.

• Subscriber Aliases - numbers in the global E.164 format without leading plus.

To configure the Subscriber, go to Settings→Subscribers and click Details on the row of your subscriber. There, click on the

Preferences button on top.

You should look into the Number Manipulations and Access Restrictions sections in particular, which control the calling and called

number presentation.

5.8.2 Inbound calls routing

Enable preference Number Manipulations→e164_to_ruri for routing inbound calls to SIP-PBX. This ensures that the Request-URI

will comprise a SIP-URI containing the dialed alias-number as user-part, instead of the user-part of the registered AOR (which is

normally a static value).

5.8.3 Number manipulations

The following sections describe the recommended configuration for correct call routing and CLI presentation according to the

SIPconnect 1.1 recommendation.

5.8.3.1 Rewrite rules

The SIP PBX by default inherits the domain dialplan which usually has rewrite rules applied to normal Class 5 subscribers with

inbound rewrite rules normalizing the dialed number to the E.164 standard. If most users of this domain are Class 5 subscribers the

dialplan may supply calling number in national format - see Section 4.7. While the SIP-PBX trunk configuration can be sometimes

amended it is a good idea in sense of SIPconnect recommendation to send only the global E.164 numbers.

Moreover, in mixed environments with the sip:carrier Cloud PBX sharing the same domain with SIP trunking (SIP-PBX) customers

the subscribers may have different rewrite rules sets assigned to them. The difference is caused by the fact that the dialplan for

109

The sip:carrier Handbook mr5.5.7 110 / 577

Cloud PBX is fundamentally different from the dialplan for SIP trunks due to extension dialing, where the Cloud PBX subscribers

use the break-out code (see Section 16.1.2) to dial numbers outside of this PBX.

The SIPconnect compliant numbering plan can be accommodated by assigning Rewrite Rules Set to the SIP-PBX subscriber.

Below is a sample Rewrite Rule Set for using the global E.164 numbers with plus required for the calling and called number format

compliant to the recommendation.

INBOUND REWRITE RULE FOR CALLER

• Match Pattern: ˆ(00|\+)([1-9][0-9]+)$

• Replacement Pattern: \2

• Description: International to E.164

• Direction: Inbound

• Field: Caller

INBOUND REWRITE RULE FOR CALLEE

• Match Pattern: ˆ(00|\+)([1-9][0-9]+)$

• Replacement Pattern: \2

• Description: International to E.164

• Direction: Inbound

• Field: Callee

OUTBOUND REWRITE RULE FOR CALLER

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: +\1

• Description: For the calls to SIP-PBX add plus to E.164

• Direction: Outbound

• Field: Caller

OUTBOUND REWRITE RULE FOR CALLEE

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: +\1

• Description: For the calls to SIP-PBX add plus to E.164

• Direction: Outbound

110

The sip:carrier Handbook mr5.5.7 111 / 577

• Field: Callee

Assign the aforementioned Rewrite Rule Set to the SIP-PBX subscribers.

Warning

Outbound Rewrite Rules for Callee shall NOT be applied to the calls to normal SIP UAs like IP phones since the number

with plus does not correspond to their SIP username.

5.8.3.2 User parameter

The following configuration is needed for your platform to populate the From and To headers and Request-URI of the INVITE

request with "user=phone" parameter as per RFC 3261 Section 19.1.1 (if the user part of the URI contains telephone number

formatted as a telephone-subscriber).

• Domain’s Prefererences: outbound_from_user_is_phone = Y

• Domain’s Prefererences: outbound_to_user_is_phone = Y

5.8.3.3 Forwarding number

The following is our common configuration that covers the calling number presentation in a variety of use-cases, including the

incoming calls, on-net calls and Call Forward by the platform:

• Domain’s Preferences: inbound_uprn = Forwarder’s NPN

• Domain’s Preferences: outbound_from_user = UPRN (if set) or User-Provided Number

• Domain’s Preferences: outbound_pai_user = UPRN (if set) or Network-Provided Number

• Domain’s Preferences: outbound_history_info = UPRN (if the called user expects History-Info header)

• Domain’s Preferences: outbound_diversion = UPRN (if the called user expects Diversion header)

• Domain’s Preferences: outbound_to_user = Original (Forwarding) called user if the callee expects the number of the sub-

scriber forwarding the call, otherwise leave default.

The above parameters can be tuned to operator specifics as required. You can of course override these settings in the Subscriber

Preferences if particular subscribers need special settings.

Tip

On outgoing call from SIP-PBX subscriber the Network-Provided Number (NPN) is set to the cli preference prefilled with main

E.164 number. In order to have the full alias number as NPN on outgoing call set preference extension_in_npn = Y.

Externally forwarded call If the call forward takes place inside the SIP-PBX it can use one of the following specification for

signaling the diversion number to the platform:

111

The sip:carrier Handbook mr5.5.7 112 / 577

• using Diversion method (RFC 5806): configure Subscriber’s Prefererences: inbound_uprn = Forwarder’s NPN / Received

Diversion

• using History-Info method (RFC 7044): NGCP platform extends the History-Info header received from the PBX by adding

another level of indexing according to the specification RFC 7044.

5.8.3.4 Allowed CLIs

• For correct calling number presentation on outgoing calls, you should include the pattern matching all the alias numbers of

SIP-PBX or each individual alias number under the allowed_clis preference.

• If the signalling calling number (usually taken from From user-part, see inbound_upn preferences) does not match the al-

lowed_clis pattern, the user_cli or cli preference (Network-Provided Number) will be used for calling number presentation.

5.8.4 Registration

SIP-PBX can use either Static or Registration Mode. While SIPconnect 1.1 continues to require TLS support at MUST strength,

one should note that using TLS for signaling does not require the use of the SIPS URI scheme. SIPS URI scheme is obsolete for

this purpose.

Static Mode While SIPconnect 1.1 allows the use of Static mode, this poses additional maintenance overhead on the operator.

The administrator should create a static registration for the SIP-PBX: go to Susbcribers, Details→Registered Devices→Create

Permanent Registration and put address of the SIP-PBX in the following format: sip:username@ipaddress:5060 where user-

name=username portion of SIP URI and ipaddress = IP address of the device.

Registration Mode It is recommended to use the Registration mode with SIP credentials defined for the SIP-PBX subscriber.

Important

The use of RFC 6140 style "bulk number registration" is discouraged. The SIP-PBX should register one AOR with

email-style SIP URI. The sip:carrier will take care of routing the aliases to the AOR with e164_to_ruri preference.

5.8.4.1 Trusted Sources

If a SIP-PBX cannot perform the digest authentication, you can authenticate it by its source IP address in sip:carrier. To configure

the IP-based authentication, go to the subscriber’s preferences (Details→ Preferences→Trusted Sources) and specify the IP

address of the SIP-PBX in the Source IP field.

To authenticate multiple subscribers from the same IP address, use theFrom field to distinguish these subscribers.

When this feature is configured for a subscriber, the sip:carrier authenticates all calls that arrive from the specified IP address

without challenging them.

112

The sip:carrier Handbook mr5.5.7 113 / 577

Important

If the same IP address and the FROM field are mistakenly specified as trusted for different subscribers, the sip:carrier

will not know which subscriber to charge for the call and will randomly select one.

5.9 Trusted Subscribers

In some cases, when you have a device that cannot authenticate itself against sip:carrier, you may need to create a Trusted

Subscriber. Trusted Subscribers use IP-based authentication and they have a Permanent SIP Registration URI in order to receive

messages from sip:carrier.

In order to make a regular subscriber trusted, perform the following extra steps: * Create a permanent registration via (Sub-

scribers→Details→ Registered Devices→Create Permanent Registration) * Add the IP address of the device as Trusted Source

in your subscriber’s preferences (Details→Preferences→Trusted Sources).

This way, all SIP messages coming from the device IP will be considered trusted (and get authenticated just by the source IP). All

the SIP messages forwarded to the devices will be sent to the SIP URI specified in the subscriber’s permanent registration.

5.10 Peer Probing

The basic way of selecting the appropriate peering server, where an outbound call can be routed to, has already been described

in Section 4.6.2.3 of the handbook.

This chapter provides information on the peer probing feature of NGCP that is available since mr5.4.1 release.

5.10.1 Introduction to Peer Probing Feature

The Sipwise NGCP provides web admin panel and API capabilities to configure peering servers in order to terminate calls to

non-local subscribers. Those peering servers may become temporarily unavailable due to overloading or networking issues. The

NGCP will fail over to another peering server (matching the corresponding peering rules) after a timeout configured at system level

(see sems.sbc.outbound_timeout configuration parameter; 6 sec by default), if no provisional response (a response with

a code in the range of 100 to 199) is received for the outbound INVITE request.

Even if this timer is set much lower, like 3 sec, the call setup time is increased significantly. This is even more true if multiple

peering servers fail at the same time, which will sum up the individual timeouts, finally causing call setup times reach the order of

tens of seconds.

To optimize the call setup time in such scenarios, a new feature is implemented to continuously probe peering servers via SIP

messages, and mark them as unavailable on timeout or when receiving unexpected response codes. Appropriate SIP response

codes from the peering servers will mark them as available again.

Peering servers marked as unavailable are then skipped during call routing in the peering selection process, which significantly

shortens the call setup times if peering servers fail.

113

The sip:carrier Handbook mr5.5.7 114 / 577

5.10.2 Configuration of Peer Probing

The system administrator has to configure the peer probing feature in 2 steps:

1. System-level configuration enables the peer probing feature in general on the NGCP and determines the operational pa-

rameters, such as timeouts, the SIP method used for probing requests, etc.

2. Peering server configuration will add / remove a peering server to the list of probed endpoints.

5.10.2.1 System-level Configuration

The parameters of peer probing are found in the main system configuration file /etc/ngcp-config/config.yml. You can

see the complete list of configuration parameters in Section B.1.16 of the handbook, while the most significant ones are discussed

here.

Enabling peer probing system-wide happens through the kamailio.proxy.peer_probe.enable parameter. If it is set

to yes (which is the default value) then NGCP will consider probing of individual peering servers based on their settings.

Timeout of a single probing request can be defined through kamailio.proxy.peer_probe.timeout parameter. This is

a value interpreted as seconds while NGCP will wait for a SIP response from the peering server. Default is 5 seconds.

The probing interval can be set through the kamailio.proxy.peer_probe.interval parameter. This is the time

period in seconds that determines how often a probing request is sent to the peering servers. Default is 10 seconds.

The SIP method used for probing requests can be defined through kamailio.proxy.peer_probe.method parameter.

Allowed values are: OPTIONS (default) and INFO.

Tip

The system administrator, in most of the cases, will not need to modify the default configuration values other than that of timeout

and interval.

If no available peering server is found, the call is rejected with the response code and reason configured in kamailio.

proxy.early_rejects.peering_unavailable.announce_code and kamailio.proxy.early_rejects.

peering_unavailable.announce_reason. If a sound file is configured within the system sound set assigned to the

calling party, an announcement is played as early media before the rejection.

5.10.2.2 Individual Peering Server Configuration

When the peer probing feature is enabled on system-level, it is possible to add each individual peering server to the list of probed

endpoints. You can change the probed status of a server in two ways:

Enable probing of a peering server via the admin web interface

1. Open the properties panel of a peering server: Peerings→ select a peering group→ Details→ select a peering server→
Edit

114

The sip:carrier Handbook mr5.5.7 115 / 577

2. Tick the checkbox Enable Probing

3. Save changes

Figure 50: Enable Probing of Peering Server

Enable probing of a peering server via the REST API

• when you create a new peering server you will use an HTTP POST request and the target URL: https://<IP_of_NGCP>:1443/-

api/peeringservers

• when you update an existing peering server you will use an HTTP PUT or PATCH request and the target URL: https://<IP_of_NGCP>:1443/-

api/peeringservers/id

In all cases you have to set the probe property to true in order to enable probing, and to false in order to disable probing.

Default value is false and this property may be omitted in a create/update request, which ensures backward compatibility of the

/api/peeringservers API resource.

115

https://<IP_of_NGCP>:1443/api/peeringservers
https://<IP_of_NGCP>:1443/api/peeringservers
https://<IP_of_NGCP>:1443/api/peeringservers/id
https://<IP_of_NGCP>:1443/api/peeringservers/id

The sip:carrier Handbook mr5.5.7 116 / 577

5.10.3 Monitoring of Peer Probing

Peering server states, such as "reachable" / "unreachable", are continuously stored in a time-series database (InfluxDB type) by

NGCP Proxy nodes. It is possible to graphically represent the state of peering servers on NGCP’s admin web interface, just

like other system variables (like CPU and memory usage, number of registered subscribers, etc.). However this is not available by

default and must be configured by Sipwise.

State changes of peering servers are also reported by means of SNMP traps. Each time the reachable state of one of the

monitored peering servers changes, NGCP will send an SNMP trap, raising or clearing the alarm.

The Sipwise MIB is extended by a table of peers per proxy, containing the peer ID and the peer name, along with the peer probe

status. An external monitoring system can poll the peers table via SNMP to gather the peer status from each proxy’s point of

view.

The peer status can be obtained through the following route / OID:

...enterprises.sipwise.ngcp.ngcpObjects.ngcpMonitor.ngcpMonitorPeering.psTable.psEntry. ←↩
psPeerStatus

.1.3.6.1.4.1.34274.1.1.2.40.2.1.7

Value of psPeerStatus can be:

• 0: unknown

• 1: administratively down

• 2: administratively up

• 3: probed, pending

• 4: probed, down

• 5: probed, up

5.10.4 Further Details for Advanced Users

Tip

This subchapter of the handbook is targeted on advanced system operators and Sipwise engineers and is not necessary to

read in order to properly manage peer probing feature of NGCP.

5.10.4.1 Behaviour of Kamailio Proxy Instances

Each kamailio-proxy instance on the proxy nodes performs the probing individually for performance reasons. Each proxy holds its

result in its cache to avoid central storage and replication of the probing results. Each proxy will send an SNMP trap if it detects

a state change for a peering server, because proxies might be geographically distributed along with their load-balancers and can

therefore experience different probing results.

116

The sip:carrier Handbook mr5.5.7 117 / 577

Each peering server is cross-checked against the hash table filled during outbound probing requests and is skipped by call routing

logic, if a match is found.

On start or restart of the kamailio-proxy instance, the probing will start after the first interval, and NOT immediately after start. In

the first probing interval the proxy will always try to send call traffic to peering servers until the first probing round is finished, and

will only then start to skip unavailable peering servers.

5.10.4.2 Changes to Kamailio Proxy Configuration

A new configuration template: /etc/ngcp/config/templates/etc/kamailio/proxy/probe.cfg.tt2 is intro-

duced to handle outbound probing requests.

5.10.4.3 Database Changes

A new DB column: provisioning.voip_peer_hosts.probewith type TINYINT(1) (boolean) is added to the DB schema.

A peer status change will populate the kamailio.dispatcher table, inserting the SIP URI in format sip:$ip:$port;

transport=$transport in dispatcher group 100, which defines the probing group for peering servers.

Also the kamailio.dispatcher.attrs column is populated with a parameter peerid=$id. This ID is used during

probing to load the peer preferences: outbound_socket and lbrtp_set, that are required to properly route the probing

request.

5.11 Fax Server

There is a Fax Server included in the sip:carrier. The following sections describe its architecture.

The Fax Server is included on the platform and requires no additional hardware. It supports both T38 and G711 codecs and

provides a cost-effective paper-free office solution.

For the details of Fax Server configuration options, please see Faxserver Configuration Appendix C chapter in this handbook.

5.11.1 Fax2Mail Architecture

To receive faxes via email, a phone call from a sender is connected to the fax application module (Asterisk + NGCP Fax Server)

on the sip:carrier. The received fax document is converted to the format the receiver has configured (either PS, PDF or TIFF) via

the components outlined in the figure below. The email is delivered to one or more configured addresses.

117

The sip:carrier Handbook mr5.5.7 118 / 577

5.11.2 Sendfax and Mail2Fax Architecture

To send faxes via the sip:carrier a sender can use any email client or an interface such as Webfax or REST API.

Currently, supported formats are TXT, PS, TIFF and PDF.

The document is sent to the NGCP Fax Server instance on the sip:carrier. Once successfully queued by the fax server, it is

converted to an internal TIFF format and is sent via the components outlined in the below figure to the specified phone number.

Of course, a fax device that can receive the document must be connected on the destination side.

118

The sip:carrier Handbook mr5.5.7 119 / 577

5.12 Voicemail System

5.12.1 Accessing the IVR Menu

For a subscriber to manage his voicebox via IVR, there are two ways to access the voicebox. One is to call the URI voicebox@

yourdomain from the subscriber itself, allowing password-less access to the IVR, as the authentication is already done on SIP

level. The second is to call the URI voiceboxpass@yourdomain from any number, causing the system to prompt for a

mailbox and the PIN. The PIN can be set in the Voicemail and Voicebox section of the Subscriber Preferences.

5.12.1.1 Mapping numbers and codes to IVR access

Since access might need to be provided from external networks like PSTN/Mobile, and since certain SIP phones do not support

calling alphanumeric numbers to dial voicebox, you can map any number to the voicebox URIs using rewrite rules.

To do so, you can provision a match pattern e.g. ˆ(00|\+)12345$ with a replace pattern voicebox or voiceboxpass to

map a number to either password-less or password-based IVR access respectively. Create a new rewrite rule with the Inbound

direction and the Callee field in the corresponging rewrite rule set.

For inbound calls from external networks, assign this rewrite rule set to the corresponding incoming peer. If you also need to map

numbers for on-net calls, assign the rewrite rule set to subscribers or the whole SIP domain.

5.12.1.2 External IVR access

When reaching voiceboxpass, the subscriber is prompted for her mailbox number and a password. All numbers assigned to

a subscriber are valid input (primary number and any alias number). By default, the required format is in E.164, so the subscriber

needs to enter the full number including country code, for example 4912345 if she got assigned a German number.

You can globally configure a rewrite rule in config.yml using asterisk.voicemail.normalize_match and aster

119

The sip:carrier Handbook mr5.5.7 120 / 577

isk.voicemail.normalize_replace, allowing you to customize the format a subscriber can enter, e.g. having ˆ0([1-

9][0-9]+)$ as match part and 49$1 as replace part to accept German national format.

5.12.2 IVR Menu Structure

The following list shows you how the voicebox menu is structured.

• 1 Read voicemail messages

– 3 Advanced options

* 3 To Hear messages Envelope

* * Return to the main menu

– 4 Play previous message

– 5 Repeat current message

– 6 Play next message

– 7 Delete current message

– 9 Save message in a folder

* 0 Save in new Messages

* 1 Save in old Messages

* 2 Save in Work Messages

* 3 Save in Family Messages

* 4 Save in Friends Messages

* # Return to the main menu

• 2 Change folders

– 0 Switch to new Messages

– 1 Switch to old Messages

– 2 Switch to Work Messages

– 3 Switch to Family Messages

– 4 Switch to Friends Messages

– # Get Back

• 3 Advanced Options

– * To return to the main menu

• 0 Mailbox options

– 1 Record your unavailable message

* 1 accept it

* 2 Listen to it

120

The sip:carrier Handbook mr5.5.7 121 / 577

* 3 Rerecord it

– 2 Record your busy message

* 1 accept it

* 2 Listen to it

* 3 Rerecord it

– 3 Record your name

* 1 accept it

* 2 Listen to it

* 3 Rerecord it

– 4 Record your temporary greetings

* 1 accept it / or re-record if one already exist

* 2 Listen to it / or delete if one already exist

* 3 Rerecord it

– 5 Change your password

– * To return to the main menu

• * Help

• # Exit

5.12.3 Type Of Messages

A message/greeting is a short message that plays before the caller is allowed to record a message. The message is intended to

let the caller know that you are not able to answer their call. It can also be used to convey other information like when you will be

available, other methods to contact you, or other options that the caller can use to receive assistance.

The IVR menu has three types of greetings.

5.12.3.1 Unavailable Message

The standard voice mail greeting is the "unavailable" greeting. This is used if you don’t answer the phone and so the call is directed

to your voice mailbox.

• You can record a custom unavailable greeting.

• If you have not recorded your unavailable greeting but have recorded your name, the system will play a generic message like:

"Recorded name is unavailable."

• If you have not recorded your unavailable greeting, the phone system will play a generic message like: "Digits-of-num

ber-dialed is unavailable".

121

The sip:carrier Handbook mr5.5.7 122 / 577

5.12.3.2 Busy Message

If you wish, you can record a custom greeting used when someone calls you and you are currently on the phone. This is called

your "Busy" greeting.

• You can record a custom busy greeting.

• If you have not recorded your busy greeting but have recorded your name, the phone system will play a generic message:

"Recorded name is busy."

• If you have not recorded your busy greeting and have not recorded your name (see below), the phone system will play a generic

message: "Digits-of-number-dialed is busy."

5.12.3.3 Temporary Greeting

You can also record a temporary greeting. If it exists, a temporary greeting will always be played instead of your "busy" or

"unavailable" greetings. This could be used, for example, if you are going on vacation or will be out of the office for a while and

want to inform people not to expect a return call anytime soon. Using a temporary greeting avoids having to change your normal

unavailable greeting when you leave and when you come back.

5.12.4 Folders

The Voicemail system allows you to save and organize your messages into folders. There can be up to ten folders.

5.12.4.1 The Default Folder List

• 0 - New Messages

• 1 - Old Messages

• 2 - Work Messages

• 3 - Family Messages

• 4 - Friends Messages

When a caller leaves a message for you,the system will put the message into the "New Messages" folder. If you listen to the

message, but do not delete the message or save the message to a different folder, it will automatically move the message to

the "Old Messages" folder. When you first log into your mailbox, the Voicemail System will make the "New Messages" folder the

current folder if you have any new messages. If you do not have any new messages the it will make the "Old Messages" folder the

current folder.

5.12.5 Voicemail Languages Configuration

To add a new language or to change the pronunciation for an existing one, ensure that mode=new is defined in /etc/ngcp-

config/templates/etc/asterisk/say.conf.tt2. Adjust the configuration in the same file using the manual in the beginning. Then, as

usual, make the new configuration active.

122

The sip:carrier Handbook mr5.5.7 123 / 577

5.12.6 Flowcharts with Voice Prompts

This section shows flowcharts of calls to the voicemail system. Flowcharts contain the name of prompts as they are identified

among Asterisk voice prompts.

123

The sip:carrier Handbook mr5.5.7 124 / 577

5.12.6.1 Listening to New Messages

Figure 51: Flowchart of Listening to New Messages

124

The sip:carrier Handbook mr5.5.7 125 / 577

5.12.6.2 Changing Voicemail Folders

Figure 52: Flowchart of Changing Voicemail Folders

125

The sip:carrier Handbook mr5.5.7 126 / 577

5.12.6.3 Mailbox Options

Figure 53: Flowchart of Changing Mailbox Options

126

The sip:carrier Handbook mr5.5.7 127 / 577

5.12.6.4 Leaving a Message

Figure 54: Flowchart of Leaving a Voice Message

127

The sip:carrier Handbook mr5.5.7 128 / 577

5.13 Configuring Subscriber IVR Language

The language for the Voicemail system IVR or Vertical Service Codes (VSC) IVRs may be set using the subscriber or domain

preference language.

The sip:carrier provides the pre-installed prompts for the Voicemail in the English, Spanish, French and Italian languages and the

pre-installed prompts for the Vertical Service Codes IVRs in English only.

The other IVRs such as the Conference system and the error announcements use the Sound Sets configured in NGCP Panel and

uploaded by the administrator in his language of choice.

5.14 Sound Sets

The sip:carrier provides the administrator with ability to upload the voice prompts such as conference prompts or call error an-

nouncements on the Sound Sets page. There is a preference sound_set in the NAT and Media Flow Control section on Domain

and Subscriber levels to link subscribers to the sound set that they should hear (as usual the subscriber preference overrides the

domain one). Sound Sets can be defined in Settings→Sound Sets. To create a new Sound Set, click Create Sound Set. Then

click the Files button.

128

The sip:carrier Handbook mr5.5.7 129 / 577

Note

You may use 8 or 16 bit mono WAV audio files for all of the voice prompts.

5.14.1 Configuring Early Reject Sound Sets

The call error announcements are grouped under Early Rejects section. Unfold the section and click Upload next to the sound

handles (Names) that you want to use. Choose a WAV file from your file system, and click the Loopplay setting if you want to play

the file in a loop instead of just once. Click Save to upload the file.

129

The sip:carrier Handbook mr5.5.7 130 / 577

The call error announcements are played to the user in early media hence the name "Early Reject". If you don’t provide the sound

files for any handles they will not be used and the sip:carrier will fallback to sending the error response code back to the user.

The exact error status code and text are configurable in the /etc/ngcp-config/config.yml file, in kamailio.proxy.

early_rejects section. Please look for the announcement handle listed in below table in order to find it in the configuration

file.

Table 3: Early Reject Announcements

Handle Description Message played

announce_before_cf This is an announcement that the calling party

hears before the call is being forwarded

(Unconditional and Not Available cases) to the

destination. The feature can be activated with

Applications /

play_announce_before_cf domain or

subscriber preference.

N/A (custom message,

no default)

block_in This is what the calling party hears when a call

is made from a number that is blocked by the

incoming block list (adm_block_in_list,

block_in_list customer/subscriber

preferences)

Your call is blocked by

the number you are

trying to reach.

130

The sip:carrier Handbook mr5.5.7 131 / 577

Table 3: (continued)

Handle Description Message played

block_out This is what the calling party hears when a call

is made to a number that is blocked by the

outgoing block list (adm_block_out_list,

block_out_list customer/subscriber

preferences)

Your call to the number

you are trying to reach

is blocked.

block_ncos This is what the calling party hears when a call

is made to a number that is blocked by the

NCOS level assigned to the subscriber or

domain (the NCOS level chosen in ncos and

adm_ncos preferences). PLEASE NOTE: It is

not possible to configure the status code and

text.

Your call to the number

you are trying to reach

is not permitted.

block_override_pin_wrong Announcement played to calling party if it

used wrong PIN code to override the outgoing

user block list or the NCOS level for this call

(the PIN set by block_out_override_pin and

adm_block_out_override_pin preferences)

The PIN code you have

entered is not correct.

callee_busy Announcement played on incoming call to the

subscriber which is currently busy (486

response from the UAS)

The number you are

trying to reach is

currently busy. Please

try again later.

callee_offline Announcement played on incoming call to the

subscriber which is currently not registered

The number you are

trying to reach is

currently not available.

Please try again later.

callee_tmp_unavailable Announcement played on incoming call to the

subscriber which is currently unavailable (408,

other 4xx or no response code or 30x with

malformed contact)

The number you are

trying to reach is

currently not available.

Please try again later.

callee_unknown Announcement that is played on call to

unknown or invalid number (not associated

with any of our subscribers/hunt groups)

The number you are

trying to reach is not in

use.

cf_loop Announcement played when the called

subscriber has the call forwarding configured

to itself

The number you are

trying to reach is

forwarded to an invalid

destination.

131

The sip:carrier Handbook mr5.5.7 132 / 577

Table 3: (continued)

Handle Description Message played

emergency_geo_unavailable Announcement played when emergency

destination is dialed but the destination is not

provisioned for the location of the user.

PLEASE NOTE: The configuration entry for

this case in /etc/ngcp-config/

config.yml file is

emergency_invalid.

The emergency

number you have

dialed is not available

in your region.

emergency_unsupported Announcement played when emergency

destination is dialed but the emergency calls

are administratively prohibited for this user or

domain (reject_emergency preference is

enabled)

You are not allowed to

place emergency calls

from this line. Please

use a different phone.

error_please_try_later Announcement played when the call is

handled by 3rd party call control (PCC) and

there was an error during call processing.

PLEASE NOTE: This announcement may be

configured in the sound set in

voucher_recharge section.

An error has occured.

Please try again later.

invalid_speeddial This is what the calling party hears when it

calls an empty speed-dial slot

The speed dial slot you

are trying to use is not

available.

locked_in Announcement played on incoming call to

a subscriber that is locked for incoming calls

The number you are

trying to reach is

currently not permitted

to receive calls.

locked_out Announcement played on outgoing call

to subscriber that is locked for outgoing calls

You are currently not

allowed to place

outbound calls.

max_calls_in Announcement played on incoming call to a

subscriber who has exceeded

the concurrent_max limit by sum of incoming

and outgoing calls or whose customer has

exceeded the concurrent_max_per_account

limit by sum of incoming and outgoing calls

The number you are

trying to reach is

currently busy. Please

try again later.

max_calls_out Announcement played on outgoing call to

a subscriber who has exceeded

the concurrent_max (total limit) or

concurrent_max_out (limit on number of

outbound calls) or whose customer has

exceeded the concurrent_max_per_account

or concurrent_max_out_per_account limit

All outgoing lines are

currently in use.

Please try again later.

132

The sip:carrier Handbook mr5.5.7 133 / 577

Table 3: (continued)

Handle Description Message played

max_calls_peer Announcement played on calls from the

peering if that peer has reached the maximum

number of concurrent calls (configured by

admin in concurrent_max preference of

peering server). PLEASE NOTE: There is no

configuration option of the status code and

text in config.yml file for this case.

The network you are

trying to reach is

currently busy. Please

try again later.

no_credit Announcement played when prepaid account

has insufficient balance to make a call to this

destination

You don’t have

sufficient credit

balance for the number

you are trying to reach.

peering_unavailable Announcement played in case of

outgoing off-net call when there is no peering

rule matching this destination and/or source

The network you are

trying to reach is not

available.

reject_vsc When the VSC (Vertical Service Code) service

is disabled in domain or subscriber

preferences (Access Restrictions /

reject_vsc is set to TRUE) and a

subscriber tries to make a call with VSC, an

announcement is played.

N/A (custom message,

no default)

relaying_denied Announcement played on inbound call from

trusted IP (e.g. external PBX) with non-local

Request-URI domain

The network you are

trying to reach is not

available.

unauth_caller_ip This is what the calling party hears when it

tries to make a call from unauthorized IP

address or network (allowed_ips,

man_allowed_ips preferences)

You are not allowed to

place calls from your

current network

location.

voicebox_unavailable PLEASE NOTE: This announcement is

already obsolete, as of NGCP version mr5.3

The voicemail of the

number you are trying

to reach is currently

not available. Please

try again later.

There are some early reject scenarios when either no voice announcement is played, or a fixed announcement is played. In

either case a SIP error status message is sent from NGCP to the calling party. It is possible to configure the exact status code

and text for such cases in the /etc/ngcp-config/config.yml file, in kamailio.proxy.early_rejects section.

The below table gives an overview of those early reject cases.

133

The sip:carrier Handbook mr5.5.7 134 / 577

Table 4: Additional Early Reject Reason Codes

Handle Description

block_admin Caller blocked by adm_block_in_list,

adm_block_in_clir and callee blocked

by adm_block_out_list (customer or

subscriber preference)

block_callee Callee blocked by subscriber preference

block_out_list

block_caller Caller blocked by subscriber preference

block_in_list, block_in_clir

block_contract Caller blocked by customer preference

block_in_list, block_in_clir and

callee blocked by customer preference

block_out_list

callee_tmp_unavailable_gp Callee is a PBX group with 0 members.

Announcement

callee_tmp_unavailable is played;

status code and text can be configured.

callee_tmp_unavailable_tm Callee is a PBX group and we have a timeout

(i.e. no group member could be reached).

Announcement

callee_tmp_unavailable is played;

status code and text can be configured.

emergency_invalid PLEASE NOTE: This handle refers to the

same early reject case as

emergency_geo_unavailable, but is

labeled differently in the configuration file.

5.15 Conference System

The sip:carrier provides the simple pin-protected conferencing service built using the SEMS DSM scripting language. Hence it is

open for all kinds of modifications and extensions.

Template files for the sems conference scripts stored in /etc/ngcp-config/templates/etc/ngcp-sems/ :

• IVR script: /etc/ngcp-config/templates/etc/ngcp-sems/dsm/confpin.dsm.tt2

• Config: /etc/ngcp-config/templates/etc/ngcp-sems/dsm/confpin.conf.tt2

134

The sip:carrier Handbook mr5.5.7 135 / 577

5.15.1 Configuring Call Forward to Conference

Go to your Subscriber Preferences and click Edit on the Call Forward Type you want to set (e.g. Call Forward Unconditional).

You should select Conference option in the Destination field and leave the URI/Number empty. The timeout defines for how long

this destination should be tried to ring.

5.15.2 Configuring Conference Sound Sets

Sound Sets can be defined in Settings→Sound Sets. To create a new Sound Set, click Create Sound Set. Then click the Files

button.

135

The sip:carrier Handbook mr5.5.7 136 / 577

Upload the following files:

Table 5: Conference Sound Sets

Handle Message played

conference_greeting Welcome to the conferencing service.

conference_pin Please enter your PIN, followed by the pound key.

conference_pin_wrong You have entered an invalid PIN number. Please try again.

conference_joined You will be placed into the conference.

conference_first You are the first person in the conference.

conference_join A person has joined the conference.

conference_leave A person has left the conference.

conference_max_participants All conference lines are currently in use. Please try again

later.

conference_waiting_music . . . waiting music. . .

goodbye Goodbye.

Note

You may use 8 or 16 bit mono WAV audio files.

Then set the preference sound_set on the Domain or Subscriber level in order to assign the Sound Set you have just created to

the subscriber (as usual the subscriber preference overrides the domain one).

136

The sip:carrier Handbook mr5.5.7 137 / 577

5.15.3 Joining the Conference

There are 2 ways of joining a conference: with or without PIN code. The actual way of joining the conference depends on

Subscriber settings. A subscriber who has activated the conference through call forwarding may set a PIN in order to protect the

conference from unauthorized access. To activate the PIN one has to enter a value in Subscriber→ Details→ Preferences→
Internals→ conference_pin field.

Figure 55: Setting Conference PIN

In case the PIN protection for the conference is activated, when someone calls the subscriber who has enabled the conference, the

caller is prompted to enter the PIN of the conference. Upon the successful entry of the PIN the caller hears the announcement that

he is going to be placed into the conference and at the same time this is announced to all participants already in the conference.

5.15.4 Conference Flowchart with Voice Prompts

The following 2 sections show flowcharts with voice prompts that are played to a caller when he dials the conference.

137

The sip:carrier Handbook mr5.5.7 138 / 577

5.15.4.1 Conference Flowchart with PIN Validation

Figure 56: Flowchart of Conference with PIN Validation

138

The sip:carrier Handbook mr5.5.7 139 / 577

5.15.4.2 Conference Flowchart without PIN

Figure 57: Flowchart of Conference without PIN

5.16 Malicious Call Identification (MCID)

MCID feature allows customers to report unwanted calls to the platform operator.

5.16.1 Setup

To enable the feature first edit config.yml and enable there apps: malicious_call: yes and kamailio: st

ore_recentcalls: yes. The latter option enables kamailio to store recent calls per subscrbriber UUID in the redis DB

(the amount of stored recent calls will not exceed the amount of provisionined subscribers).

Next step is to create a system sound set for the feature. In Settings→Sound Sets either use your already existing Sound Set or

create a new Sound Set and then assign it to your domain or subscribers. In the Sound Set there is a fileset malicious_call_identification→mailicious_call_report

for that purpose.

Once the Sound Set is created the Subscriber’s Preferences Malicious Call Identification must be enabled under Subcriber →
Preferences→ Applications menu. The same parameter can be set in the Customer’s preferences to enable this feature for all its

subscribers.

The final step is to create a new Rewrite Rule and to route calls to, for instance *123 → MCID application. For that you

create a Calee Inbound rewrite rule ˆ(*123)$→ malicious_call

Finaly you run ngcpcfg apply Enabling MCID to recreate the templates and automatically restart depended services.

139

The sip:carrier Handbook mr5.5.7 140 / 577

5.16.2 Usage

As a subscriber, to report a malicious call you call to either malicious_call or to your custom number assigned for that purpose.

Please note that you can report only your last received call. You will hear the media reply from the Sound Set you have previosuly

configured.

To check reported malicious calls as the plafrom operator open Settings→Malicious Calls tab where you will see a list of registered

calls. You can selectively delete records from the list and alternatively you can manage the reported calls by using the REST API.

5.16.3 Advanced configuration

By default the expiration time for the most recent call per subscriber is 3600 seconds (1 hour). If you wish to prolong or shorten

the expiration time open constants.yml and set there recentcalls: expire: 3600 to a new value, and issue

ngcpcfg apply Enabling MCID afterwards.

5.17 Subscriber Profiles

The preferences a subscriber can provision by himself via the CSC can be limited via profiles within profile sets assigned to

subscribers.

5.17.1 Subscriber Profile Sets

Profile sets define containers for profiles. The idea is to define profile sets with different profiles by the administrator (or the reseller,

if he is permitted to do so). Then, a subscriber with administrative privileges can re-assign profiles within his profile sets for the

subscribers of his customer account.

Profile Sets can be defined in Settings→Subscriber Profiles. To create a new Profile Set, click Create Subscriber Profile Set.

140

The sip:carrier Handbook mr5.5.7 141 / 577

You need to provide a reseller, name and description.

To create Profiles within a Profile Set, hover over the Profile Set and click the Profiles button.

Profiles within a Profile Set can be created by clicking the Create Subscriber Profile button.

141

The sip:carrier Handbook mr5.5.7 142 / 577

Checking the Default Profile option causes this profile to get assigned automatically to all subscribers, who have the profile set

assigned. Other options define the user preferences which should be made available to the subscriber.

Note

When the platform administrator selects Preferences of the Subscriber Profile he will get an empty page like in the picture

below, if none or only certain options are selected in the Subscriber Profile.

Some of the options, like ncos (NCOS level), will enable the definition of that preference within the Subscriber Profile Preferences.

Thus all subscribers who have this profile assigned to will have the preference activated by default. The below picture shows the

preferences linked to the sample Subscriber Profile:

142

The sip:carrier Handbook mr5.5.7 143 / 577

5.18 SIP Loop Detection

In order to detect a SIP loop (incoming call as a response for a call request) sip:carrier checks the combination of SIP-URI, To

and From headers.

This check can be enabled in config.yml by setting kamailio.proxy.loop_detection.enable: ’yes’. The system tolerates kamailio.proxy.loop_detection.max

loops within kamailio.proxy.loop_detection.expire seconds. Higher occurrence of loops will be reported with a SIP 482 "Loop De-

tected" error message

5.19 Call-Through Application

Call-through allows telephony client to dial into an IVR system and specify (in two-stage dialing fashion) a new destination number

which is then dialed by the sip:carrier to connect the client to the destination. As the call-through system needs to be protected

from unauthorized use, a list of CLIs which are allowed to use the call-through system is stored in the sip:carrier platform.

Table 6: Call-Through Mappings

Column Description

uuid The internal UUID of the call-through subscriber

auth_key Authentication key (CLI)

source_uuid The internal UUID of the subscriber that is authorized for

outgoing call leg (same as uuid in call-through scenario)

143

The sip:carrier Handbook mr5.5.7 144 / 577

5.19.1 Administrative Configuration

5.19.1.1 Subscriber provisioning

In order to manage the call-through CLIs for subscriber, navigate to Settings→Subscribers, search for the subscriber you want to

edit, press Details and then Preferences, scroll down to the Callthrough CLIs section and press Edit Callthrough CLIs button.

Using the NGCP Panel the user then creates Call Forward to destination Call Through.

5.19.1.2 Forward to local user

If the subscriber has a Call Forward to the call-through application but caller’s CLI is not in the authorized CLIs list for call-through,

sems responds with error back to proxy and proxy advances to the next number in the Call Forward destinations set. User can

enter special destination Local Subscriber as next target after Call Through in the destinations set in order to terminate the call to

the subscriber as if the subscriber didn’t exist. This way the user may reach the call-through application from his authorized CLI

(e.g. mobile number) and all other callers would reach the SIP subscriber’s registered phone as usual.

144

The sip:carrier Handbook mr5.5.7 145 / 577

5.19.1.3 Sound Set provisioning

In order for the Callthrough application to work a Sound Set must be created and associated with the Domain or Subscriber.

Sound Sets can be defined in Settings→Sound Sets. To create a new Sound Set, click Create Sound Set. Then click the Files

button. Administrator can upload the default sounds in one of supported languages or uploaded by the administrator manually in

his language of choice.

There is a preference sound_set on Domain and Subscriber levels to link subscribers to the sound set that they should hear (as

usual the subscriber preference overrides the domain one).

145

The sip:carrier Handbook mr5.5.7 146 / 577

Note

You may use 8 or 16 bit mono WAV audio files for all of the voice prompts.

5.19.2 Call Flow

The call arrives at sems application server with Request-URI user callthrough.

5.19.2.1 Internal Header Parameters

The INVITE contains an extra SIP header P-App-Param with the following parameters:

Table 7: SIP Header parameters for call-through application

Name Meaning

uuid The internal UUID of the call-through subscriber

146

The sip:carrier Handbook mr5.5.7 147 / 577

Table 7: (continued)

Name Meaning

srcnumber Caller’s CLI for the authentication

outgoing_cli New CLI to be used by sems application for the outgoing

call leg

5.19.2.2 Caller authorization

Caller is authorized using mapping shown in table above: select source_uuid from provisioning.voip_cc_ma

pping where uuid=$uuid and auth_key=$srcnumber;

If the check fails return the configured error response code. Then proceed with the call setup as follows.

5.19.2.3 Outgoing call

Sems requests the user to enter destination and starts digit collection. Digit collection process is terminated after 5 seconds

(configurable in sems config file) or by pressing the # key. User can start entering destination while the voice prompt is being

played.

Sems sends INVITE to the proxy with Request-URI: sip:$number@$outboundproxy;sw_domain=$subscriber.

domain

From: $outgoing_cli

On receiving the 401 or 407 response from the proxy the application authenticates using the digest credentials retrieved for the call-

through subscriber from the voip_subscribers table:select s.username, s.password, d.domain from pr

ovisioning.voip_subscribers s, provisioning.voip_domains d where s.uuid=$source_uuid a

nd s.domain_id=d.id;

If the call setup fails the application plays back the "could_not_connect" sound file. If successful the application acts transparently

and does not provide any voice announcements or DTMF detection.

5.19.2.4 CLI configuration

The CLI on the outgoing call from the call-through module is set to the Network-Provided Number (NPN) of the call-through

subscriber. There is nothing to configure.

5.20 Calling Card Application

Calling card application uses a similar concept to call-through except that authorization process operates on the PIN code entered

by user using DTMF instead of the CLI. The sip:carrier maps incoming UUID of the pilot subscriber to the list of PINs for calling card

147

The sip:carrier Handbook mr5.5.7 148 / 577

application with their corresponding subscriber UUIDs for outbound call leg using table provisioning.voip_cc_mapping

table {"uuid", "auth_key", "source_uuid"}

Table 8: Calling Cards

Column Description

uuid The internal UUID of the pilot subscriber

auth_key Authentication key (PIN)

source_uuid The internal UUID of the subscriber that is authorized for

outgoing call leg

5.20.1 Administrative Configuration

5.20.1.1 Subscriber provisioning

In order to use the calling cards service the user creates a Call Forward to destination Calling Card for the designated subscriber

that will be used as access number for this service.

5.20.1.2 Sound Set provisioning

In order for the Calling Card application to work a Sound Set must be created and associated with the Domain or Subscriber.

Sound Sets can be defined in Settings→Sound Sets. To create a new Sound Set, click Create Sound Set. Then click the Files

button. Administrator can upload the default sounds in one of supported languages or uploaded by the administrator manually in

his language of choice.

There is a preference sound_set on Domain and Subscriber levels to link subscribers to the sound set that they should hear (as

usual the subscriber preference overrides the domain one).

148

The sip:carrier Handbook mr5.5.7 149 / 577

Note

You may use 8 or 16 bit mono WAV audio files for all of the voice prompts.

5.20.1.3 CLI configuration

The CLI on the outgoing call from the calling card app can be configured in one of the following ways using subscriber preferences:

1) Show original caller’s CLI: the calling card subscriber shall have allowed_clis: * (any). Sems application sends the

original caller’s CLI in the From header, it is validated by the SIP proxy and sent to outside.

2) Show number of the pilot (calling card) subscriber: the calling card subscriber shall have an empty allowed_clis and

desired number set as value of user_cli preference. The SIP proxy overrides the original caller’s CLI in UPN with the value

of the user_cli preference. The peer must have set outbound_from_user, outbound_from_display: User-

Provided Number (UPN).

149

The sip:carrier Handbook mr5.5.7 150 / 577

5.20.2 Call Flow

The call arrives at sems application server with Request-URI user callingcard.

5.20.2.1 Internal Header Parameters

The INVITE contains an extra SIP header P-App-Param with the following parameters:

Table 9: SIP Header parameters for calling card application

Name Meaning

uuid The internal UUID of the pilot subscriber

outgoing_cli New CLI to be used by sems application for the outgoing

call leg

5.20.2.2 Caller authorization

• Sems requests the user to enter PIN and starts digit collection. Digit collection process is terminated after 5 seconds (con-

figurable in sems config file) or by pressing the # key. User can start entering destination while the voice prompt is being

played.

• Sems checks that PIN is valid and belongs to the pilot subscriber using mapping as shown in the table. It fetches UUID of

the subscriber to be used for outgoing call leg: select source_uuid from provisioning.voip_cc_mapping

where uuid=$uuid and auth_key=$pin;

• If the check fails sems will request the user to re-enter PIN up to the configured number of times.

• If successful proceed with the call setup making call on behalf of subscriber determined by the source_uuid key as follows.

5.20.2.3 Outgoing call

Sems application plays back the available balance of the customer. Sems requests the user to enter destination and starts digit

collection. Digit collection process is terminated after 5 seconds (configurable in sems config file) or by pressing the # key. User

can start entering destination while the voice prompt is being played.

Sems sends INVITE to the proxy with Request-URI: sip:$number@$outboundproxy;sw_domain=$subscriber.

domain

From: $outgoing_cli

On receiving the 401 or 407 response from the proxy the application authenticates using the digest credentials retrieved for the sub-

scriber for outgoing call leg from the voip_subscribers table: select s.username, s.password, d.domain f

rom provisioning.voip_subscribers s, provisioning.voip_domains d where s.uuid=$source_

uuid and s.domain_id=d.id;

150

The sip:carrier Handbook mr5.5.7 151 / 577

5.20.2.4 Voucher recharge

During the destination collection phase in calling card application user can enter special code *1*<pin># (configurable in sems

config file) to transfer balance from other calling card customer to the currently authorized customer. Sems transfers all remaining

balance from that customer to the current customer.

5.20.2.5 Billing

The call via calling card application as well as call-through generates three CDRs:

• A to B: The incoming call from any source to the call-through subscriber.

• B to callingcard@app.local or callthrough@app.local: The call forward to the sems application.

• B to C: The outgoing call to the final destination. The three CDRs are handled by the billing process as usual, exported and

shown in all call lists. .

5.21 Invoices and Invoice Templates

Content and vision of the invoices are customizable by invoice templates Section 5.21.2.

Note

The sip:carrier generates invoices in pdf format.

5.21.1 Invoices Management

Invoices can be requested for generation, searched, downloaded and deleted in the invoices interface.

151

The sip:carrier Handbook mr5.5.7 152 / 577

To request invoice generation for the particular customer and period press "Create invoice" button. On the invoice creation form

following parameters are available for selection:

• Template: any of existent invoice template can be selected for the invoice generation.

• Customer: owner of the billing account, recipient of the invoice.

• Invoice period: billing period. Can be specified only as one calendar month. Calls with start time between first and last second

of the period will be considered for the invoice

All form fields are mandatory.

152

The sip:carrier Handbook mr5.5.7 153 / 577

Generated invoice can be downloaded as pdf file.

To do it press button "Download" against invoice in the invoice management interface.

Respectively press on the button "Delete" to delete invoice.

5.21.2 Invoice Templates

Invoice template defines structure and look of the generated invoices. The sip:carrier makes it possible to create some invoice

templates. Multiple invoice templates can be used to send invoices to the different customers using different languages.

153

The sip:carrier Handbook mr5.5.7 154 / 577

Important

At least one invoice template should be created to enable invoice generation. Each customer has to be associated to

one of the existent invoice template, otherwise invoices will be not generated for this customer.

Customer can be linked to the invoice template in the customer interface.

5.21.2.1 Invoice Templates Management

Invoice templates can be searched, created, edited and deleted in the invoice templates management interface.

Invoice template creation is separated on two steps:

• Register new invoice template meta information.

• Edit content (template itself) of the invoice template.

To register new invoice template press "Create Invoice Template" button.

On the invoice template meta information form following parameters can be specified:

• Reseller: reseller who owns this invoice template. Please note, that it doesn’t mean that the template will be used for the reseller

customers by default. After creation, invoice template still need to be linked to the reseller customers.

• Name: unique invoice template name to differentiate invoice templates if there are some.

• Type: currently sip:carrier supports only svg format of the invoice templates.

154

The sip:carrier Handbook mr5.5.7 155 / 577

All form fields are mandatory.

After registering new invoice template you can change invoice template structure in WYSIWYG SVG editor and preview result of

the invoice generation based on the template.

5.21.2.2 Invoice Template Content

Invoice template is a XML SVG source, which describes content, look and position of the text lines, images or other invoice

template elements. The sip:carrier provides embedded WYSIWYG SVG editor svg-edit 2.6 to customize default template. The

sip:carrier svg-edit has some changes in layers management, image edit, user interface, but this basic introduction still may be

useful.

Template refers to the owner reseller contact ("rescontact"), customer contract ("customer"), customer contact ("custcontact"),

billing profile ("billprof"), invoice ("invoice") data as variables in the "[%%]" mark-up with detailed information accessed as field

name after point e.g. [%invoice.serial%]. During invoice generation all variables or other special tokens in the "[% %]" mark-ups

will be replaced by their database values.

Press on "Show variables" button on invoice template content page to see full list of variables with the fields:

155

http://ehmdunque.altervista.org/i-informatica/manuali/SVG-edit/SVG-Edit_2.6/Short_intro_SVG-edit.html

The sip:carrier Handbook mr5.5.7 156 / 577

You can add/change/remove embedded variables references directly in main svg-edit window. To edit text line in svg-edit main

window double click on the text and place cursor on desired position in the text.

After implementation of the desired template changes, invoice template should be saved Section 5.21.2.3.

To return to the sip:carrier invoice template default content you can press on the "Discard changes" button.

Important

"Discard changes" operation can’t be undone.

Layers

Default template contains three groups elements (<g/>), which can be thinked of as pages, or in terms of svg-edit - layers. Layers

are:

• Background: special layer, which will be repeated as background for every other page of the invoice.

• Summary: page with a invoice summary.

• CallList: page with calls made in a invoice period. Is invisible by default.

To see all invoice template layers, press on "Layers" vertical sign on right side of the svg-edit interface:

156

The sip:carrier Handbook mr5.5.7 157 / 577

Side panel with layers list will be shown.

157

The sip:carrier Handbook mr5.5.7 158 / 577

One of the layers is active, and its element can be edited in the main svg-edit window. Currently active layer’s name is bold in the

layers list. The layers may be visible or invisible. Visible layers have "eye" icon left of their names in the layers list.

To make a layer active, click on its name in the layers list. If the layer was invisible, its elements became visible on activation. Thus

you can see mixed elements of some layers, then you can switch off visibility of other layers by click on their "eye" icons. It is good

idea to keep visibility of the "Background" layer on, so look of the generated page will be seen.

Edit SVG XML source

Sometimes it may be convenient to edit svg source directly and svg-edit makes it possible to do it. After press on the <svg> icon

in the top left corner of the svg-edit interface:

158

The sip:carrier Handbook mr5.5.7 159 / 577

SVG XML source of the invoice template will be shown.

SVG source can be edited in place or just copy-pasted as usual text.

Note

Template keeps sizes and distances in pixels.

Important

When edit svg xml source, please change very carefully and thinkfully things inside special comment mark-up "<!--{

}-→". Otherwise invoice generation may be broken. Please be sure that document structure repeats default invoice

template: has the same groups (<g/>) elements on the top level, text inside special comments mark-up "<!--{ }-→"

preserved or changed appropriately, svg xml structure is correct.

To save your changes in the svg xml source, first press "OK" button on the top left corner of the source page:

159

The sip:carrier Handbook mr5.5.7 160 / 577

And then save invoice template changes Section 5.21.2.3.

Note

You can copy and keep the svg source of your template as a file on the disk before start experimenting with the template. Later

you will be able to return to this version replacing svg source.

Change logo image

• Make sure that "Select tool" is active.

• Select default logo, clicking on the logo image.

• Press "Change image" button, which should appear on the top toolbar.

160

The sip:carrier Handbook mr5.5.7 161 / 577

After image uploaded save invoice template changes Section 5.21.2.3.

5.21.2.3 Save and preview invoice template content

To save invoice template content changes press button "Save SVG".

You will see message about successfully saved template. You can preview your invoice look in PDF format. Press on "Preview as

PDF" button.

161

The sip:carrier Handbook mr5.5.7 162 / 577

Invoice preview will be opened in the new window.

Note

Example fake data will be used for preview generation.

162

The sip:carrier Handbook mr5.5.7 163 / 577

5.21.3 Invoices Generation

Besides generating invoices on demand using web interface, Sipwise NGCP contains an invoice generator script that allows for

producing invoices automatically, at regular intervals, for all customers, using the cron system tool.

Warning

Automated invoice generation is deprecated since mr4.0 release of NGCP. The invoice generator script will

damage billing records in the database. The rest of the description in "Invoices Generation" section is kept in the

handbook for reference purposes only.

Script is located at: /usr/share/ngcp-panel/tools/generate_invoices.pl

In short:

• To generate and immediately send invoices for the previous month:

perl /usr/share/ngcp-panel/tools/generate_invoices.pl --send --prevmonth

• To generate invoices for the previous month without sending:

perl /usr/share/ngcp-panel/tools/generate_invoices.pl --prevmonth

• To send already generated invoices for the previous month:

perl /usr/share/ngcp-panel/tools/generate_invoices.pl --sendonly --prevmonth

• Regenerate invoices for the specified period:

perl /usr/share/ngcp-panel/tools/generate_invoices.pl --stime="2015-01-01 ←↩
00:00:00" --etime="2015-01-31 00:00:00" --regenerate

Some not obvious options:

• *--allow_terminated* Generates invoices for the terminated contracts too.

• *--force_unrated* Generate invoices despite unrated calls existence in the specified generation period.

• *--no_empty* Skip invoices for the contracts without calls in the specified period and with null permanent fee for the billing profile.

To see all possible script options use --help or --man:

/usr/share/ngcp-panel/tools/generate_invoices.pl --man

163

The sip:carrier Handbook mr5.5.7 164 / 577

Script will be run periodically as configured by the cron files. Cron files templates can be found at:

• /etc/ngcp-config/templates/etc/cron.d/ngcp-invoice-gen.tt2

• /etc/ngcp-config/templates/etc/cron.d/ngcp-invoice-gen.services

After applying your configuration cron file will be located at:

• /etc/cron.d/ngcp-invoice-gen

Script uses configuration file located at: /etc/ngcp-invoice-gen/invoice-gen.conf

Except common DB connection configuration following specific options can be defined in the config file:

• RESELLER_ID 1,2,3,. . . N

Comma separated resellers id. Invoice generation will be performed only for the specified resellers.

• CLIENT_CONTRACT_ID 1,2,3,. . . N

Comma separated customers id. Invoice generation will be performed only for the specified customers.

• STIME YYYY-mm-DD HH:MM:SS

Usually is not necessary. Script option --prevmonth will define correct start and end time for the previous month billing period.

Generated invoices will include all calls with call start time more then STIME value and less the ETIME value.

• ETIME YYYY-mm-DD HH:MM:SS

Usually is not necessary. Script option --prevmonth will define correct start and end time for the previous month billing period.

Generated invoices will include all calls with call start time more then STIME value and less the ETIME value.

• SEND [0|1]

Generated invoices will be immediately sent to the customers.

• RESEND [0|1]

Invoices, already sent to the customers, will be sent again.

• REGENERATE [0|1]

Already presented invoices files will be generated again. Otherwise they will stay intouched.

• ALLOW_TERMINATED [0|1]

164

The sip:carrier Handbook mr5.5.7 165 / 577

Generate invoices for the already terminated customers too.

• ADMIN_EMAIL your@email.com

Purposed for notifications about invoices generation fails. Not in use now.

All generated invoices can be seen in the invoice management interface Section 5.21.1.

On request each invoice will be sent to the proper customer as e-mail with the invoice PDF in the attachment. Letter content is

defined by the invoice email template.

5.22 Email Reports and Notifications

5.22.1 Email events

The sip:carrier makes it possible to customize content of the emails sent on the following actions:

• Web password reset requested. Email will be sent to the subscriber, whom password was requested for resetting. If the

subscriber doesn’t have own email, letter will be sent to the customer, who owns the subscriber.

• New subscriber created. Email will be sent to the newly created subscriber or to the customer, who owns new subscriber.

• Letter with the invoice. Letter will be sent to the customer.

5.22.2 Initial template values and template variables

Default email templates for each of the email events are inserted on the initial sip:carrier database creation. Content of the default

template is described in the corresponding sections. Default email templates aren’t linked to any reseller and can’t be changed

through sip:carrier Panel. They will be used to initialize default templates for the newly created reseller.

Each email template refers to the values from the database using special mark-ups "[%" and "%]". Each email template has fixed

set of the variables. Variables can’t be added or changed without changes in the sip:carrier Panel code.

5.22.3 Password reset email template

Email will be sent after subscriber or subscriber administrator requested password reset for the subscriber account. Letter will be

sent to the subscriber. If subscriber doesn’t have own email, letter will be sent to the customer owning the subscriber.

Default content of the password reset email template is:

Template name passreset_default_email

From default@sipwise.com

Subject Password reset email

165

mailto:default@sipwise.com

The sip:carrier Handbook mr5.5.7 166 / 577

Body

Dear Customer,

Please go to [%url%] to set your password and log into your self-care ←↩
interface.

Your faithful Sipwise system

--

This is an automatically generated message. Do not reply.

Following variables will be provided to the email template:

• [%url%]: specially generated url where subscriber can define his new password.

• [%subscriber%]: username@domain of the subscriber, which password was requested for reset.

5.22.4 New subscriber notification email template

Email will be sent on the new subscriber creation. Letter will be sent to the newly created subscriber if it has an email. Otherwise,

letter will be sent to the customer who owns the subscriber.

Note

By default email content template is addressed to the customer. Please consider this when create the subscriber with an email.

Template name subscriber_default_email

From default@sipwise.com

Subject Subscriber created

Body

Dear Customer,

A new subscriber [%subscriber%] has been created for you.

Your faithful Sipwise system

--

This is an automatically generated message. Do not reply.

Following variables will be provided to the email template:

166

mailto:username@domain
mailto:default@sipwise.com

The sip:carrier Handbook mr5.5.7 167 / 577

• [%url%]: specially generated url where subscriber can define his new password.

• [%subscriber%]: username@domain of the subscriber, which password was requested for reset.

5.22.5 Invoice email template

Template name invoice_default_email

From default@sipwise.com

Subject Invoice #[%invoice.serial%] from [%invoice.period_start_obj.ymd%] to

[%invoice.period_end_obj.ymd%]

Body

Dear Customer,

Please find your invoice #[%invoice.serial%] for [%invoice. ←↩
period_start_obj.month_name%], [%invoice.period_start_obj.year%] in attachment of this ←↩
letter.

Your faithful Sipwise system

--

This is an automatically generated message. Do not reply.

Variables passed to the email template:

• [%invoice%]: container variable for the invoice information.

Invoice fields

• [%invoice.serial%]

• [%invoice.amount_net%]

• [%invoice.amount_vat%]

• [%invoice.amount_total%]

• [%invoice.period_start_obj%]

• [%invoice.period_end_obj%]

The fields [%invoice.period_start_obj%] and [%invoice.period_end_obj%] provide methods of the perl package DateTime for

the invoice start date and end date. Further information about DateTime can be obtained from the package documentation:

man DateTime

• [%provider%]: container variable for the reseller contact. All database contact values will be available.

• [%client%]: container variable for the customer contact.

167

mailto:username@domain
mailto:default@sipwise.com

The sip:carrier Handbook mr5.5.7 168 / 577

Contact fields example for the "provider". Replace "provider" to client to access proper "customer" contact fields.

• [%provider.gender%]

• [%provider.firstname%]

• [%provider.lastname%]

• [%provider.comregnum%]

• [%provider.company%]

• [%provider.street%]

• [%provider.postcode%]

• [%provider.city%]

• [%provider.country%]

• [%provider.phonenumber%]

• [%provider.mobilenumber%]

• [%provider.email%]

• [%provider.newsletter%]

• [%provider.faxnumber%]

• [%provider.iban%]

• [%provider.bic%]

• [%provider.vatnum%]

• [%provider.bankname%]

• [%provider.gpp0 - provider.gpp9%]

5.22.6 Email templates management

Email templates linked to the resellers can be customized in the email templates management interface. For the administrative

account email templates of all the resellers will be shown. Respectively for the reseller account only owned email templates will

be shown.

168

The sip:carrier Handbook mr5.5.7 169 / 577

To create create new email template press button "Create Email Template".

On the email template form all fields are mandatory:

• Reseller: reseller who owns this email template.

• Name: currently only email template with the following names will be considered by the sip:carrier on the appropriate event

Section 5.22.1 :

– passreset_default_email;

– subscriber_default_email;

169

The sip:carrier Handbook mr5.5.7 170 / 577

– invoice_default_email;

• From Email Address: email address which will be used in the From field in the letter sent by the sip:carrier.

• Subject: Template of the email subject. Subject will be processed with the same template variables as the email body.

• Body: Email text template. Will be processed with appropriate template variables.

5.23 The Vertical Service Code Interface

Vertical Service Codes (VSC) are codes a user can dial on his phone to provision specific features for his subscriber account. The

format is *<code>*<value> to activate a specific feature, and #<code> or #<code># to deactivate it. The code parameter

is a two-digit code, e.g. 72. The value parameter is the value being set for the corresponding feature.

Important

The value user input is normalized using the Rewrite Rules Sets assigned to domain as described in Section 4.7.

By default, the following codes are configured for setting features. The examples below assume that there is a domain rewrite rule

normalizing the number format 0<ac><sn> to <cc><ac><sn> using 43 as country code.

• 72 - enable Call Forward Unconditional e.g. to 431000 by dialing *72*01000, and disable it by dialing #72.

• 90 - enable Call Forward on Busy e.g. to 431000 by dialing *90*01000, and disable it by dialing #90.

• 92 - enable Call Forward on Timeout e.g. after 30 seconds of ringing to 431000 by dialing *92*30*01000, and disable it by

dialing #92.

• 93 - enable Call Forward on Not Available e.g. to 431000 by dialing *93*01000, and disable it by dialing #93.

• 50 - set Speed Dial Slot, e.g. set slot 1 to 431000 by dialing *50*101000, which then can be used by dialing *1.

• 55 - set One-Shot Reminder Call e.g. to 08:30 by dialing *55*0830.

• 31 - set Calling Line Identification Restriction for one call, e.g. to call 431000 anonymously dial *31*01000.

• 32 - enable Block Incoming Anonymous Calls by dialing *32*, and disable it by dialing #32.

• 80 - call using Call Block Override PIN, number should be prefixed with a block override PIN configured in admin panel to

disable the outgoing user/admin block list and NCOS level for a call. For example, when override PIN is set to 7890, dial

*80*789001000 to call 431000 bypassing block lists.

5.23.1 Vertical Service Codes for PBX customers

Subscribers under the same PBX customer can enjoy some PBX-specific features by means of special VSCs.

NGCP provides the following PBX-specific VSCs:

170

The sip:carrier Handbook mr5.5.7 171 / 577

• 97 - Call Parking: during a conversation the subscriber can park the call with his phone to a "parking slot" and later on continue

the conversation from another phone. To do that, a destination must be dialled as follows: *97*3; this will park the call to slot

no. 3.

PLEASE NOTE:

– Cisco IP phones provide a softkey for Call Parking, that means the subscriber must only dial the parking slot number after

pressing "Park" softkey on the phone.

– Other IP phones can perform Call Parking as a blind transfer, where the destination of the transfer must be dialled in the

format described above.

– Both the caller and the callee can park the call.

• 98 - Call Unparking: if a call has been parked, a subscriber may continue the conversation from any extension (phone) under

the same PBX customer. To do that, the subscriber must dial the following sequence: *98*3; this will pick up the call that was

parked at slot no. 3.

• 99 - Directed Call Pickup: if a subscriber’s phone is ringing (e.g. extension 23) and another subscriber wants to answer the call

instead of the original callee, he may pick up the call by dialling *99*23 on his phone.

5.23.2 Configuration of Vertical Service Codes

You can change any of the codes (but not the format) in /etc/ngcp-config/config.yml in the section sems→vsc. After the changes,

execute ngcpcfg apply ’changed VSC codes’.

Caution

If you have the EMTAs under your control, make sure that the specified VSCs don’t overlap with EMTA-internal VSCs,

because the VSC calls must be sent to the NGCP via SIP like normal telephone calls.

5.23.3 Voice Prompts for Vertical Service Code Configuration

Table 10: VSC Voice Prompts

Prompt Handle Related VSC Message

vsc_error any An error has occurred. Please try

again later.

vsc_invalid wrong code Invalid feature code.

reject_vsc any Vertical service codes are disabled for

this line.

vsc_cfu_on 72 (Call Forward Unconditional) Your unconditional call forward has

successfully been activated.

vsc_cfu_off 72 (Call Forward Unconditional) Your unconditional call forward has

successfully been deactivated.

vsc_cfb_on 90 (Call Forward Busy) Your call forward on busy has

successfully been activated.

171

The sip:carrier Handbook mr5.5.7 172 / 577

Table 10: (continued)

Prompt Handle Related VSC Message

vsc_cfb_off 90 (Call Forward Busy) Your call forward on busy has

successfully been deactivated.

vsc_cft_on 92 (Call Forward on Timeout) Your call forward on ring timeout has

successfully been activated.

vsc_cft_off 92 (Call Forward on Timeout) Your call forward on ring timeout has

successfully been deactivated.

vsc_cfna_on 93 (Call Forward on Not Available) Your call forward while not reachable

has successfully been activated.

vsc_cfna_off 93 (Call Forward on Not Available) Your call forward while not reachable

has successfully been deactivated.

vsc_speeddial 50 (Speed Dial Slot) Your speed dial slot has successfully

been stored.

vsc_reminder_on 55 (One-Shot Reminder Call) Your reminder has successfully been

activated.

vsc_reminder_off 55 (One-Shot Reminder Call) Your reminder has successfully been

deactivated.

vsc_blockinclir_on 32 (Block Incoming Anonymous Calls) Your rejection of anonymous calls has

successfully been activated.

vsc_blockinclir_off 32 (Block Incoming Anonymous Calls) Your rejection of anonymous calls has

successfully been deactivated.

5.24 Handling WebRTC Clients

WebRTC is an open project providing browsers and mobile applications with Real-Time Communications (RTC) capabilities.

Configuring your platform to offer WebRTC is quite easy and straightforward. This allows you to have a SIP-WebRTC bridge in

place and make audio/video call towards normal SIP users from WebRTC clients and vice versa. Sip Provider listens, by default,

on the following WebSockets and WebSocket Secure: ws://your-ip:5060/ws, wss://your-ip:5061/ws and wss:

//your-ip:1443/wss/sip/.

The WebRTC subscriber is just a normal subscriber which has just a different configuration in his Preferences. You need to change

the following preferences under Subscribers→Details→Preferences→NAT and Media Flow Control :

• use_rtpproxy: Always with rtpproxy as additional ICE candidate

• transport_protocol: RTP/SAVPF (encrypted SRTP with RTCP feedback)

The transport_protocol setting may change, depending on your WebRTC client/browser configuration. Supported proto-

cols are the following:

172

The sip:carrier Handbook mr5.5.7 173 / 577

• Transparent (Pass through using the client’s transport protocol)

• RTP/AVP (Plain RTP)

• RTP/SAVP (encrypted SRTP)

• RTP/AVPF (RTP with RTCP feedback)

• RTP/SAVPF (encrypted SRTP with RTCP feedback)

• UDP/TLS/RTP/SAVP (Encrypted SRTP using DTLS)

• UDP/TLS/RTP/SAVPF (Encrypted SRTP using DTLS with RTCP feedback)

Warning

The below configuration is enough to handle a WebRTC client/browser. As mentioned, you may need to tune a little bit

your transport_protocol configuration, depending on your client/browser settings.

In order to have a bridge between normal SIP clients (using plain RTP for example) and WebRTC client, the normal SIP clients’

preferences have to have the following configuration:

transport_protocol: RTP/AVP (Plain RTP)

This will teach Sip Provider to translate between Plain RTP and RTP/SAVPF when you have calls between normal SIP clients and

WebRTC clients.

5.25 XMPP and Instant Messaging

Instant Messaging (IM) based on XMPP comes with sip:carrier out of the box. sip:carrier uses prosody as internal XMPP

server. Each subscriber created on the platform have assigned a XMPP user, reachable already - out of the box - by using the

same SIP credentials. You can easily open an XMPP client (e.g. Pidgin) and login with your SIP username@domain and your

SIP password. Then, using the XMPP client options, you can create your buddy list by adding your buddies in the format user@

domain.

5.26 Call Recording

5.26.1 Introduction to Call Recording Function

Sipwise NGCP provides an opportunity to record call media content and store that in files. This function is available since mr5.3.1

version of the sip:carrier.

Some characteristics of the Call Recording:

• Call Recording function can store both unidirectional (originating either from caller, or from callee) or bidirectional (combined)

streams from calls, resulting in 1, 2 or 3 physical files as output

173

The sip:carrier Handbook mr5.5.7 174 / 577

• The location and format of the files is configurable.

• File storage is planned to occur on an NFS shared folder.

• Activation of call recording may happen generally for a Domain / Peer / Subscriber through the NGCP admin web interface.

Important

NGCP’s Call Recording function is not meant for individual call interception purpose! Sipwise provides its Lawful

Interception solution for that use case.

• Querying or deletion of existing recordings may happen through the REST API.

• Listing recordings of a subscriber is possible on NGCP’s admin web interface.

The Call Recording function is implemented using NGCP’s rtpengine module.

Note

There are 2 rtpengine daemons employed when call recording is enabled and active. The main rtpengine takes care of

forwarding media packets between caller and callee, as usual, while the secondary rtpengine (recording) daemon is responsible

for storing call data streams in the file system.

Call Recording is disabled by default. Enabling and configuration of Call Recording takes place in 2 steps:

1. Enabling the feature on the NGCP by setting configuration parameters in the main config.yml configuration file.

2. Activating the feature for a Domain / Peer / Subscriber.

5.26.2 Information on Files and Directories

NGCP’s Call Recording function uses an NFS shared folder to save recorded streams.

Important

Since call data amount may be huge (depending, of course, on the number and duration of calls), it is strongly not

recommended to store recorded streams on NGCP’s local disks. However if you have to store recorded streams

as files in the local filesystem, please contact Sipwise Support team in order to get the proper configuration of Call

Recording function.

The NFS share gets mounted during startup of the recording daemon. If the NFS share cannot be mounted for some reason, the

recording daemon will not start.

Filenames have the format: <call_ID>-<random>-<SSRC>.<extension>, where:

• call_ID: SIP Call-ID of the call being recorded

174

The sip:carrier Handbook mr5.5.7 175 / 577

• random: is a string of random characters, unique for each recorded call. It’s purpose is to avoid possible filename collisions if

a Call-ID ever gets reused.

• SSRC: is the RTP SSRC for unidirectional recordings, or “mix” for the bidirectional (combined) audio.

• extension: is either “mp3” or “wav”, depending on the configuration (rtpproxy.recording.output_format)

There might be 1, 2 or 3 files produced as recorded streams. The number of files depends on the configuration:

1. rtpproxy.recording.output_mixed = ‘yes’ (combined stream required)

rtpproxy.recording.output_single = ‘no’ (unidirectional streams not required)

2. rtpproxy.recording.output_mixed = ‘no’ (combined stream not required)

rtpproxy.recording.output_single = ‘yes’ (unidirectional streams required)

3. rtpproxy.recording.output_mixed = ‘yes’ (combined stream required)

rtpproxy.recording.output_single = ‘yes’ (unidirectional streams required)

5.26.3 Configuration

The Call Recording function can be enabled and configured on the NGCP by changing the following configuration parameters in

config.yml file:

rtpproxy:

...

recording:

enabled: no

mp3_bitrate: ’48000’

nfs_host: 192.168.1.1

nfs_remote_path: /var/recordings

output_dir: /var/lib/rtpengine-recording

output_format: wav

output_mixed: yes

output_single: yes

resample: no

resample_to: ’16000’

spool_dir: /var/spool/rtpengine

5.26.3.1 Enabling Call Recording

Enabling the function requires changing the value of rtpproxy.recording.enabled parameter to “yes”. In order to make

the new configuration active, it’s necessary to do:

ngcpcfg apply ‘Activated call recording’

Description of configuration parameters:

175

The sip:carrier Handbook mr5.5.7 176 / 577

• enabled: when set to “yes” Call Recording function is enabled; default: “no”

• mp3_bitrate: the bitrate used when recording happens in MP3 format; default: "48000"

• nfs_host: IP address of the NFS host that provides storage space for recorded streams; default: "192.168.1.1"

• nfs_remote_path: the remote path (folder) where files of recorded streams are stored on the NFS share; default: "/var/record-

ings"

• output_dir: is the local mount point for the NFS share, and thus where the final audio files will be written; default: "/var/lib/rtpengine-

recording"

Caution

Normally you don’t need to change the default setting. If you do change the value, please be aware that recorded

files will be written by root user in that directory.

• output_format: possible values are “wav” (Wave) or “mp3” (MP3); default: “wav”

• output_mixed: “yes” means that there is a file that contains a mixed stream of caller and callee voice data; default: "yes"

• output_single: “yes” means that there is a separate file for each stream direction, i.e. for the streams originating from caller and

callee; default: "yes"

• resample: when set to “yes” the call data stream will be resampled before storing it in the file; default: “no”

• resample_to: the sample rate used for resampling output; default: "16000"

• spool_dir: is the place for temporary metadata files that are used by the recording daemon and the main rtpengine daemon for

their communication; default: "/var/spool/rtpengine"

Caution

You should not change the default setting unless you have a good reason to do so! Sipwise has thoroughly tested

the Call Recording function with the default setting.

If Call Recording is enabled you can see 2 rtpengine processes running when checking the NGCP system state with monit tool:

root@sp1:/etc/ngcp-config# monit summary

...

Process ’lb’ Running

Process ’rtpengine’ Running

Process ’rtpengine-recording’ Running

Process ’voisniff-ng’ Running

...

176

The sip:carrier Handbook mr5.5.7 177 / 577

5.26.3.2 Activating Call Recording

Activating Call Recording for e.g. a Subscriber: please use NGCP’s admin web interface for this purpose. On the web interface

one has to navigate as follows: Settings → Subscribers → select subscriber Details → Preferences → NAT and Media Flow

Control. Afterwards the record_call option has to be enabled by pressing the Edit button and ticking the checkbox.

Figure 58: Activating Call Recording

Note

The call recording function may be activated for a single Subscriber, a Domain and a Peer server in the same way: Preferences

→ NAT and Media Flow Control→ record_call. When activating call recording for a Domain or Peer this effectively activates

the function for all subscribers that belong to the selected domain, and for all calls with a local endpoint going through the

selected peer server, respectively.

It is possible to list existing call recordings of a Subscriber through the admin web interface of NGCP. In order to do so, please

navigate to: Settings→ Subscribers→ select subscriber Details→ Call Recordings

177

The sip:carrier Handbook mr5.5.7 178 / 577

Figure 59: Listing Call Recordings

If you select an item in the list, besides the main properties such as the time of call and the SIP Call-ID, you can retrieve the

details of the related call (press the Call Details button), get the list of recorded files (press the Recorded Files button) or Delete

the recorded call.

When selecting Call Details you will see the most important accounting data of the call. Furthermore you can see the SIP Call

Flow or the complete Call Details if you press the respective buttons.

Figure 60: Listing Call Details for a Recording

When navigating to Recorded Files of a call you will be presented with a list of files. For each file item:

• type of stream is shown, that can be either "mixed" (combined voice data), or "single" (voice data of caller or callee)

178

The sip:carrier Handbook mr5.5.7 179 / 577

• file format is shown, that can be either "wav", or "mp3"

• you can download the file by pressing the Play button

Figure 61: Listing Files for a Recording

5.26.4 REST API

The NGCP REST API provides methods for querying and deletion of existing recording data. The full documentation of the

available API methods is available on the admin web interface of the NGCP, as usual.

The following API methods are provided for managing Call Recordings:

• CallRecordings:

– Provides information about the calls recorded in the system; can also be used to delete a recording entry

– accessible by the path: /api/callrecordings (collection) or /api/callrecordings/id (single item)

– Supported HTTP methods: OPTIONS, GET, DELETE

• CallRecordingStreams:

– Provides information about recorded streams, such as start time, end time, format, mixed/single type, etc.; can also be used

to delete a recorded stream

– accessible by the path: /api/callrecordingstreams (collection) or /api/callrecordingstreams/id (sin-

gle item)

– Supported HTTP methods: OPTIONS, GET, DELETE

• CallRecordingFiles:

– Provides information about recorded streams, such as start time, end time, format, mixed/single type, etc.; additionally returns

the file content too

– accessible by the path: /api/callrecordingfiles (collection) or /api/callrecordingfiles/id (single item)

– Supported HTTP methods: OPTIONS, GET

179

The sip:carrier Handbook mr5.5.7 180 / 577

5.27 SMS (Short Message Service) on Sipwise NGCP

Starting with its mr5.0.1 release, Sipwise NGCP offers short messaging service to its local subscribers. The implementation is

based on a widely used software module: Kannel, and it needs to interact with a mobile operator’s SMSC in order to send and

receive SMs for the local subscribers. The data exchange with SMSC uses SMPP (Short Message Peer-to-Peer) protocol.

SMS directions:

• incoming / received: the destination of the SM is a local subscriber on the NGCP

• outgoing / sent: the SM is submitted by a local subscriber

Note

The Sipwise NGCP behaves as a short message client towards the SMSC of a mobile operator. This means every outgoing

SM will be forwarded to the SMSC, and every incoming SM will reach the NGCP through an SMSC.

The architecture of the SMS components of NGCP and their interactions to other elements is depicted below, on a sip:carrier

system:

180

The sip:carrier Handbook mr5.5.7 181 / 577

Figure 62: SMS Interactions on NGCP

Note

For the sip:provider CE and PRO NGCP installations: the Kannel components and the ngcp-panel all run on the same single

node. The description of SMS module will continue referring to a sip:carrier installation in the handbook.

There are 2 components of the SMS module:

• SMS Box: this component takes care of handling the messages locally, that means:

– delivering them to subscribers (writing into database for later retrieval)

– picking up the submitted SMs from the database and forwarding them to the Bearer Box component

• Bearer Box: this component manages the transmission of SMs between Sipwise NGCP and the mobile operator’s SMSC

181

The sip:carrier Handbook mr5.5.7 182 / 577

5.27.1 Configuration

5.27.1.1 Main Parameters

The SMS function of NGCP is disabled by default. In order to enable SMS you have to change the value of configuration parameter

sms.enable to yes in the main configuration file (/etc/ngcp-config/config.yml).

The second step of configuration is related to the SMSC where NGCP will connect to. You have to set the following parameters:

• sms.smsc.host: IP address of the SMSC

• sms.smsc.port: Port number of the SMSC

• sms.smsc.username: Username for authentication on the SMSC

• sms.smsc.password: Password for authentication on the SMSC

Other parameters of the SMSC connection may also need to be changed from the default values, but this is specific to each

deployment.

Then, as usual, you have to make the new configuration active:

$ ngcpcfg apply ’Enabled SMS’

$ ngcpcfg push all

5.27.1.2 Configuration Files of Kannel

There are a few configuration files for the Kannel module, namely:

• /etc/default/ngcp-kannel: determines which components of Kannel will be started. This is auto-generated from /

etc/ngcp-config/templates/etc/default/ngcp-kannel.tt2 file when SMS is enabled.

• /etc/kannel/kannel.conf: contains detailed configuration of Kannel components. This is auto-generated from /etc/

ngcp-config/templates/etc/kannel/kannel.conf.tt2 file when SMS is enabled.

• /etc/logrotate.d/ngcp-kannel.conf: configuration of logrotate for Kannel log files. This is auto-generated from /

etc/ngcp-config/templates/etc/logrotate.d/ngcp-kannel.conf.tt2 file when SMS is enabled.

Caution

Please do not change settings in the above mentioned template files, unless you have to tailor Kannel settings to your

specific needs!

Finally: see the description of each configuration parameter in the appendix Section B.1.34.

182

The sip:carrier Handbook mr5.5.7 183 / 577

5.27.1.3 Call Forwarding for SMS (CFS)

Any subscriber registered on NGCP can apply a call forwarding setting for short messages, referred to as "CFS" (Call Forward

- SMS). If the CFS feature is enabled, he can receive the SMs on his mobile phone, for example, instead of retrieving the SMs

through the REST API. This is much more convenient for users if they do not have an application on their smartphone or computer

that could manage the SMs through the REST API.

In order to enable CFS you have to set the forwarding as usual on the admin web interface, or through the REST API. Navigate to

Subscribers→ select one→ Details→ Preferences→ Call Forwards and press the Edit button.

Figure 63: Call Forward for SMS

5.27.2 Monitoring, troubleshooting

5.27.2.1 Bearer Box (LB node of NGCP)

On the LB node you can see a process named "bearerbox". This process has 2 listening ports assigned to it:

• 13000: this is the generic Kannel administration port, that belongs to the "core" component of Kannel.

• 13001: this is the communication port towards the SMS Box component running on PRX nodes of NGCP.

The monit tool also shows the bearerbox process in its status information:

$ monit summary

...

Process ’kannel-bearerbox’ Running

...

183

The sip:carrier Handbook mr5.5.7 184 / 577

The following log files can provide information about the operation of Bearer Box :

• status messages and high level, short entries about sent and received messages: /var/log/ngcp/kannel/kannel.

log

...

2017-09-26 08:57:32 [15922] [10] DEBUG: boxc_receiver: heartbeat with load value 0 ←↩
received

...

2017-09-26 11:12:06 [15922] [10] DEBUG: boxc_receiver: sms received

2017-09-26 11:12:06 [15922] [10] DEBUG: send_msg: sending msg to box: <192.168.1.4>

2017-09-26 11:12:06 [15922] [11] DEBUG: send_msg: sending msg to box: <192.168.1.4>

2017-09-26 11:12:06 [15922] [11] DEBUG: boxc_sender: sent message to <192.168.1.4>

2017-09-26 11:12:06 [15922] [10] DEBUG: boxc_receiver: got ack

...

• detailed information and message content of sent and received messages, link enquiries: /var/log/kannel/smsc.log

Note

Sent and received message examples shown here do not contain the full phone number and content for confidentiality reason.

– Example received message:

...

2017-09-26 12:09:36 [15922] [6] DEBUG: SMPP[default_smsc]: Got PDU:

2017-09-26 12:09:36 [15922] [6] DEBUG: SMPP PDU 0x7f2274025070 dump:

2017-09-26 12:09:36 [15922] [6] DEBUG: type_name: deliver_sm

2017-09-26 12:09:36 [15922] [6] DEBUG: command_id: 5 = 0x00000005

2017-09-26 12:09:36 [15922] [6] DEBUG: command_status: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: sequence_number: 11867393 = 0x00b51501

2017-09-26 12:09:36 [15922] [6] DEBUG: service_type: NULL

2017-09-26 12:09:36 [15922] [6] DEBUG: source_addr_ton: 2 = 0x00000002

2017-09-26 12:09:36 [15922] [6] DEBUG: source_addr_npi: 1 = 0x00000001

2017-09-26 12:09:36 [15922] [6] DEBUG: source_addr: "0660......."

2017-09-26 12:09:36 [15922] [6] DEBUG: dest_addr_ton: 1 = 0x00000001

2017-09-26 12:09:36 [15922] [6] DEBUG: dest_addr_npi: 1 = 0x00000001

2017-09-26 12:09:36 [15922] [6] DEBUG: destination_addr: "43668......."

2017-09-26 12:09:36 [15922] [6] DEBUG: esm_class: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: protocol_id: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: priority_flag: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: schedule_delivery_time: NULL

2017-09-26 12:09:36 [15922] [6] DEBUG: validity_period: NULL

2017-09-26 12:09:36 [15922] [6] DEBUG: registered_delivery: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: replace_if_present_flag: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: data_coding: 3 = 0x00000003

2017-09-26 12:09:36 [15922] [6] DEBUG: sm_default_msg_id: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: sm_length: 158 = 0x0000009e

184

The sip:carrier Handbook mr5.5.7 185 / 577

2017-09-26 12:09:36 [15922] [6] DEBUG: short_message:

2017-09-26 12:09:36 [15922] [6] DEBUG: Octet string at 0x7f2274000f80:

2017-09-26 12:09:36 [15922] [6] DEBUG: len: 158

2017-09-26 12:09:36 [15922] [6] DEBUG: size: 159

2017-09-26 12:09:36 [15922] [6] DEBUG: immutable: 0

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 5a <14 bytes> 46

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 72 <14 bytes> 68

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 61 <14 bytes> 67

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 20 <14 bytes> 57

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 65 <14 bytes> 63

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 68 <14 bytes> 73

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 2e <14 bytes> 61

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 6c <14 bytes> 73

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 3a <14 bytes> 73

2017-09-26 12:09:36 [15922] [6] DEBUG: data: 4d <14 bytes> 6e

2017-09-26 12:09:36 [15922] [6] DEBUG: Octet string dump ends.

2017-09-26 12:09:36 [15922] [6] DEBUG: SMPP PDU dump ends.

2017-09-26 12:09:36 [15922] [6] DEBUG: SMPP[default_smsc]: Sending PDU:

2017-09-26 12:09:36 [15922] [6] DEBUG: SMPP PDU 0x7f2274020790 dump:

2017-09-26 12:09:36 [15922] [6] DEBUG: type_name: deliver_sm_resp

2017-09-26 12:09:36 [15922] [6] DEBUG: command_id: 2147483653 = 0x80000005

2017-09-26 12:09:36 [15922] [6] DEBUG: command_status: 0 = 0x00000000

2017-09-26 12:09:36 [15922] [6] DEBUG: sequence_number: 11867393 = 0x00b51501

2017-09-26 12:09:36 [15922] [6] DEBUG: message_id: NULL

2017-09-26 12:09:36 [15922] [6] DEBUG: SMPP PDU dump ends.

2017-09-26 12:09:36 [15922] [6] DEBUG: SMPP[default_smsc]: throughput (0.00,5.00)

...

– Example sent message:

...

2017-09-26 12:04:08 [15922] [6] DEBUG: SMPP[default_smsc]: throughput (0.00,5.00)

2017-09-26 12:04:08 [15922] [6] DEBUG: SMPP[default_smsc]: Manually forced source addr ←↩
ton = 1, source add npi = 1

2017-09-26 12:04:08 [15922] [6] DEBUG: SMPP[default_smsc]: Manually forced dest addr ton ←↩
= 1, dest add npi = 1

2017-09-26 12:04:08 [15922] [6] DEBUG: SMPP[default_smsc]: Sending PDU:

2017-09-26 12:04:08 [15922] [6] DEBUG: SMPP PDU 0x7f2274025070 dump:

2017-09-26 12:04:08 [15922] [6] DEBUG: type_name: submit_sm

2017-09-26 12:04:08 [15922] [6] DEBUG: command_id: 4 = 0x00000004

2017-09-26 12:04:08 [15922] [6] DEBUG: command_status: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: sequence_number: 98163 = 0x00017f73

2017-09-26 12:04:08 [15922] [6] DEBUG: service_type: NULL

2017-09-26 12:04:08 [15922] [6] DEBUG: source_addr_ton: 5 = 0x00000005

2017-09-26 12:04:08 [15922] [6] DEBUG: source_addr_npi: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: source_addr: "any"

2017-09-26 12:04:08 [15922] [6] DEBUG: dest_addr_ton: 1 = 0x00000001

2017-09-26 12:04:08 [15922] [6] DEBUG: dest_addr_npi: 1 = 0x00000001

185

The sip:carrier Handbook mr5.5.7 186 / 577

2017-09-26 12:04:08 [15922] [6] DEBUG: destination_addr: "43676......."

2017-09-26 12:04:08 [15922] [6] DEBUG: esm_class: 3 = 0x00000003

2017-09-26 12:04:08 [15922] [6] DEBUG: protocol_id: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: priority_flag: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: schedule_delivery_time: NULL

2017-09-26 12:04:08 [15922] [6] DEBUG: validity_period: NULL

2017-09-26 12:04:08 [15922] [6] DEBUG: registered_delivery: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: replace_if_present_flag: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: data_coding: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: sm_default_msg_id: 0 = 0x00000000

2017-09-26 12:04:08 [15922] [6] DEBUG: sm_length: 23 = 0x00000017

2017-09-26 12:04:08 [15922] [6] DEBUG: short_message:

2017-09-26 12:04:08 [15922] [6] DEBUG: Octet string at 0x7f227400c460:

2017-09-26 12:04:08 [15922] [6] DEBUG: len: 23

2017-09-26 12:04:08 [15922] [6] DEBUG: size: 24

2017-09-26 12:04:08 [15922] [6] DEBUG: immutable: 0

2017-09-26 12:04:08 [15922] [6] DEBUG: data: 44 <14 bytes> 73

2017-09-26 12:04:08 [15922] [6] DEBUG: data: 74 <5 bytes> 39

2017-09-26 12:04:08 [15922] [6] DEBUG: Octet string dump ends.

2017-09-26 12:04:08 [15922] [6] DEBUG: SMPP PDU dump ends.

2017-09-26 12:04:08 [15922] [6] DEBUG: SMPP[default_smsc]: throughput (1.00,5.00)

...

– Example link enquiry:

...

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP[default_smsc]: throughput (0.00,5.00)

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP[default_smsc]: Got PDU:

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP PDU 0x7f2274020790 dump:

2017-09-26 12:13:38 [15922] [6] DEBUG: type_name: enquire_link

2017-09-26 12:13:38 [15922] [6] DEBUG: command_id: 21 = 0x00000015

2017-09-26 12:13:38 [15922] [6] DEBUG: command_status: 0 = 0x00000000

2017-09-26 12:13:38 [15922] [6] DEBUG: sequence_number: 90764 = 0x0001628c

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP PDU dump ends.

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP[default_smsc]: Sending PDU:

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP PDU 0x7f2274025070 dump:

2017-09-26 12:13:38 [15922] [6] DEBUG: type_name: enquire_link_resp

2017-09-26 12:13:38 [15922] [6] DEBUG: command_id: 2147483669 = 0x80000015

2017-09-26 12:13:38 [15922] [6] DEBUG: command_status: 0 = 0x00000000

2017-09-26 12:13:38 [15922] [6] DEBUG: sequence_number: 90764 = 0x0001628c

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP PDU dump ends.

2017-09-26 12:13:38 [15922] [6] DEBUG: SMPP[default_smsc]: throughput (0.00,5.00)

...

186

The sip:carrier Handbook mr5.5.7 187 / 577

5.27.2.2 SMS Box (PRX node of NGCP)

On the PRX node you can see a process named "smsbox". This process has a listening port assigned to it: 13002, that is the

communication port towards the Bearer Box component running on LB nodes.

The monit tool also shows the smsbox process in its status information:

$ monit summary

...

Process ’kannel-smsbox’ Running

...

The following log files can provide information about the operation of SMS Box :

• sent and received messages using the API of WEB node: /var/log/kannel/smsbox.log

Note

Sent and received message examples shown here do not contain the full phone number and content for confidentiality reason.

– Example sent message:

...

2017-09-26 12:16:42 [22763] [2] DEBUG: HTTP: Creating HTTPClient for ‘192.168.1.2’.

2017-09-26 12:16:42 [22763] [2] DEBUG: HTTP: Created HTTPClient area 0x7f5dcc000ad0.

2017-09-26 12:16:42 [22763] [3] INFO: smsbox: Got HTTP request </cgi-bin/sendsms> from ←↩
<192.168.1.3>

2017-09-26 12:16:42 [22763] [3] INFO: sendsms used by <sipwise>

2017-09-26 12:16:42 [22763] [3] INFO: sendsms sender:<sipwise:43668.......> ←↩
(192.168.1.3) to:<43676.......> msg:<...>

2017-09-26 12:16:42 [22763] [3] DEBUG: Stored UUID ab95eb45-1ec0-4932-9863-1a95609a025f

2017-09-26 12:16:42 [22763] [3] DEBUG: message length 52, sending 1 messages

2017-09-26 12:16:42 [22763] [3] DEBUG: Status: 202 Answer: <Sent.>

2017-09-26 12:16:42 [22763] [3] DEBUG: Delayed reply - wait for bearerbox

2017-09-26 12:16:42 [22763] [0] DEBUG: Got ACK (0) of ab95eb45-1ec0-4932-9863-1 ←↩
a95609a025f

2017-09-26 12:16:42 [22763] [0] DEBUG: HTTP: Destroying HTTPClient area 0x7f5dcc000ad0.

2017-09-26 12:16:42 [22763] [0] DEBUG: HTTP: Destroying HTTPClient for ‘192.168.1.3’.

...

– Example received message:

...

2017-09-26 11:59:45 [22763] [5] INFO: Starting to service <...message content...> from ←↩
<+43676-------> to <+43668------->

2017-09-26 11:59:45 [22763] [10] DEBUG: Queue contains 0 pending requests.

2017-09-26 11:59:45 [22763] [10] DEBUG: HTTPS URL; Using SSL for the connection

2017-09-26 11:59:45 [22763] [10] DEBUG: Parsing URL ‘https://192.168.1.2:1443/ ←↩
internalsms/receive?auth_token=fNLosMgwdNUrKvEfFMm9

187

The sip:carrier Handbook mr5.5.7 188 / 577

×tamp=2017-09-26+09:59:45&from=%2B43676-------&to=%2B43668-------&charset=UTF-8& ←↩
coding=0&text=...’:

2017-09-26 11:59:45 [22763] [10] DEBUG: Scheme: https://

2017-09-26 11:59:45 [22763] [10] DEBUG: Host: 192.168.1.2

2017-09-26 11:59:45 [22763] [10] DEBUG: Port: 1443

2017-09-26 11:59:45 [22763] [10] DEBUG: Username: (null)

2017-09-26 11:59:45 [22763] [10] DEBUG: Password: (null)

2017-09-26 11:59:45 [22763] [10] DEBUG: Path: /internalsms/receive

2017-09-26 11:59:45 [22763] [10] DEBUG: Query: auth_token=fNLosMgwdNUrKvEfFMm9& ←↩
timestamp=2017-09-26+09:59:45&from=%2B43676-------

&to=%2B43668-------&charset=UTF-8&coding=0&text=...

2017-09-26 11:59:45 [22763] [10] DEBUG: Fragment: (null)

2017-09-26 11:59:45 [22763] [10] DEBUG: Connecting nonblocking to <192.168.1.2>

2017-09-26 11:59:45 [22763] [10] DEBUG: HTTP: Opening connection to ‘192.168.1.2:1443’ (←↩
fd=31).

2017-09-26 11:59:45 [22763] [10] DEBUG: Socket connecting

2017-09-26 11:59:45 [22763] [9] DEBUG: Get info about connecting socket

2017-09-26 11:59:45 [22763] [9] DEBUG: HTTP: Sending request:

2017-09-26 11:59:45 [22763] [9] DEBUG: Octet string at 0x7f5dbc00f470:

2017-09-26 11:59:45 [22763] [9] DEBUG: len: 382

2017-09-26 11:59:45 [22763] [9] DEBUG: size: 1024

2017-09-26 11:59:45 [22763] [9] DEBUG: immutable: 0

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 47 45 54 20 2f 69 6e 74 65 72 6e 61 6c 73 ←↩
6d 73 GET /internalsms

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 2f 72 65 63 65 69 76 65 3f 61 75 74 68 5f ←↩
74 6f /receive?auth_to

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 6b 65 6e 3d ... ←↩
ken=

... 20 48 54 54 50 2f 31 2e 31 ←↩
0d 0a HTTP/1.1..

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 43 6f 6e 6e 65 63 74 69 6f 6e 3a 20 6b 65 ←↩
65 70 Connection: keep

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 2d 61 6c 69 76 65 0d 0a 55 73 65 72 2d 41 ←↩
67 65 -alive..User-Age

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 6e 74 3a 20 4b 61 6e 6e 65 6c 2f 31 2e 34 ←↩
2e 34 nt: Kannel/1.4.4

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 0d 0a 48 6f 73 74 3a 20 31 39 32 2e 31 36 ←↩
38 2e ..Host: 192.168.

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 31 2e 32 3a 31 34 34 33 0d 0a 0d 0a ←↩
1.2:1443....

2017-09-26 11:59:45 [22763] [9] DEBUG: Octet string dump ends.

2017-09-26 11:59:45 [22763] [9] DEBUG: HTTP: Status line: <HTTP/1.1 200 OK>

2017-09-26 11:59:45 [22763] [9] DEBUG: HTTP: Received response:

2017-09-26 11:59:45 [22763] [9] DEBUG: Octet string at 0x7f5dbc006970:

2017-09-26 11:59:45 [22763] [9] DEBUG: len: 333

2017-09-26 11:59:45 [22763] [9] DEBUG: size: 1024

2017-09-26 11:59:45 [22763] [9] DEBUG: immutable: 0

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 53 65 72 76 65 72 3a 20 6e 67 69 6e 78 0d ←↩

188

The sip:carrier Handbook mr5.5.7 189 / 577

0a 44 Server: nginx..D

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 61 74 65 3a 20 54 75 65 2c 20 32 36 20 53 ←↩
65 70 ate: Tue, 26 Sep

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 20 32 30 31 37 20 30 39 3a 35 39 3a 34 35 ←↩
20 47 2017 09:59:45 G

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 4d 54 0d 0a 43 6f 6e 74 65 6e 74 2d 54 79 ←↩
70 65 MT..Content-Type

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 3a 20 74 65 78 74 2f 68 74 6d 6c 3b 20 63 ←↩
68 61 : text/html; cha

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 72 73 65 74 3d 75 74 66 2d 38 0d 0a 43 6f ←↩
6e 74 rset=utf-8..Cont

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 65 6e 74 2d 4c 65 6e 67 74 68 3a 20 30 0d ←↩
0a 43 ent-Length: 0..C

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 6f 6e 6e 65 63 74 69 6f 6e 3a 20 6b 65 65 ←↩
70 2d onnection: keep-

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 61 6c 69 76 65 0d 0a 53 65 74 2d 43 6f 6f ←↩
6b 69 alive..Set-Cooki

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 65 3a 20 6e 67 63 70 5f 70 61 6e 65 6c 5f ←↩
73 65 e: ngcp_panel_se

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 73 73 69 6f 6e 3d 34 35 30 32 64 64 66 65 ←↩
31 62 ssion=4502ddfe1b

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 63 31 65 33 39 30 65 30 64 36 66 39 64 34 ←↩
37 30 c1e390e0d6f9d470

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 35 30 37 62 64 64 33 61 65 32 36 62 64 63 ←↩
3b 20 507bdd3ae26bdc;

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 70 61 74 68 3d 2f 3b 20 65 78 70 69 72 65 ←↩
73 3d path=/; expires=

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 54 75 65 2c 20 32 36 2d 53 65 70 2d 32 30 ←↩
31 37 Tue, 26-Sep-2017

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 20 31 30 3a 35 39 3a 34 35 20 47 4d 54 3b ←↩
20 48 10:59:45 GMT; H

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 74 74 70 4f 6e 6c 79 0d 0a 58 2d 43 61 74 ←↩
61 6c ttpOnly..X-Catal

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 79 73 74 3a 20 35 2e 39 30 30 37 35 0d 0a ←↩
53 74 yst: 5.90075..St

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 72 69 63 74 2d 54 72 61 6e 73 70 6f 72 74 ←↩
2d 53 rict-Transport-S

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 65 63 75 72 69 74 79 3a 20 6d 61 78 2d 61 ←↩
67 65 ecurity: max-age

2017-09-26 11:59:45 [22763] [9] DEBUG: data: 3d 31 35 37 36 38 30 30 30 0d 0a 0d 0a ←↩
=15768000....

2017-09-26 11:59:45 [22763] [9] DEBUG: Octet string dump ends.

2017-09-26 11:59:45 [22763] [6] WARNING: Tried to set Coding field, denied.

2017-09-26 11:59:45 [22763] [6] INFO: No reply sent, denied.

2017-09-26 11:59:55 [22763] [9] DEBUG: HTTP: Server closed connection, destroying it ←↩
<192.168.1.2:1443:1::><0x7f5db0000b20><fd:31>.

...

189

The sip:carrier Handbook mr5.5.7 190 / 577

• short log of sent/received messages: /var/log/kannel/smsbox-access.log

...

2017-09-26 12:39:18 SMS HTTP-request sender:+43680------- request: ’’ url: ’https ←↩
://192.168.1.2:1443/internalsms/receive?

auth_token=fNLosMgwdNUrKvEfFMm9×tamp=2017-09-26+10:39:18&from=%2B43680-------&to=%2 ←↩
B43668-------&charset=UTF-8&coding=0

&text=<...message content...>’ reply: 200 ’<< successful >>’

...

2017-09-26 12:41:54 send-SMS request added - sender:sipwise:43668------- 192.168.1.3 ←↩
target:43680-------- request: ’<...message content...>’

...

5.27.3 REST API

Handling of short messages from the user perspective happens with the help of NGCP’s REST API. There is a dedicated resource:

https://<IP of WEB node>:1443/api/sms that allows you to:

• Get a list of sent and received messages. This is achieved by sending a GET request on the /api/sms collection, as in the

following example:

curl -i -X GET -H ’Connection: close’ --cert NGCP-API-client-certificate.pem --cacert ca- ←↩
cert.pem \

’https://example.org:1443/api/sms/?page=1&rows=10’

• Retrieve an SM (both sent and received). This is achieved by sending a GET request for a specific /api/sms/id item, as in

the following example:

curl -i -X GET -H ’Connection: close’ --cert NGCP-API-client-certificate.pem --cacert ca- ←↩
cert.pem ’https://example.org:1443/api/sms/1’

• Send a new message from a local subscriber. This is achieved by sending a POST request for the /api/sms collection, as

in the following example:

curl -i -X POST -H ’Connection: close’ -H ’Content-Type: application/json’ --cert NGCP-API ←↩
-client-certificate.pem --cacert ca-cert.pem \

’https://example.org:1443/api/sms/’ --data-binary ’{"callee" : "43555666777", " ←↩
subscriber_id" : 4, "text" : "test"}’

As always, the full documentation of the REST API resources is available on the admin web interface of NGCP: https://<IP

of WEB node>:1443/api/#sms

190

The sip:carrier Handbook mr5.5.7 191 / 577

6 Customer Self-Care Interface and Menus

There are two ways for end users to maintain their subscriber settings: via the Customer Self-Care Web Interface and via Vertical

Service Codes using their SIP phones.

6.1 The Customer Self-Care Web Interface

The NGCP provides a web panel for end users (CSC panel) to maintain their subscriber accounts, which is running on https://<ngcp-

ip>. Every subscriber can log in there, change subscriber feature settings, view their call lists, retrieve voicemail messages and

trigger calls using the click-to-dial feature.

6.1.1 Login Procedure

To log into the CSC panel, the end user has to provide his full web username (e.g. user1@1.2.3.4) and the web password

defined in Section 4.3. Once logged in, he can change his web password in the Account section. This will NOT change his SIP

password, so if you control the end user devices, you can auto-provision the SIP password into the device and keep it secret, and

just hand over the web password to the customer. This way, the end user will only be able to place calls with this auto-provisioned

device and not with an arbitrary soft-phone, but can nonetheless manage his account via the CSC panel.

6.1.2 Site Customization

As an operator (as well as a Reseller), you can change the branding logo of the Customer Self-Care (CSC) panel and the available

languages on the CSC panel. This is possible via the admin web interface.

6.1.2.1 Changing the Logo

For changing the branding logo on a reseller’s admin web page and on the CSC panel you just need to access the web interface

as Administrator and navigate to Reseller menu. Once there click on the Details button for your selected reseller, finally select

Branding.

In order to do the same as Reseller, login on the admin web interface with the reseller’s web credentials, then access the Panel

Branding menu.

The web panel customisation happens as follows:

1. Press the Edit Branding button to start the customisation process.

2. Press the Browse button to select an image for the new logo:

191

The sip:carrier Handbook mr5.5.7 192 / 577

Figure 64: CSC Customisation Step 1: Select an image

3. Press the Save button to save changes.

4. Select and copy the auto-generated CSS code from the text box below the uploaded image:

192

The sip:carrier Handbook mr5.5.7 193 / 577

Figure 65: CSC Customisation Step 2: Copy CSS code

5. Press the Edit Branding button again.

6. Paste the CSS code into CSS text box and Save the changes:

193

The sip:carrier Handbook mr5.5.7 194 / 577

Figure 66: CSC Customisation Step 3: Paste CSS code

7. Now the new logo is already visible on the admin / CSC panel. If you want to hide the Sipwise copyright notice at the bottom

of the web panels, add a line of CSS code as shown here:

194

The sip:carrier Handbook mr5.5.7 195 / 577

Figure 67: CSC Customisation: Hide copyright notice

8. The final branding data is shown on the admin web panel:

195

The sip:carrier Handbook mr5.5.7 196 / 577

Figure 68: CSC Customisation: Custom data on panel

6.1.2.2 Other Website Customisations

The layout and style of NGCP’s admin and CSC web panel is determined by a single CSS file: /usr/share/ngcp-panel/

static/css/application.css

More complex changes, like replacing colour of some web panel components, is possible via the modification of the CSS file.

Warning

Only experienced users with profound CSS knowledge are advised to change web panel properties in the main CSS

file. Sipwise does not recommend and also does not support the modification of the main CSS file.

6.1.2.3 Selecting Available Languages

You can also enable/disable specific languages a user can choose from in the CSC panel. Currently, English (en), German (de),

Italian (it), Spanish (es) and Russian (ru) are supported, and the default language is the same as the browser’s preferred one.

You can select the default language provided by CSC by changing the parameter www_admin.force_language in /etc/

ngcp-config/config.yml file. An example to set the English language as default: force_language: en

196

The sip:carrier Handbook mr5.5.7 197 / 577

6.2 The Voicemail Menu

NGCP offers several ways to access the Voicemail box.

The CSC panel allows your users to listen to voicemail messages from the web browser, delete them and call back the user who

left the voice message. User can setup voicemail forwarding to the external email and the PIN code needed to access the voicebox

from any telephone also from the CSC panel.

To manage the voice messages from SIP phone: simply dial internal voicemail access number 2000.

To change the access number: look for the parameter voicemail_number in /etc/ngcp-config/config.yml in the section sems→vsc.

After the changes, execute ngcpcfg apply ’changed voicebox number’.

Tip

To let the callers leave a voice message when user is not available he should enable Call Forward to Voicebox. The Call

Forward can be provisioned from the CSC panel as well as by dialing Call Forward VSC with the voicemail number. E.g. when

parameter voicemail_number is set to 9999, a Call Forward on Not Available to the Voicebox is set if the user dials *93*9999.

As a result, all calls will be redirected to the Voicebox if SIP phone is not registered.

To manage the voice messages from any phone:

• As an operator, you can setup some DID number as external voicemail access number: for that, you should add a special rewrite

rule (Inbound Rewrite Rule for Callee, see Section 4.7.) on the incoming peer, to rewrite that DID to "voiceboxpass". Now when

user calls this number the call will be forwarded to the voicemail server and he will be prompted for mailbox and password. The

mailbox is the full E.164 number of the subscriber account and the password is the PIN set in the CSC panel.

• The user can also dial his own number from PSTN, if he setup Call Forward on Not Available to the Voicebox, and when reaching

the voicemail server he can interrupt the "user is unavailable" message by pressing * key and then be prompted for the PIN.

After entering PIN and confirming with # key he will enter own voicemail menu. PIN is random by default and must be kept

secret for that reason.

197

The sip:carrier Handbook mr5.5.7 198 / 577

7 Billing Configuration

This chapter describes the steps necessary to rate calls and export rated CDRs (call detail records) to external systems.

7.1 Billing Profiles

Service billing on the NGCP is based on billing profiles, which may be assigned to customers and SIP peerings. The design

focuses on a simple, yet flexible approach, to support arbitrary dial-plans without introducing administrative overhead for the

system administrators. The billing profiles may define a base fee and free time or free money per billing interval. Unused free time

or money automatically expires at the end of the billing interval.

Each profile may have call destinations (usually based on E.164 number prefix matching) with configurable fees attached. Call

destination fees each support individual intervals and rates, with a different duration and/or rate for the first interval. (e.g.: charge

the first minute when the call is opened, then every 30 seconds, or make it independent of the duration at all) It is also possible

to specify different durations and/or rates for peak and off-peak hours. Peak time may be specified based on weekdays, with

additional support for manually managed dates based on calendar days. The call destinations can finally be grouped for an

overview on user’s invoices by specifying a zone in two detail levels. (E.g.: national landline, national mobile, foreign 1, foreign 2,

etc.)

7.1.1 Creating Billing Profiles

The first step when setting up billing data is to create a billing profile, which will be the container for all other billing related data.

Go to Settings→Billing and click on Create Billing Profile.

198

The sip:carrier Handbook mr5.5.7 199 / 577

The fields Reseller, Handle and Name are mandatory.

• Reseller: The reseller this billing profile belongs to.

• Handle: A unique, permanently fixed string which is used to attach the billing profile to a customer or SIP peering contract.

• Name: A free form string used to identify the billing profile in the Admin Panel. This may be changed at any time.

• Interval charge: A base fee for the billing interval, specifying a monetary amount (represented as a floating point number) in

whatever currency you want to use.

• Interval free time: If you want to include free calling time in your billing profile, you may specify the number of seconds that are

available every billing interval. See Creating Billing Fees below on how to select destinations which may be called using the free

time.

• Interval free cash: Same as for interval free time above, but specifies a monetary amount which may be spent on outgoing

calls. This may be used for example to implement a minimum turnover for a contract, by setting the interval charge and interval

free cash to the same values.

• Fraud monthly limit: The monthly fraud detection limit (in Cent) for accounts with this billing profile. If the call fees of an account

reach this limit within a billing interval, an action can be triggered.

• Fraud monthly lock: a choice of none, foreign, outgoing, incoming, global. Specifies a lock level which will be used to lock the

account and his subscribers when fraud monthly limit is exceeded.

• Fraud monthly notify: An email address or comma-separated list of email addresses that will receive notifications when fraud

monthly limit is exceeded.

199

The sip:carrier Handbook mr5.5.7 200 / 577

• Fraud daily limit: The fraud detection limit (in Cent) for accounts with this billing profile. If the call fees of an account reach this

limit within a calendar day, an action can be triggered.

• Fraud daily lock: a choice of none, foreign, outgoing, incoming, global. Specifies a lock level which will be used to lock the

account and his subscribers when fraud daily limit is exceeded.

• Fraud daily notify: An email address or comma-separated list of email addresses that will receive notifications when fraud daily

limit is exceeded.

• Currency: The currency symbol for your currency. Any UTF-8 character may be used and will be printed in web interfaces.

• VAT rate: The percentage of value added tax for all fees in the billing profile. Currently for informational purpose only and not

used further.

• VAT included: Whether VAT is included in the fees entered in web forms or uploaded to the platform. Currently for informational

purpose only and not used further.

7.1.2 Creating Billing Fees

Each Billing Profile holds multiple Billing Fees.

To set up billing fees, click on the Fees button of the billing profile you want to configure. Billing fees may be uploaded using a

configurable CSV file format, or entered directly via the web interface by clicking Create Fee Entry. To configure the CSV field

order for the file upload, rearrange the entries in the www_admin→fees_csv→element_order array in /etc/ngcp-config/config.yml

and execute the command ngcpcfg apply changed fees element order. The following is an example of working

CSV file to upload (pay attention to double quotes):

".","^1",out,"EU","ZONE EU",5.37,60,5.37,60,5.37,60,5.37,60,0,0

"^01.+$","^02145.+$",out,"AT","ZONE Test",0.06250,1,0.06250,1,0.01755,1,0.01733,1,0

For input via the web interface, just fill in the text fields accordingly.

200

The sip:carrier Handbook mr5.5.7 201 / 577

In both cases, the following information may be specified independently for every destination:

• Zone: A zone for a group of destinations. May be used to group destinations for simplified display, e.g. on invoices. (e.g.

foreign zone 1)

• Source: The source pattern. This is a POSIX regular expression matching the complete source URI (e.g. ˆ.*@sip\.

example\.org$ or ˆsomeone@sip\.sipwise\.com$ or just . to match everything). If you leave this field empty, the

default pattern . matching everything will be set implicitly. Internally, this pattern will be matched against the <source_cli>@

<source_domain> fields of the CDR.

• Destination: The destination pattern. This is a POSIX regular expression matching the complete destination URI (e.g. some

one@sip\.example\.org or ˆ43). This field must be set.

• Direction: Outbound for standard origination fees (applies to callers placing a call and getting billed for that) or Inbound for

termination fees (applies to callees if you want to charge them for receiving various calls, e.g. for 800-numbers). If in doubt, use

Outbound. If you upload fees via CSV files, use out or in, respectively.

Important

The {source, destination, direction} combination needs to be unique for a billing profile. The system will return an error

if such a set is specified twice, both for the file upload and the input via the web interface.

201

The sip:carrier Handbook mr5.5.7 202 / 577

Important

There are several internal services (vsc, conference, voicebox) which will need a specific destination entry with a

domain-based destination. If you don’t want to charge the same (or nothing) for those services, add a fee for desti-

nation \.local$ there. If you want to charge different amounts for those services, break it down into separate fee

entries for @vsc\.local$, @conference\.local$ and @voicebox\.local$ with the according fees. NOT

CREATING EITHER THE CATCH-ALL FEE OR THE SEPARATE FEES FOR THE .local DOMAIN WILL BREAK

YOUR RATING PROCESS!

• Onpeak init rate: The rate for the first rating interval in cent (of whatever currency, represented as a floating point number) per

second. Applicable to calls during onpeak hours.

• Onpeak init interval: The duration of the first billing interval, in seconds. Applicable to calls during onpeak hours.

• Onpeak follow rate: The rate for subsequent rating intervals in cent (of whatever currency, represented as a floating point

number) per second. Applicable to calls during onpeak hours. Defaults to onpeak init rate.

• Onpeak follow interval: The duration of subsequent billing intervals, in seconds. Applicable to calls during onpeak hours.

Defaults to onpeak init interval.

• Offpeak init rate: The rate for the first rating interval in cent (of whatever currency, represented as a floating point number) per

second. Applicable to calls during off-peak hours. Defaults to onpeak init rate.

• Offpeak init interval: The duration of the first billing interval, in seconds. Applicable to calls during off-peak hours. Defaults to

onpeak init interval.

• Offpeak follow rate: The rate for subsequent rating intervals in cent (of whatever currency, represented as a floating point

number) per second. Applicable to calls during off-peak hours. Defaults to offpeak init rate if that one is specified, or to onpeak

follow rate otherwise.

• Offpeak follow interval: The duration of subsequent billing intervals, in seconds. Applicable to calls during off-peak hours.

Defaults to offpeak init interval if that one is specified, or to onpeak follow interval otherwise.

• Use free time: Specifies whether free time minutes may be used when calling this destination. May be specified in the file

upload as 0, n[o], f[alse] and 1, y[es], t[rue] respectively.

7.1.3 Creating Off-Peak Times

To be able to differentiate between on-peak and off-peak calls, the platform stores off-peak times for every billing profile based

on weekdays and/or calendar days. To edit the settings for a billing profile, go to Settings→Billing and press the Off-Peaktimes

button on the billing profile you want to configure.

To set off-peak times for a weekday, click on Edit next to the according weekday. You will be presented with two input fields which

both receive a timestamp in the form of hh:mm:ss specifying a time of day for the start and end of the off-peak period. If any of

the fields is left empty, the system will automatically insert 00:00:00 (start field) or 23:59:59 (end field). Click on Add to store

the setting in the database. You may create more than one off-peak period per weekday. To delete a range, just click Delete next

to the entry. Click the close icon when done.

202

The sip:carrier Handbook mr5.5.7 203 / 577

To specify off-peak ranges based on calendar dates, click on Create Special Off-Peak Date. Enter a date in the form of YYYY-

MM-DD hh:mm:ss into the Start Date/Time input field and End Date/Time input field to define a range for the off-peak period.

203

The sip:carrier Handbook mr5.5.7 204 / 577

7.2 Prepaid Accounting

In a normal post-paid accounting scenario, each customer accumulates debt in their billing account, which at the end of the billing

interval is then billed to the customer. A prepaid billing profile reverses this sequence: the customer first has to provide credit to

their account balance, and the costs for all calls are then deducted from that account balance. Once the balance reaches zero, no

further calls from this customer are accepted, with the exception of free calls. Additionally, if the balance drops to zero while any

calls are currently active, NGCP will disconnect those calls as soon as that happens.

With prepaid billing enabled, all details of the billing profile and all details of the billing fees behave as they normally do, including

interval free time. If any interval free time is given, the free time will be used before the account’s credit is.

Important

For technical reasons, the system can make the distinction between on-peak and off-peak times only at call establish-

ment time. In other words, if the currently active call fee at the moment when the call is established is an off-peak fee,

then the same off-peak fee will remain active for the whole length of this call, even if the call actually transitions into an

on-peak fee (and vice versa).

Important

For technical reasons, prepaid billing can’t charge local endpoint calls to Voicebox, VSC calls or calls to a Conference

Room.

204

The sip:carrier Handbook mr5.5.7 205 / 577

The Sipwise NGCP platform offers advanced billing features which are especially designed for pre-paid billing scenarios. For

details please visit Billing Customizations Section 7.4 section of the handbook.

7.3 Fraud Detection and Locking

The NGCP supports a fraud detection feature, which is designed to detect accounts causing unusually high customer costs, and

then to perform one of several actions upon those accounts. This feature can be enabled and configured through two sets of billing

profile options described in Section 7.1.1, namely the monthly (fraud monthly limit, fraud monthly lock and fraud monthly notify)

and daily limits (fraud daily limit, fraud daily lock and fraud daily notify). Either monthly/daily limits or both of them can be active at

the same time.

Monthly fraud limit check runs once a day, shortly after midnight local time and daily fraud limit check runs every 30min. A

background script (managed by cron daemon) automatically checks all accounts which are linked to a billing profile enabled for

fraud detection, and selects those which have caused a higher cost than the fraud monthly limit configured in the billing profile,

within the currently active billing interval (e.g. in the current month), or a higher cost than the fraud daily limit configured in the

billing profile, within the calendar day. It then proceeds to perform at least one of the following actions on those accounts:

• If fraud lock is set to anything other than none, it will lock the account accordingly (e.g. if fraud lock is set to outgoing, the

account will be locked for all outgoing calls).

• If anything is listed in fraud notify, an email will be sent to the email addresses configured. The email will contain information

about which account is affected, which subscribers within that account are affected, the current account balance and the con-

figured fraud limit, and also whether or not the account was locked in accordance with the fraud lock setting. It should be noted

that this email is meant for the administrators or accountants etc., and not for the customer.

7.3.1 Fraud Lock Levels

Fraud lock levels are various protection (and notification) settings that are applied to subscribers of a Customer, if fraud detection

is enabled in the currently active billing profile and the Customer’s daily or monthly fraud limit has been exceeded.

The following lock levels are available:

• none: no account locking will happen

• foreign calls: only calls within the subscriber’s own domain, and emergency calls, are allowed

• all outgoing calls: subscribers of the customer cannot place any calls, except calls to free and emergency destinations

• incoming and outgoing: subscribers of the customer cannot place and receive any calls, except calls to free and emer-

gency destinations

• global: same restrictions as at incoming and outgoing level, additionally subscribers are not allowed to access the

Customer Self Care (CSC) interface

• ported: only automatic call forwarding, due to number porting, is allowed

205

The sip:carrier Handbook mr5.5.7 206 / 577

Important

You can override fraud detection and locking settings of a billing profile on a per-account basis via REST API or the

Admin interface.

Caution

Accounts that were automatically locked by the fraud detection feature will not be automatically unlocked when the

next billing interval starts. This has to be done manually through the administration panel or through the provisioning

interface.

Important

If fraud detection is configured to only send an email and not lock the affected accounts, it will continue to do so for

over-limit accounts every day. The accounts must either be locked in order to stop the emails (only currently active

accounts are considered when the script looks for over-limit accounts) or some other action to resolve the conflict must

be taken, such as disabling fraud detection for those accounts.

Note

It is possible to fetch the list of fraud events and thus get fraud status of Customers by using the REST API and referring to the

resource: /api/customerfraudevents.

Note

Apart from the daily fraud detection check service, NGCP also provides instant, "hard" locking for prepaid use cases, by means

of billing profile packages. See Billing Profile Packages Section 7.4.3 for reference.

7.4 Billing Customizations

The standard way of doing the billing — i.e. having fixed billing intervals of a calendar month, starting on the 1st day of month —

may not fit all billing profiles and intervals that sip:carrier platform operators would like to use.

The sip:carrier supports — starting from its mr4.2.1 version — alternate ways of defining billing profiles and intervals which are

especially worthy for pre-paid scenarios. New functionality is covered by the following titles:

1. Billing Networks Section 7.4.1

2. Profile Mappings Schedule Section 7.4.2

3. Profile Packages Section 7.4.3

4. Vouchers Section 7.4.4

5. Top-up Section 7.4.5

6. Balance Overviews Section 7.4.6

206

The sip:carrier Handbook mr5.5.7 207 / 577

7. Usage Examples Section 7.4.7

Subsequent sections will provide an introduction and configuration instructions to these advanced features of sip:carrier.

7.4.1 Billing Networks

The idea is to dynamically select billing profiles (including fees) depending on the IP network the caller‘s SIP client is using to

connect. The caller‘s IP is populated in a call‘s CDR, and effectively processed by:

• the rating engine component („rate-o-mat“) and the

• prepaid interception module (libswrate).

The billing profile for rating a call is identified by matching the source IP against network ranges linked to the customer contract‘s

billing mappings records. This feature is sometimes also referred to as roaming.

A Billing Network is defined as a series of network blocks where each network block consists of a single IP address or an IP

subnet. Blocks of a particular billing network can be defined by either IPv4, or IPv6 addresses but not mixed.

Figure 69: Creation of Billing Network

207

The sip:carrier Handbook mr5.5.7 208 / 577

The new /api/billingnetworks/ REST API resource allows to manage billing networks. The example billing network that

is shown in the figure above may be defined through the API with this JSON structure:

{ "blocks" : [{ "ip" : "10.0.1.0", // subnet: 10.0.1.0 .. 10.0.1.255

"mask" : 24

},

{ "ip" : "10.0.2.2" // single ip

}

],

"description" : "Some text",

"name" : "Demo Billing Net 1", //unique per reseller

"reseller_id" : 1

}

Input validation of the network blocks is automatically performed by sip:carrier during their definition in a way that it prevents

specifying overlapping blocks by means of Interval Trees; billing networks themselves may overlap though.

Figure 70: Overlapping Block Prevention

208

The sip:carrier Handbook mr5.5.7 209 / 577

7.4.2 Profile Mapping Schedule

Using the default settings related to billing when creating a new Reseller or Customer on the administrative web panel results in

applying the standard billing profile mapping schedule: the same billing profile is always used.

7.4.2.1 Definition of Profile Mapping Schedules

The idea of billing profile mapping schedule is to extend the billing mappings logic to utilize it as a schedule for billing profiles (and

associated fees) for the Customer or Reseller contract. So far, billing mapping records provided only a history showing which

profile was in effect at a given time in the past, which is for example required for delayed rating of calls.

Now it is also possible to define in advance, when specific billing profiles should become active in the future, e.g. to plan campaigns

or special offers.

Billing profile mappings represent a schedule of overlapping time intervals with Billing Profiles and Billing Networks, which are

assigned to (customer) contracts when creating or editing them.

Mapping intervals can be of type:

• open: no start time + no end time

• half-open:

– left-open: no start time + definite end time

– right-open: definite start time + no end time

• closed: definite start time + definite end time

7.4.2.2 Schedule Example

Figure 71: Profile Mapping Schedule Example

Applying the profile mapping schedule shown in the above figure will result in billing profiles being active as provided in the table

below.

209

The sip:carrier Handbook mr5.5.7 210 / 577

Table 11: Active Billing Profiles

Time Web Panel shows Rating

Caller IP in Network 1 Caller IP in Network 2 Caller IP in other

network

May 30 Profile 1 Profile 1 Profile 1 Profile 1

June 1 Profile 4 Profile 3 Profile 4 Profile 1

June 2 Profile 2 Profile 2 Profile 4 Profile 1

June 5 Profile 5 Profile 3 Profile 4 Profile 5

7.4.2.3 Configuration of Schedules

A Customer’s default billing profile mapping can be changed to scheduled mappings when editing its properties, at the parameter

"Set billing profiles", selecting: schedule (billing mapping intervals)

Figure 72: Profile Mapping Schedule Creation

210

The sip:carrier Handbook mr5.5.7 211 / 577

Tip

Assigning a Billing Network to a billing profile mapping is optional. Without selecting the network, the Billing Profile will be

applied to all calls.

The profile mapping schedule assigned to a Customer is also listed among Customer’s properties. See Settings→ Customers

→ Details→ Billing Profile Schedule.

Figure 73: Profile Mapping Schedule List

Note

Profile mappings that started in the past, like the default one, are displayed with a strike-through font in order to indicate that

those can not be modified.

The currently active mapping is depicted by a checked box.

7.4.2.4 REST API for Profile Mapping Schedules

The /api/customers/ API resource was extended to provide three different modes of defining profile mappings:

1. billing_profiles field: explicitly declare profile mappings in form of (billing profile, billing netwo

rk, start time, stop time) tuples

2. billing_profile_id field (legacy API spec): a single profile mapping interval is appended (billing profile,

no network / any caller IP respectively, starting now)

211

The sip:carrier Handbook mr5.5.7 212 / 577

3. profile_package_id field: profile mappings starting now are appended by using lists of (billing profile,

billing network) tuples from the given profile package

With regards to Resellers, the /api/contracts/ API resource was enhanced as well, but supports method 1. and 2. only,

and without billing networks.

Mapping Intervals

Intervals can be of open, half-open (left-open, right-open) or closed type. When specifying profile mappings discretely, allowed

interval types are restricted, depending on create/update situation:

Table 12: Allowed Mapping Intervals

Interval Type Start Stop POST (create) PUT / PATCH

(update)

open undefined undefined 1..* 0

left-open undefined defined 0 0

right-open > now() undefined * *

closed > now() > start * *

Example Profile Mapping

An example JSON structure for definition of profile mapping schedules shown in Billing Profile Schedule List Figure 73 :

{ ...,

"billing_profile_definition" : "profiles", // i.e. use ’billing_profiles’ field

"billing_profiles" : [{ "network_id" : "236",

"profile_id" : "236",

"start" : "2016-11-01 00:00:00",

"stop" : "2016-12-31 00:00:00"

}, // closed future interval, with network

{ "network_id" : null,

"profile_id" : "237",

"start" : "2017-01-01 00:00:00",

"stop" : "2017-12-31 00:00:00"

}], // closed future interval, without network

"contact_id" : 141,

...

}

7.4.3 Profile Packages

By introducing billing profile packages, general billing parameters can be defined for a customer contract:

212

The sip:carrier Handbook mr5.5.7 213 / 577

• Balance interval duration (regular/constant or aligned to top-up events)

• The first interval‘s start date

• The cash-balance carry-over/discard behaviour upon interval transitions

• Subscriber lock levels and profile sets to get applied upon:

– top-up

– balance threshold underrun

• Initial balance and billing profiles

Profile Packages are fundamental for pre-paid billing scenarios, since in such a billing scheme the traditional, fixed monthly periods

prove to be insufficient to cover the business needs of the NGCP platform operator. As an example: pre-paid subscribers typically

have their "billing periods" between account balance top-ups.

7.4.3.1 Elements of Profile Packages

A Profile Package consists of various elements that will be discussed in subsequent sections of the sip:carrier handbook. In order

to set the parameters of a profile package one must navigate to: Settings → Profile Packages → Create Profile Package, or

alternatively, in order to update an existing profile package: select the package and press Edit button.

Basic Balance Intervals Setup

• Interval duration (n hours, days, weeks, months)

• Interval start mode:

– 1st of month (1st): billing interval is 1 calendar month; this is the default for each Customer created on Sipwise NGCP platform

Figure 74: Interval Start Mode: 1st

– upon customer creation (create): (the initial) billing interval starts when the Customer is created

213

The sip:carrier Handbook mr5.5.7 214 / 577

Figure 75: Interval Start Mode: create

– upon topup (topup_interval): interval starts at first topup event and its length is defined by interval duration parameter

of the profile package

Figure 76: Interval Start Mode: topup_interval

– intervals from topup to topup (topup): interval starts at any topup event and its length is defined by interval duration

parameter of the profile package; intervals can overlap in this case

214

The sip:carrier Handbook mr5.5.7 215 / 577

Figure 77: Interval Start Mode: topup

• Initial balance: the initial value of account balance (e.g. every new customer gets 5 Euros as a starting bonus)

Balance Carry Over

• Carry Over: balance carry over behaviour upon interval transitions:

– carry-over: always keep balance

– carry-over only if topped-up timely: keep balance in case of a timely top-up only; where timely means the

topup happens within a pre-defined time span before the end of the balance interval

– discard: discard balance at the end of each interval

• Timely Duration: duration of the timely period

• Discard balance after intervals: for how many balance intervals the remaining account balance is kept before its disposal

Underrun Settings

• Underrun lock threshold: when account balance reaches this amount the subscriber will be locked to a restricted set of services

• Underrun lock level: this level of services will apply when an account balance underruns

– don’t change: no change in the available set of services

– no lock: all services are available

– foreign: only calls within subscriber’s own domain are allowed

– outgoing: all outgoing calls are prohibited

– all calls: all calls (incoming + outgoing) are prohibited

– global: all calls + access to Customer Self Care web interface are prohibited

– ported: only automatic call forwarding, due to number porting, is allowed

• Underrun profile threshold: when account balance reaches this amount the Underrun Billing Profile will be applied

215

The sip:carrier Handbook mr5.5.7 216 / 577

Basic Top-up Settings

• Top-up lock level: subscriber lock (unlock) levels to apply upon top-up event

• Service charge: (always) subtract this value from the voucher amount, if topup happens via the usage of a voucher

Profile mappings

A lists of (billing profile, billing network) tuples for appending profile mappings:

• Initial Billing Profile: when creating or manually changing the customers package (initial_profiles)

• Underrun Billing Profile: when the balance underuns a cash threshold (underrun_profiles)

• Top-up Billing Profile: when the customer tops-up using a voucher associated with the package (topup_profiles)

7.4.3.2 Examples

Profile Package Configuration

1. Definition of basic profile package parameters

Figure 78: Basic Profile Package Parameters

216

The sip:carrier Handbook mr5.5.7 217 / 577

2. Definition of balance interval and carry-over behaviour

Figure 79: Balance Interval and Carry-over

3. Definition of balance underrun parameters

217

The sip:carrier Handbook mr5.5.7 218 / 577

Figure 80: Balance Underrun Parameters

4. Definition of top-up settings

218

The sip:carrier Handbook mr5.5.7 219 / 577

Figure 81: Balance Top-up Settings

5. Assigning a profile package to a customer

219

The sip:carrier Handbook mr5.5.7 220 / 577

Figure 82: Assigning Profile Package to Customer

Interval start mode: top-up interval; carry-over: timely

Profile package setup:

• initial_balance: 1.0 euro

• balance_interval: 30 "day(s)“

• interval_start_mode: "topup_interval“

• carry_over_mode: "timely“

• timely_duration: 12 "day(s)“

• underrun_lock_threshold: 0.7 euro

• underrun_profile_threshold: 5.0 euro

• underrun_lock_level:. . .

220

The sip:carrier Handbook mr5.5.7 221 / 577

Figure 83: Example: Top-up Interval and Timely Carry-over

Interval start mode: top-up to top-up; carry-over: always

• initial_balance: 1.0 euro

• balance_interval: 30 "day(s)“

• interval_start_mode: "topup“

• carry_over_mode: "carry-over“

• notopup_discard_intervals: 1

• underrun_lock_threshold: 0.7 euro

• underrun_profile_threshold: 5.0 euro

• underrun_lock_level:. . .

221

The sip:carrier Handbook mr5.5.7 222 / 577

Figure 84: Example: Top-up and Always Carry-over

7.4.3.3 REST API

The new /api/profilepackages/ REST API resource allows to manage billing profile package container entities, that

aggregate settings of profile packages.

A sample JSON structure follows:

{

"reseller_id" : 1,

"status" : "active",

"name" : "demo profile package",

"description" : "package for 10C ...",

"balance_interval_start_mode" : "1st",

"balance_interval_value" : 1,

"balance_interval_unit" : "month",

"carry_over_mode" : "carry_over",

"timely_duration_unit" : null,

"timely_duration_value" : null,

"initial_balance" : 0,

"initial_profiles" : [...], // required default, e.g. same as „topup_profiles“

"notopup_discard_intervals" : null,

"underrun_lock_threshold" : 0,

"underrun_lock_level" : 4,

222

The sip:carrier Handbook mr5.5.7 223 / 577

"underrun_profile_threshold" : 5,

"underrun_profiles" : [...],

"service_charge" : 10,

"topup_lock_level" : null,

"topup_profiles" : [{

"network_id" : null, // any network

"profile_id" : 29

},

{

"network_id" : 2, // a specific billing network

"profile_id" : 30

},

],

...

}

7.4.4 Vouchers

Vouchers are a typical mean of topping-up an account balance in pre-paid billing scenarios.

The definition of a voucher in the database may succeed via:

• manual entry of voucher data on the administrative web panel or through the REST API

• bulk-uploading of vouchers using a CSV (comma separated value) formatted file

In order to manage vouchers the administrator has to navigate to: Settings→ Vouchers→ Create Billing Voucher or select an

existing one and press Edit button.

Figure 85: List of Vouchers

223

The sip:carrier Handbook mr5.5.7 224 / 577

7.4.4.1 Properties of Vouchers

• Code: the unique code of the voucher which assures that a voucher can be used only once; this property is encrypted and

displayed on the web panel to authorized users only

• Amount: the amount of money the voucher represents

• Valid until: end of validity period

Figure 86: Voucher’s Main Properties

Setting following properties of a voucher is optional:

• Customer: the Customer whom the voucher will be assigned to; subscribers of other customers can not redeem the voucher

• Package: vouchers may be associated with profile packages; if done so, some changes will be applied to the Customer for

whom the voucher is redeemed with the top-up event:

– applying top-up profile mappings starting with the time of the top-up

– subtracting the new package‘s service charge from the voucher amount

224

The sip:carrier Handbook mr5.5.7 225 / 577

– resizing the current balance interval for a gapless transition, if the new package has a different interval start mode (e.g. from

"create" to "1st")

– if a new balance interval starts with the top-up, the carry-over mode of the customer‘s previous package applies

Figure 87: Voucher: Customer and Profile Package

7.4.4.2 REST API

Vouchers can be created and managed using the /api/vouchers/ REST API resource. This resource restricts invasive

operations (POST, PUT, PATCH, DELETE) to authorized users.

{

"amount" : 1000,

"customer_id" : null, //do not restrict to a specific customer

"valid_until" : "2017-06-05 23:59:59",

"package_id" : "571", //switch to profile package

"reseller_id" : 1,

"code" : "SILVER_1_1437974823"

}

225

The sip:carrier Handbook mr5.5.7 226 / 577

7.4.5 Top-up

A customer’s administrator or subscriber can perform a top-up to increase the contract‘s cash balance. The NGCP platform

supports two means of topping-up the balance:

1. Top-up Cash: Directly specify the cash amount to add

2. Top-up Voucher: Specify the code of a voucher, which was set up in advance

The NGCP platform provides 2 interfaces to perform top-ups:

1. through the REST API: use a CRM or third-party REST-API Broker (which i.e. coordinates with an App-Store purchase

process) to finally instruct NGCP to perform a top-up. This is the recommended method.

2. through the administrative web interface:

One has to select the Customer, then Details→ Contract Balance and finally press Top-up Cash or Top-up Voucher.

7.4.5.1 Top-up Cash

When doing top-up with cash one needs to supply the amount of top-up in the currency of the customer contract. Optionally one

can assign a Profile Package to the top-up event which will activate that profile package for the customer.

Figure 88: Balance Top-up with Cash

It is also possible to perform top-up through the REST API: POST /api/topupcash

226

The sip:carrier Handbook mr5.5.7 227 / 577

{

"subscriber_id" : "73",

"amount" : 100,

"package_id" : null,

}

7.4.5.2 Top-up Voucher

Selecting Top-up Voucher option will provide a simple list of available vouchers from which the administrator can choose the

voucher. If a Profile Package is assigned to the voucher, that package will be activated for the customer on the top-up event.

Figure 89: Balance Top-up with Voucher

It is also possible to perform top-up through the REST API: POST /api/topupvouchers

{

"subscriber_id" : "73",

"code" : "SILVER_1_1437974390“

"request_token" : "uuid_from_3rdparty_relay" // optional request identifier

// for lookups in the top-up log

}

7.4.6 Balance Overviews

The actual contract balance and logs of top-up or balance interval change events are a kind of financially important information

and that’s why those are provided on the administrative web interface for each customer. One should navigate to: Settings →
Customers→ select the customer→ Details.

227

The sip:carrier Handbook mr5.5.7 228 / 577

The various information details available on the web interface are discussed in subsequent sections of the handbook.

7.4.6.1 Contract Balance

This part of the overviews shows the actual financial state of the customer’s balance and the current profile package and balance

interval.

Figure 90: Contract Balance Status

Another functionality assigned to Contract Balance section is the manual top-up. Both top-up with cash and top-up with voucher

can be performed from here.

7.4.6.2 Balance Intervals

This table shows the balance intervals that have been in use, including the current interval.

228

The sip:carrier Handbook mr5.5.7 229 / 577

Figure 91: List of Balance Intervals

Content of the balance intervals table is:

• From, To: starting and end points of the time interval

• Cash: the contract’s cash balance value at the end of the interval (former int.), or currently (actual int.)

• Debit: the total spent amount of money in the actual interval

Note

While "Cash" shows the remaining amount, "Debit" shows the spent amount. With a post-paid billing scenario only "Debit"

field would be populated, with pre-paid both fields will display an amount.

• No. of Top-ups: how many top-up events happened within the interval

• No. of Timely Top-ups: how many timely top-up events happened within the interval

• Underrun detected (Profiles or Lock): the time of last underrun event when either an underrun billing profile, or a subscriber lock

was activated

7.4.6.3 Top-up Log

Each successful or failing top-up request has to be logged. The log records represent an audit trail and reflect any data changes

in the course of the top-up request.

In case of an error during the top-up operation the error message and any parseable fields of failed top-up attempts is recorded.

229

The sip:carrier Handbook mr5.5.7 230 / 577

Figure 92: Balance Top-up Log

Content of the top-up log table is:

• Timestamp: when the top-up happened

• Subscriber: the ID of the subscriber who performed the top-up

• Type: cash or voucher

• Outcome: ok or failed

• Message: error message, if Outcome="failed"

• Voucher ID: ID of voucher, if Type="voucher"

• Amount: the amount by which the balance was modified (after the Service Charge was subtracted from the voucher’s value)

• Balance before: balance’s value before top-up

• Balance after: balance’s value after top-up

• Package before: the name of the Profile Package that was active before top-up

• Package after: the name of the Profile Package that became active after top-up

The top-up log table can also be queried using the readonly /api/topuplogs REST API resource.

An example of the response:

{

"_embedded" : {

"ngcp:topuplogs" : [{

"_links" : {...},

"amount" : null,

"cash_balance_after" : null,

"cash_balance_before" : null,

230

The sip:carrier Handbook mr5.5.7 231 / 577

"contract_balance_after_id" : null,

"contract_balance_before_id" : null,

"contract_id" : 2565,

"id" : 373,

"lock_level_after" : null,

"lock_level_before" : null,

"message" : ..., //error reason

"outcome" : "failed",

"package_after_id" : null,

"package_before_id" : null,

"profile_after_id" : null,

"profile_before_id" : null,

"request_token" : "1444956281_6", // = “panel“ for panel UI requests

"subscriber_id" : 1804,

"timestamp" : "2015-10-16 02:45:19",

"type" : "voucher", // "cash" or "voucher"

"username" : "administrator",

"voucher_id" : null }]

},

"_links" : { ... },

"total_count" : 1

}

7.4.7 Usage Examples

After getting to know the concepts of customized billing solution on sip:carrier platform, it’s worth seeing some practical examples

for the usage of those advanced features.

The starting point is the setup of Profile Packages for our fictive customers: A, B and C. There are 4 different packages defined,

with corresponding vouchers:

• Initial:

– Balance interval: 1 month

– Timely duration: 1 month

– Interval start mode: topup_interval

– Carry-over mode: carry_over_timely

• Silver:

– Balance interval: 1 month

– Timely duration: 1 month

– Interval start mode: "topup_interval"

– Carry-over mode: "carry_over_timely"

– Service charge: 2 EUR

231

The sip:carrier Handbook mr5.5.7 232 / 577

– Underrun lock level: "no lock"

– Voucher value: 10 EUR

• Gold:

– Balance interval: 1 month

– Interval start mode: "topup_interval"

– Carry-over mode: "carry_over"

– Service charge: 5 EUR

– Underrun lock level: "no lock"

– Voucher value: 20 EUR

• Extension:

– Balance interval: 1 month

– Timely duration: 1 month

– Interval start mode: "topup_interval"

– Carry-over mode: "carry_over_timely"

– Service charge: 2 EUR

– Underrun lock level: "no lock"

– Voucher value: 2 EUR

7.4.7.1 Customer A — Silver Package

1. Customer A tops up 10 EUR with a “silver” voucher. 2 EUR are deducted as service charge. Remaining balance is 8 EUR

starting on the date of the top- up.

2. Customer A doesn’t top-up balance within the next month, so remaining balance is set to 0 after one month, and billing

profiles and lock levels are set to the balance-underrun definition of the “silver” package.

Figure 93: Usage Example: Silver Package

232

The sip:carrier Handbook mr5.5.7 233 / 577

7.4.7.2 Customer B — Silver and Extension Package

1. Customer B tops up 10 EUR with the “silver” voucher. 2 EUR are deducted as service charge. Remaining balance is 8 EUR

starting on the date of the top-up.

2. Customer B tops up 2 EUR using an “extension” voucher on the last day. 2 EUR are deducted as service charge and the

interval is extended for one month, carrying over his old balance.

3. Customer B doesn’t top-up balance within the next month, so remaining balance is set to 0 after the month, and billing

profiles and lock levels are set to the balance-underrun definition of the “extension” package.

Figure 94: Usage Example: Silver + Extension Package

7.4.7.3 Customer C — Gold Package

Customer C tops up 20 EUR with the “gold” voucher. 5 EUR are deducted as service charge. Remaining balance is 15 EUR

starting on the date of the top-up. Balance is carried over after each month until used up.

Figure 95: Usage Example: Gold Package

7.5 Notes on Billing and Call Rating

Cash balance with post-paid billing profile

233

The sip:carrier Handbook mr5.5.7 234 / 577

Customers with a post-paid billing profile may have a positive account cash balance value. This is the regular case when using a

post-paid billing profile showing a free cash greater than 0.

Tip

You can set the free cash (and the free time) in the billing profile. The account balance will be set and managed (i.e. refilled or

carried over) automatically for subsequent balance intervals.

In case the account has a positive cash balance, the cost of the call will be deducted from that balance and not considered as

additional cost of that particular call for the customer.

Important

The rating engine (rate-o-mat) in sip:carrier will write 0 instead of the real cost of a call in the CDR, if the source

customer’s (who initiated the call) account has a positive cash balance! The purpose of this is to reflect the usage of

free cash in the CDR for the particular call.

Note

It might happen, for instance, that a customer’s billing profile is changed from pre-paid to post-paid, and the customer already

had a positive cash balance on his account. In that case the same call rating mechanism is involved as for the free cash.

7.6 Billing Data Export

Regular billing data export is done using CSV (comma separated values) files which may be downloaded from the platform using

the cdrexport user which has been created during the installation.

There are two types of exports. One is CDR (Call Detail Records) used to charge for calls made by subscribers, and the other is

EDR (Event Detail Records) used to charge for provisioning events like enabling certain features.

7.6.1 Glossary of Terms

Billing records contain fields that hold data of various entities that play a role in the phone service offered by Sipwise NGCP. For a

better understanding of billing data please refer to the glossary provided here:

• Account: the customer’s account that is charged for calls of its subscriber(s)

• Carrier: a SIP peer that sends incoming calls to, or receives outgoing calls from NGCP. A carrier may charge fees for the

outgoing calls from NGCP (outbound billing fee), or for the incoming calls to NGCP (inbound billing fee).

• Contract: the service contract that represents a customer, a reseller or a SIP peer; a contract on NGCP contains the billing

profile (billing fees) too

• Customer: the legal entity that represents any number of subscribers; this entity receives the bills for calls of its subscriber(s)

• Provider: either the reseller that holds a subscriber who is registered on NGCP, or the SIP peer that handles calls between an

external subscriber and NGCP

234

The sip:carrier Handbook mr5.5.7 235 / 577

• Reseller: the entity who is the direct, administrative service provider of a group of customers and subscribers registered on

NGCP; the NGCP operator may also charge a reseller for the calls initiated or received by its subscribers

• User: the subscriber who either is registered on NGCP, or is an external call party

7.6.2 File Name Format

In order to be able to easily identify billing files, the file names are constructed by the following fixed-length fields:

<prefix><separator><version><separator><timestamp><separator><sequence number>< ←↩
suffix>

The definition of the specific fields is as follows:

Table 13: CDR/EDR export file name format

File name element Length Description

<prefix> 7 A fixed string. Always sipwise.

<separator> 1 A fixed character. Always _.

<version> 3 The format version, a three digit number. Currently 007.

<timestamp> 14 The file creation timestamp in the format YYYYMMDDhhmmss.

<sequence number> 10 A unique 10-digit zero-padded sequence number for quick identification.

<suffix> 4 A fixed string. Always .cdr or .edr.

A valid example filename for a CDR billing file created at 2012-03-10 14:30:00 and being the 42nd file exported by the system, is:

sipwise_007_20130310143000_0000000042.cdr

7.6.3 File Format

Each billing file consists of three parts: one header line, zero to 5000 body lines and one trailer line.

7.6.3.1 File Header Format

The billing file header is one single line, which is constructed by the following fields:

<version>,<number of records>

The definition of the specific fields is as follows:

235

The sip:carrier Handbook mr5.5.7 236 / 577

Table 14: CDR/EDR export file header line format

Body Element Length Type Description

<version> 3 zero-

padded

uint

The format version. Currently 007.

<number of records> 4 zero-

padded

uint

The number of body lines contained in the file.

A valid example for a Header is:

007,0738

7.6.3.2 File Body Format for Call Detail Records (CDR)

The body of a CDR consists of a minimum of zero and a default maximum of 5000 lines. The platform operator can configure

the maximum number of lines kept in a file by updating the cdrexport.max_rows_per_file parameter in /etc/ngcp-

config/config.yml file. Each line holds one call detail record in CSV format and is constructed by a configurable set of

fields, all of them enclosed in single quotes.

The following table defines the default set of fields that are inserted into the CDR file, for exports related to system scope. The

list of fields is defined in /etc/ngcp-config/config.yml file, cdrexport.admin_export_fields parameter.

Table 15: Default set of system CDR fields

Body Element Length Type Description

CDR_ID 1-10 uint Internal CDR ID.

UPDATE_TIME 19 timestamp Timestamp of last modification,

including date and time (with seconds

precision).

SOURCE_USER_ID 36 string Internal UUID of calling party

subscriber. Value is 0 if calling party is

external.

SOURCE_PROVIDER_ID 0-255 string Internal ID of the contract of calling

party provider (i.e. reseller or peer).

SOURCE_EXTERNAL_SUBSCRIBER_ID 0-255 string External, arbitrary ID of calling party

subscriber. (A string value shown as

"External ID" property of an NGCP

subscriber.)

SOURCE_SUBSCRIBER_ID 1-11 uint Internal ID of calling party subscriber.

Value is 0 if calling party is external.

236

The sip:carrier Handbook mr5.5.7 237 / 577

Table 15: (continued)

Body Element Length Type Description

SOURCE_EXTERNAL_CONTRACT_ID 0-255 string External, arbitrary ID of calling party

customer. (A string value shown as

"External ID" property of an NGCP

customer/peer.)

SOURCE_ACCOUNT_ID 1-11 uint Internal ID of calling party customer.

SOURCE_USER 0-255 string SIP username of calling party.

SOURCE_DOMAIN 0-255 string SIP domain of calling party.

SOURCE_CLI 0-64 string CLI of calling party in E.164 format.

SOURCE_CLIR 1 uint 1 for calls with CLIR, 0 otherwise.

SOURCE_IP 0-64 string IP Address of the calling party.

DESTINATION_USER_ID 36 string Internal UUID of called party

subscriber. Value is 0 if called party is

external.

DESTINATION_PROVIDER_ID 0-255 string Internal ID of the contract of called

party provider (i.e. reseller or peer).

DESTINATION_EXTERNAL_SUBSCRIBER

_ID

0-255 string External, arbitrary ID of called party

subscriber. (A string value shown as

"External ID" property of an NGCP

subscriber.)

DESTINATION_SUBSCRIBER_ID 1-11 uint Internal ID of called party subscriber.

Value is 0 if calling party is external.

DESTINATION_EXTERNAL_CONTRACT_ID 0-255 string External, arbitrary ID of called party

customer. (A string value shown as

"External ID" property of an NGCP

customer/peer.)

DESTINATION_ACCOUNT_ID 1-11 uint Internal ID of called party customer.

DESTINATION_USER 0-255 string Final SIP username of called party.

DESTINATION_DOMAIN 0-255 string Final SIP domain of called party.

DESTINATION_USER_IN 0-255 string Incoming SIP username of called party,

after applying inbound rewrite rules.

DESTINATION_DOMAIN_IN 0-255 string Incoming SIP domain of called party,

after applying inbound rewrite rules.

DESTINATION_USER_DIALED 0-255 string The user-part of the SIP Request URI

as received by NGCP.

PEER_AUTH_USER 0-255 string Username used to authenticate

towards peer.

PEER_AUTH_REALM 0-255 string Realm used to authenticate towards

peer.

237

The sip:carrier Handbook mr5.5.7 238 / 577

Table 15: (continued)

Body Element Length Type Description

CALL_TYPE 3-4 string The type of the call - one of:

call: normal call

cfu: call forward unconditional

cfb: call forward busy

cft: call forward timeout

cfna: call forward not available

cfs: call forward for SMS

CALL_STATUS 2-8 string The final call status - one of:

ok: successful call

busy: called party busy

noanswer: no answer from called

party

cancel: cancel from caller

offline called party offline

timeout: no reply from called party

other: unspecified, see CALL_CODE

field for details

CALL_CODE 3 string The final SIP status code.

INIT_TIME 23 timestamp Timestamp of call initiation (SIP INVITE

received from calling party). Includes

date, time with milliseconds (3

decimals).

START_TIME 23 timestamp Timestamp of call establishment (final

SIP response received from called

party). Includes date, time with

milliseconds (3 decimals).

DURATION 4-13 fixed

precision (3

decimals)

Length of call (calculated from

START_TIME) including milliseconds

(3 decimals).

CALL_ID 0-255 string The SIP Call-ID.

RATING_STATUS 2-7 string The internal rating status of the CDR -

one of:

unrated: not rated

ok: successfully rated

failed: error while rating

Currently always ok or unrated,

depending on whether rating is enabled

or not.

RATED_AT 0-19 datetime Time of rating, including date and time

(with seconds precision). Empty if CDR

is not rated.

238

The sip:carrier Handbook mr5.5.7 239 / 577

Table 15: (continued)

Body Element Length Type Description

SOURCE_CARRIER_COST 7-14 fixed

precision (6

decimals)

The originating carrier cost that the

carrier (i.e. SIP peer) charges for the

calls routed to his network, or empty if

CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

SOURCE_CUSTOMER_COST 7-14 fixed

precision (6

decimals)

The originating customer cost, or empty

if CDR is not rated.

SOURCE_CARRIER_ZONE 0-127 string Name of the originating carrier billing

zone, or onnet if data is not available.

PLEASE NOTE: Only available in

system exports, not for resellers.

SOURCE_CUSTOMER_ZONE 0-127 string Name of the originating customer billing

zone, or empty if CDR is not rated.

SOURCE_CARRIER_DETAIL 0-127 string Description of the originating carrier

billing zone, or platform

internal if data is not available.

PLEASE NOTE: Only available in

system exports, not for resellers.

SOURCE_CUSTOMER_DETAIL 0-127 string Description of the originating customer

billing zone, or empty if CDR is not

rated.

SOURCE_CARRIER_FREE_TIME 1-10 uint The number of free time seconds used

on originating carrier side, or empty if

CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

SOURCE_CUSTOMER_FREE_TIME 1-10 uint The number of free time seconds used

from the originating customer’s account

balance, or empty if CDR is not rated.

DESTINATION_CARRIER_COST 7-14 fixed

precision (6

decimals)

The terminating carrier cost, or empty if

CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_CUSTOMER_COST 7-14 fixed

precision (6

decimals)

The terminating customer cost, or

empty if CDR is not rated.

239

The sip:carrier Handbook mr5.5.7 240 / 577

Table 15: (continued)

Body Element Length Type Description

DESTINATION_CARRIER_ZONE 0-127 string Name of the terminating carrier billing

zone, or onnet if data is not available.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_CUSTOMER_ZONE 0-127 string Name of the terminating customer

billing zone, or empty if CDR is not

rated.

DESTINATION_CARRIER_DETAIL 0-127 string Description of the terminating carrier

billing zone, or empty if CDR is not

rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_CUSTOMER_DETAIL 0-127 string Description of the terminating customer

billing zone, or empty if CDR is not

rated.

DESTINATION_CARRIER_FREE_TIME 1-10 uint The number of free time seconds used

on terminating carrier side, or empty if

CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_CUSTOMER_FREE_TIME 1-10 uint The number of free time seconds used

from the terminating customer’s

account balance, or empty if CDR is not

rated.

SOURCE_RESELLER_COST 7-14 fixed

precision (6

decimals)

The originating reseller cost, or empty if

CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

SOURCE_RESELLER_ZONE 0-127 string Name of the originating reseller billing

zone, or empty if CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

SOURCE_RESELLER_DETAIL 0-127 string Description of the originating reseller

billing zone, or empty if CDR is not

rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

240

The sip:carrier Handbook mr5.5.7 241 / 577

Table 15: (continued)

Body Element Length Type Description

SOURCE_RESELLER_FREE_TIME 1-10 uint The number of free time seconds used

from the originating reseller’s account

balance, or empty if CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_RESELLER_COST 7-14 fixed

precision (6

decimals)

The terminating reseller cost, or empty

if CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_RESELLER_ZONE 0-127 string Name of the terminating reseller billing

zone, or empty if CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_RESELLER_DETAIL 0-127 string Description of the terminating reseller

billing zone, or empty if CDR is not

rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

DESTINATION_RESELLER_FREE_TIME 1-10 uint The number of free time seconds used

from the terminating reseller’s account

balance, or empty if CDR is not rated.

PLEASE NOTE: Only available in

system exports, not for resellers.

<line_terminator> 1 string Always \n (special char LF - ASCII

0x0A).

A valid example of one body line of a rated CDR is (line breaks added for clarity):

’15’,’2013-03-26 22:09:11’,’a84508a8-d256-4c80-a84e-820099a827b0’,’1’,’’,’1’,’’,

’2’,’testuser1’,’192.168.51.133’,’4311001’,’0’,’192.168.51.1’,

’94d85b63-8f4b-43f0-b3b0-221c9e3373f2’,’1’,’’,’3’,’’,’4’,’testuser3’,

’192.168.51.133’,’testuser3’,’192.168.51.133’,’testuser3’,’’,’’,’call’,’ok’,’200’,

’2013-03-25 20:24:50.890’,’2013-03-25 20:24:51.460’,’10.880’,’44449842’,

’ok’,’2013-03-25 20:25:27’,’0.00’,’24.00’,’onnet’,’testzone’,’platform internal’,

’testzone’,’0’,’0’,’0.00’,’200.00’,’’,’foo’,’’,’foo’,’0’,’0’,

’0.00’,’’,’’,’0’,’0.00’,’’,’’,’0’

The format of the CDR export files generated for resellers (as opposed to the complete system-wide export) is identical except

for a few missing fields.

241

The sip:carrier Handbook mr5.5.7 242 / 577

Note

Please check the description of fields in the table above, in order to see which fields are omitted for reseller related CDR

exports.

The list of fields for reseller CDR export is defined in /etc/ngcp-config/config.yml file, cdrexport.reseller_e

xport_fields parameter.

7.6.3.3 Extra fields that can be exported to CDRs

Supplementary Data

There are fields in CDR database that contain supplementary data related to subscribers. This data is not used by NGCP for

CDR processing but rather provides the system administrator with a possibility to include supplementary information in CDRs.

Note

This informational section is meant for problem solving / debugging purpose: The supplementary data listed in following table

is stored in provisioning.voip_preferences database table.

Table 16: Supplementary data in CDR fields

Body Element Length Type Description

SOURCE_GPP0 0-255 string Supplementary data field 0 of calling party.

SOURCE_GPP1 0-255 string Supplementary data field 1 of calling party.

SOURCE_GPP2 0-255 string Supplementary data field 2 of calling party.

SOURCE_GPP3 0-255 string Supplementary data field 3 of calling party.

SOURCE_GPP4 0-255 string Supplementary data field 4 of calling party.

SOURCE_GPP5 0-255 string Supplementary data field 5 of calling party.

SOURCE_GPP6 0-255 string Supplementary data field 6 of calling party.

SOURCE_GPP7 0-255 string Supplementary data field 7 of calling party.

SOURCE_GPP8 0-255 string Supplementary data field 8 of calling party.

SOURCE_GPP9 0-255 string Supplementary data field 9 of calling party.

DESTINATION_GPP0 0-255 string Supplementary data field 0 of called party.

DESTINATION_GPP1 0-255 string Supplementary data field 1 of called party.

DESTINATION_GPP2 0-255 string Supplementary data field 2 of called party.

DESTINATION_GPP3 0-255 string Supplementary data field 3 of called party.

DESTINATION_GPP4 0-255 string Supplementary data field 4 of called party.

DESTINATION_GPP5 0-255 string Supplementary data field 5 of called party.

DESTINATION_GPP6 0-255 string Supplementary data field 6 of called party.

DESTINATION_GPP7 0-255 string Supplementary data field 7 of called party.

DESTINATION_GPP8 0-255 string Supplementary data field 8 of called party.

DESTINATION_GPP9 0-255 string Supplementary data field 9 of called party.

242

The sip:carrier Handbook mr5.5.7 243 / 577

Account balance details (prepaid calls)

There are fields in CDR database that show changes in cash or free time balance. In addition to that, a history of billing packages

/ profiles may also be present, since the NGCP vouchers, that are used to top-up, may also be set up to cause a transition of

profile packages. (Which in turn can result in changing the billing profile/applicable fees). Therefore the billing package and profile

valid at the time of the CDR are recorded and exposed as fields for CDR export.

Tip

Such fields may also be required to integrate sip:carrier with legacy billing systems.

Note

Please be aware that pre-paid billing functionality is only available in Sipwise sip:provider PRO and sip:carrier products.

The name of CDR data field consists of the elements listed below:

1. source|destination: decides if the data refers to calling (source) or called (destination) party

2. carrier|reseller|customer: the account owner, whose billing data is referred

3. data type:

A. cash_balance|free_time_balance _ before|after: cash balance or free time balance, before or af-

ter the call

B. profile_package_id|contract_balance_id: internal ID of the active pre-paid billing profile or the ac-

count balance

Examples:

• source_customer_cash_balance_before

• destination_customer_profile_package_id

Important

For calls spanning multiple balance intervals, the latter one will be selected, that is the balance interval where the call

ended.

Important

There are some limitations in rating pre-paid calls, please visit Pre-paid Billing Section 7.2 section for details.

243

The sip:carrier Handbook mr5.5.7 244 / 577

7.6.3.4 File Body Format for Event Detail Records (EDR)

The body of an EDR consists of a minimum of zero and a maximum of 5000 lines. The platform operator can configure the

maximum number of lines kept in a file by updating the eventexport.max_rows_per_file parameter in /etc/ngcp-

config/config.yml file. Each line holds one call detail record in CSV format and is constructed by the fields as per the

subsequent table.

The following table defines the default set of fields that are inserted into the EDR file, for exports related to system scope. The

list of fields is defined in /etc/ngcp-config/config.yml file, eventexport.admin_export_fields parameter.

Table 17: Default set of system EDR fields

Body Element Length Type Description

EVENT_ID 1-11 uint Internal EDR ID.

TYPE 0-255 string The type of the event - one of:

start_profile: A subscriber profile has been newly

assigned to a subscriber.

end_profile: A subscriber profile has been removed

from a subscriber.

update_profile: A subscriber profile has been

changed for a subscriber.

start_huntgroup: A subscriber has been

provisioned as PBX / hunting group.

end_huntgroup: A subscriber has been

deprovisioned as PBX / hunting group.

start_ivr: A subscriber has a new call-forward to

Auto-Attendant.

end_ivr: A subscriber has removed a call-forward to

Auto-Attendant.

CONTRACT_EXTERNAL_ID 0-255 string The external ID of the customer. (A string value shown

as "External ID" property of an NGCP customer.)

COMPANY 0-127 string The company name of the customer’s contact.

SUBSCRIBER_EXTERNAL_ID 0-255 string The external ID of the subscriber. (A string value shown

as "External ID" property of an NGCP subscriber.)

PLEASE NOTE: This field is empty in case of

start_huntgroup and end_huntgroup events.

PILOT_PRIMARY_NUMBER 0-64 string The pilot subscriber’s primary number (HPBX

subscribers). PLEASE NOTE: This is not included in

default set of EDR fields from NGCP version mr5.0

upwards.

PRIMARY_NUMBER 0-64 string The VoIP number of the subscriber with the highest ID

(DID or primary number).

244

The sip:carrier Handbook mr5.5.7 245 / 577

Table 17: (continued)

Body Element Length Type Description

OLD_PROFILE_NAME 0-255 string The old status of the event. Depending on the

event_type:

start_profile: Empty.

end_profile: The name of the subscriber profile

which got removed from the subscriber.

update_profile: The name of the former

subscriber profile which got updated.

start_huntgroup: Empty.

end_huntgroup: Empty.

start_ivr: Empty.

end_ivr: Empty.

NEW_PROFILE_NAME 0-255 string The new status of the event. Depending on the

event_type:

start_profile: The name of the subscriber profile

which got assigned to the subscriber.

end_profile: Empty.

update_profile: The name of the new subscriber

profile which got applied.

start_huntgroup: Empty.

end_huntgroup: Empty.

start_ivr: Empty.

end_ivr: Empty.

TIMESTAMP 23 timestamp Timestamp of event. Includes date, time with

milliseconds (3 decimals).

RESELLER_ID 1-11 uint Internal ID of the reseller which the event belongs to.

PLEASE NOTE: Only available in system exports, not for

resellers.

<line_terminator> 1 string A fixed character. Always \n (special char LF - ASCII

0x0A).

A valid example of one body line of an EDR is (line breaks added for clarity):

"1","start_profile","sipwise_ext_customer_id_4","Sipwise GmbH",

"sipwise_ext_subscriber_id_44","436667778","","1","2014-06-19 11:34:31","1"

The format of the EDR export files generated for resellers (as opposed to the complete system-wide export) is identical except

for a few missing fields.

245

The sip:carrier Handbook mr5.5.7 246 / 577

Note

Please check the description of fields in the table above, in order to see which fields are omitted for reseller related EDR

exports.

The list of fields for reseller EDR export is defined in /etc/ngcp-config/config.yml file, eventexport.reseller

_export_fields parameter.

7.6.3.5 Extra fields that can be exported to EDRs

There are fields in EDR database that contain supplementary data related to subscribers, for example subscriber phone numbers

are such data.

Table 18: Supplementary data in EDR fields

Body Element Length Type Description

SUBSCRIBER_PROFILE_SET

_NAME

0-255 string The subscriber’s profile set name.

PILOT_SUBSCRIBER_PROFI

LE_SET_NAME

0-255 string The profile set name of the subscriber’s pilot subscriber.

PILOT_SUBSCRIBER_PROFI

LE_NAME

0-255 string The profile name of the subscriber’s pilot subscriber.

FIRST_NON_PRIMARY_ALIA

S_USERNAME_BEFORE

0-255 string The subscriber’s non-primary alias with lowest ID, before

number updates during the operation.

FIRST_NON_PRIMARY_ALIA

S_USERNAME_AFTER

0-255 string The subscriber’s non-primary alias with lowest ID, after

number updates during the operation.

PILOT_FIRST_NON_PRIMAR

Y_ALIAS_USERNAME_BEF

ORE

0-255 string The non-primary alias with lowest ID of the subscriber’s

pilot subscriber, before number updates during the

operation.

PILOT_FIRST_NON_PRIMAR

Y_ALIAS_USERNAME_AFTER

0-255 string The non-primary alias with lowest ID of the subscriber’s

pilot subscriber, after number updates during the

operation.

NON_PRIMARY_ALIAS_USER

NAME

0-255 string The non-primary alias of a subscriber affected by an

update_profile, start_profile or

end_profile event to track number changes.

PRIMARY_ALIAS_USERNAME

_BEFORE

0-255 string The subscriber’s primary alias, before number updates

during the operation.

PRIMARY_ALIAS_USERNAME

_AFTER

0-255 string The subscriber’s primary alias, after number updates

during the operation.

PILOT_PRIMARY_ALIAS_US

ERNAME_BEFORE

0-255 string The primary alias of the subscriber’s pilot subscriber,

before number updates during the operation.

PILOT_PRIMARY_ALIAS_US

ERNAME_AFTER

0-255 string The primary alias of the subscriber’s pilot subscriber,

after number updates during the operation.

246

The sip:carrier Handbook mr5.5.7 247 / 577

Table 18: (continued)

Body Element Length Type Description

FIRST_NON_PRIMARY_ALIA

S_USERNAME_BEFORE_AF

TER

0-255 string Equals FIRST_NON_PRIMARY_ALIAS_USERNAME

_BEFORE, if the value is not NULL, otherwise it’s the

same as FIRST_NON_PRIMARY_ALIAS_USERNAM

E_AFTER.

PILOT_FIRST_NON_PRIMAR

Y_ALIAS_USERNAME_BEFOR

E_AFTER

0-255 string Equals PILOT_FIRST_NON_PRIMARY_ALIAS_US

ERNAME_BEFORE, if the value is not NULL, otherwise

it’s the same as PILOT_FIRST_NON_PRIMARY_ALI

AS_USERNAME_AFTER.

7.6.3.6 File Trailer Format

The billing file trailer is one single line, which is constructed by the following fields:

<md5 sum>

The <md5 sum> is a 32 character hexadecimal MD5 hash of the Header and Body.

To validate the billing file, one must remove the Trailer before computing the MD5 sum of the file. An example bash script to

validate the integrity of the file is given below:

#!/bin/sh

error() { echo $@; exit 1; }

test -n "$1" || error "Usage: $0 <cdr-file>"

test -f "$1" || error "File ’$1’ not found"

TMPFILE="/tmp/$(basename "$1").$$"

MD5="$(sed -rn ’$ s/^([a-z0-9]{32}).*$/\1/i p’ "$1") $TMPFILE"

sed ’$d’ "$1" > "$TMPFILE"

echo "$MD5" | md5sum -c -

rm -f "$TMPFILE"

Given the script is located in cdr-md5.sh and the CDR-file is sipwise_001_20071110123000_0000000004.cdr,

the output of the integrity check for an intact CDR file would be:

$./cdr-md5.sh sipwise_001_20071110123000_0000000004.cdr

/tmp/sipwise_001_20071110123000_0000000004.cdr: OK

If the file has been altered during transmission, the output of the integrity check would be:

247

The sip:carrier Handbook mr5.5.7 248 / 577

$./cdr-md5.sh sipwise_001_20071110123000_0000000004.cdr

/tmp/sipwise_001_20071110123000_0000000004.cdr: FAILED

md5sum: WARNING: 1 of 1 computed checksum did NOT match

7.6.4 File Transfer

Billing files are created twice per hour at minutes 25 and 55 and are stored in the home directory of the cdrexport user. If the

amount of records within the transmission interval exceeds the threshold of 5000 records per file, multiple billing files are created.

If no billing records are found for an interval, a billing file without body data is constructed for easy detection of lost billing files on

the 3rd party side.

CDR and EDR files are fetched by a 3rd party billing system using SFTP or SCP with either public key or password authentication

using the username cdrexport.

If public key authentication is chosen, the public key file has to be stored in the file ~/.ssh/authorized_keys2 below the

home directory of the cdrexport user. Otherwise, a password has to be set for the user.

The 3rd party billing system is responsible for deleting CDR files after fetching them.

Note

The cdrexport user is kept in a jailed environment on the system, so it has only access to a very limited set of commandline

utilities.

248

The sip:carrier Handbook mr5.5.7 249 / 577

8 Provisioning REST API Interface

The sip:carrier provides the REST API interface for interconnection with 3rd party tools.

The sip:carrier provides a REST API to provision various functionality of the platform. The entry point - and at the same time the

official documentation - is at https://<your-ip>:1443/api. It allows both administrators and resellers (in a limited scope) to manage

the system.

You can either authenticate via username and password of your administrative account you’re using to access the admin panel, or

via SSL client certificates. Find out more about client certificate authentication in the online API documentation.

8.1 API Workflows for Customer and Subscriber Management

The typical tasks done on the API involve managing customers and subscribers. The following chapter focuses on creating,

changing and deleting these resources.

The standard life cycle of a customer and subscriber is:

1. Create customer contact

2. Create customer

3. Create subscribers within customer

4. Modify subscribers

5. Modify subscriber preferences (features)

6. Terminate subscriber

7. Terminate customer

The boiler-plate to access the REST API is described in the online API documentation at /api/#auth. A simple example in Perl

using password authentication looks as follows:

#!/usr/bin/perl -w

use strict;

use v5.10;

use LWP::UserAgent;

use JSON qw();

my $uri = ’https://ngcp.example.com:1443’;

my $ua = LWP::UserAgent->new;

my $user = ’myusername’;

my $pass = ’mypassword’;

$ua->credentials(’ngcp.example.com:1443’, ’api_admin_http’, $user, $pass);

my ($req, $res);

249

The sip:carrier Handbook mr5.5.7 250 / 577

For each customer you create, you need to assign a billing profile id. You either have the ID stored somewhere else, or you need

to fetch it by searching for the billing profile handle.

my $billing_profile_handle = ’my_test_profile’;

$req = HTTP::Request->new(’GET’, "$uri/api/billingprofiles/?handle=$billing_profile_handle" ←↩
);

$res = $ua->request($req);

if($res->code != 200) {

die "Failed to fetch billing profile: ".$res->decoded_content."\n";

}

my $billing_profile = JSON::from_json($res->decoded_content);

my $billing_profile_id = $billing_profile->{_embedded}->{’ngcp:billingprofiles’}->{id};

say "Fetched billing profile, id is $billing_profile_id";

A customer is mainly a billing container for subscribers without a real identification other than the external_id property you might

have stored somewhere else (e.g. the ID of the customer in your CRM). To still easily identify a customer, a customer contact is

required. It is created using the /api/customercontacts/ resource.

$req = HTTP::Request->new(’POST’, "$uri/api/customercontacts/");

$req->header(’Content-Type’ => ’application/json’);

$req->content(JSON::to_json({

firstname => ’John’,

lastname => ’Doe’,

email => ’john.doe\@example.com’

}));

$res = $ua->request($req);

if($res->code != 201) {

die "Failed to create customer contact: ".$res->decoded_content."\n";

}

my $contact_id = $res->header(’Location’);

$contact_id =~ s/^.+\/(\d+)$/$1/; # extract the ID from the Location header

say "Created customer contact, id is $contact_id";

Important

To get the ID of the recently created resource, you need to parse the Location header. In future, this approach will be

changed for POST requests. The response will also optionally return the ID of the resource. It will be controlled via the

Prefer: return=representation header as it is already the case for PUT and PATCH.

Warning

The example above implies the fact that you access the API via a reseller user. If you are accessing the API as the

admin user, you also have to provide a reseller_id parameter defining the reseller this contact belongs to.

Once you have created the customer contact, you can create the actual customer.

$req = HTTP::Request->new(’POST’, "$uri/api/customers/");

250

The sip:carrier Handbook mr5.5.7 251 / 577

$req->header(’Content-Type’ => ’application/json’);

$req->content(JSON::to_json({

status => ’active’,

contact_id => $contact_id,

billing_profile_id => $billing_profile_id,

type => ’sipaccount’,

external_id => undef, # can be set to your crm’s customer id

}));

$res = $ua->request($req);

if($res->code != 201) {

die "Failed to create customer: ".$res->decoded_content."\n";

}

my $customer_id = $res->header(’Location’);

$customer_id =~ s/^.+\/(\d+)$/$1/; # extract the ID from the Location header

say "Created customer, id is $customer_id";

Once you have created the customer, you can add subscribers to it. One customer can hold multiple subscribers, up to the

max_subscribers property which can be set via /api/customers/. If this property is not defined, a virtually unlimited number of

subscribers can be added.

$req = HTTP::Request->new(’POST’, "$uri/api/subscribers/");

$req->header(’Content-Type’ => ’application/json’);

$req->content(JSON::to_json({

status => ’active’,

customer_id => $customer_id,

primary_number => { cc => 43, ac => 9876, sn => 10001 }, # the main number

alias_numbers => [# as many alias numbers the subscriber can be reached at (or skip ←↩
param if none)

{ cc => 43, ac => 9877, sn => 10001 },

{ cc => 43, ac => 9878, sn => 10001 }

],

username => ’test_10001’

domain => ’ngcp.example.com’,

password => ’secret subscriber pass’,

webusername => ’test_10001’,

webpassword => undef, # set undef if subscriber shouldn’t be able to log into sipwise ←↩
csc

external_id => undef, # can be set to the operator crm’s subscriber id

}));

$res = $ua->request($req);

if($res->code != 201) {

die "Failed to create subscriber: ".$res->decoded_content."\n";

}

my $subscriber_id = $res->header(’Location’);

$subscriber_id =~ s/^.+\/(\d+)$/$1/; # extract the ID from the Location header

say "Created subscriber, id is $subscriber_id";

251

The sip:carrier Handbook mr5.5.7 252 / 577

Important

A domain must exist before creating a subscriber. You can create the domain via /api/domains/.

At that stage, the subscriber can connect both via SIP and XMPP, and can be reached via the primary number, all alias numbers,

as well as via the SIP URI.

If you want to set call forwards for the subscribers, then perform an API call as follows.

$req = HTTP::Request->new(’PUT’, "$uri/api/callforwards/$subscriber_id");

$req->header(’Content-Type’ => ’application/json’);

$req->header(’Prefer’ => "return=minimal"); # use return=representation to get full json ←↩
response

$req->content(JSON::to_json({

cfna => { # set a call-forward if subscriber is not registered

destinations => [

{ destination => "4366610001", timeout => 10 }, # ring this for 10s

{ destination => "4366710001", timeout => 300 }, # if no answer, ring that for ←↩
300s

],

times => undef # no time-based call-forward, trigger cfna always

}

}));

$res = $ua->request($req);

if($res->code != 204) { # if return=representation, it’s 200

die "Failed to set cfna for subscriber: ".$res->decoded_content."\n";

}

You can set cfu, cfna, cft and cft via this API call, also all at once. Destinations can be hunting lists as described above or just a

single number. Also, a time set can be provided to trigger call forwards only during specific time periods.

To provision certain features of a subscriber, you can manipulate the subscriber preferences. You can find a full list of preferences

available for a subscriber at /api/subscriberpreferencedefs/.

$req = HTTP::Request->new(’GET’, "$uri/api/subscriberpreferences/$subscriber_id");

$res = $ua->request($req);

if($res->code != 200) {

die "Failed to fetch subscriber preferences: ".$res->decoded_content."\n";

}

my $prefs = JSON::from_json($res->decoded_content);

delete $prefs->{_links}; # not needed in update

$prefs->{prepaid_library} = ’libinewrate’; # switch to inew billing

$prefs->{block_in_clir} = JSON::true; # reject incoming anonymous calls

$prefs->{block_in_list} = [# reject calls from the following numbers:

’4366412345’, # this particular number

’431*’, # all vienna/austria numbers

252

The sip:carrier Handbook mr5.5.7 253 / 577

];

$req = HTTP::Request->new(’PUT’, "$uri/api/subscriberpreferences/$subscriber_id");

$req->header(’Content-Type’ => ’application/json’);

$req->header(’Prefer’ => "return=minimal"); # use return=representation to get full json ←↩
response

$req->content(JSON::to_json($prefs));

$res = $ua->request($req);

if($res->code != 204) {

die "Failed to update subscriber preferences: ".$res->decoded_content."\n";

}

say "Updated subscriber preferences";

Modifying numbers assigned to a subscriber, changing the password, locking a subscriber, etc. can be done directly on the

subscriber resource.

$req = HTTP::Request->new(’GET’, "$uri/api/subscribers/$subscriber_id");

$res = $ua->request($req);

if($res->code != 200) {

die "Failed to fetch subscriber: ".$res->decoded_content."\n";

}

my $sub = JSON::from_json($res->decoded_content);

delete $sub->{_links}; # not needed in update

push @{ $sub->{alias_numbers} }, { cc => 1, ac => 5432, sn => $t }; # add this number

push @{ $sub->{alias_numbers} }, { cc => 1, ac => 5433, sn => $t }; # add another number

$req = HTTP::Request->new(’PUT’, "$uri/api/subscribers/$subscriber_id");

$req->header(’Content-Type’ => ’application/json’);

$req->header(’Prefer’ => "return=minimal"); # use return=representation to get full json ←↩
response

$req->content(JSON::to_json($sub));

$res = $ua->request($req);

if($res->code != 204) {

die "Failed to update subscriber: ".$res->decoded_content."\n";

}

say "Updated subscriber";

At the end of a subscriber life cycle, it can be terminated. Once terminated, you can NOT recover the subscriber anymore.

$req = HTTP::Request->new(’DELETE’, "$uri/api/subscribers/$subscriber_id");

$res = $ua->request($req);

if($res->code != 204) {

die "Failed to terminate subscriber: ".$res->decoded_content."\n";

}

say "Terminated subscriber";

Note that certain information is still available in the internal database to perform billing/rating of calls done by this subscriber.

Nevertheless, the data is removed from the operational tables of the database, so the subscriber is not able to connect to the

system, login or make calls/chats.

253

The sip:carrier Handbook mr5.5.7 254 / 577

Resources modification can be done via the GET/PUT combination. Alternatively, you can add, modify or delete single properties

of a resource without actually fetching the whole resource. See an example below where we terminate the status of a customer

using the PATCH method.

$req = HTTP::Request->new(’PATCH’, "$uri/api/customers/$customer_id");

$req->header(’Content-Type’ => ’application/json-patch+json’);

$req->header(’Prefer’ => "return=minimal"); # use return=representation to get full json ←↩
response

$req->content(JSON::to_json([

{ op => ’replace’, path => ’/status’, value => ’terminated’ }

]));

$res = $ua->request($req); # this will also terminate all still active subscribers

if($res->code != 204) {

die "Failed to terminate customer: ".$res->decoded_content."\n";

}

say "Terminated customer";

8.2 API performance considerations

The REST API is designed with pagination support built-in. It is mandatory, to implement pagination in your API clients. If you

circumvent pagination by setting the number of rows requested in one API call to a very high number the following side effects

may appear:

1. An HTTP timeout at the gateway may appear. The default timeout limit is set to 60s. It can be modified via a customtt file:

/etc/ngcp-config/templates/etc/nginx/sites-available/ngcp-panel_admin_api.customtt.tt2.

2. Other parts of the system may become unresponsive due to mysql table locks. This especially applies to endpoints related

to the Customers entity.

254

The sip:carrier Handbook mr5.5.7 255 / 577

9 Configuration Framework

The sip:carrier provides a configuration framework for consistent and easy to use low level settings management. A basic usage

of the configuration framework only needs two actions already used in previous chapters:

• Edit /etc/ngcp-config/config.yml file.

• Execute ngcpcfg apply ’my commit message’ command.

Low level management of the configuration framework might be required by advanced users though. This chapter explains the

architecture and usage of the NGCP configuration framework. If the basic usage explained above fits your needs, feel free to skip

this chapter and return to it when your requirements change.

A more detailed workflow of the configuration framework for creating a configuration file consists of 7 steps:

• Generation or editing of configuration templates and/or configuration values.

• Generation of the configuration files based on configuration templates and configuration values defined in config.yml, con-

stants.yml and network.yml files.

• Execution of prebuild commands if defined for a particular configuration file or configuration directory.

• Placement of the generated configuration file in the target directory. This step is called build in the configuration framework.

• Execution of postbuild commands if defined for that configuration file or configuration directory.

• Execution of services commands if defined for that configuration file or configuration directory. This step is called services in the

configuration framework.

• Saving of the generated changes. This step is called commit in the configuration framework.

9.1 Configuration templates

The sip:carrier provides configuration file templates for most of the services it runs. These templates are stored in the directory

/etc/ngcp-config/templates.

Example: Template files for /etc/ngcp-sems/sems.conf are stored in /etc/ngcp-config/templates/etc/ngcp-sems/.

There are different types of files in this template framework, which are described below.

9.1.1 .tt2 and .customtt.tt2 files

These files are the main template files that will be used to generate the final configuration file for the running service. They contain

all the configuration options needed for a running sip:carrier system. The configuration framework will combine these files with the

values provided by config.yml, constants.yml and network.yml to generate the appropriate configuration file.

Example: Let’s say we are changing the IP used by kamailio load balancer on interface eth0 to IP 1.2.3.4. This will change ka-

mailio’s listen IP address, when the configuration file is generated. A quick look to the template file under /etc/ngcp-config/templates/etc/kamailio/lb/kamailio.cfg.tt2

will show a line like this:

255

The sip:carrier Handbook mr5.5.7 256 / 577

listen=udp:[% ip %]:[% kamailio.lb.port %]

After applying the changes with the ngcpcfg apply ’my commit message’ command, a new configuration file will be created under

/etc/kamailio/lb/kamailio.cfg with the proper values taken from the main configuration files (in this case network.yml):

listen=udp:1.2.3.4:5060

All the low-level configuration is provided by these .tt2 template files and the corresponding config.yml file. Anyway, advanced

users might require a more particular configuration.

Instead of editing .tt2 files, the configuration framework recognises .customtt.tt2 files. These files are the same as .tt2, but they

have higher priority when the configuration framework creates the final configuration files. An advanced user should create a

.customtt.tt2 file from a copy of the corresponding .tt2 template and leave the .tt2 template untouched. This way, the user will have

his personalized configuration and the system will continue providing a working, updated configuration template in .tt2 format.

Example: We’ll create /etc/ngcp-config/templates/etc/lb/kamailio.cfg.customtt.tt2 and use it for our personalized configuration. In

this example, we’ll just append a comment at the end of the template.

cd /etc/ngcp-config/templates/etc/kamailio/lb

cp kamailio.cfg.tt2 kamailio.cfg.customtt.tt2

echo ’# This is my last line comment’ >> kamailio.cfg.customtt.tt2

ngcpcfg apply ’my commit message’

The ngcpcfg command will generate /etc/kamailio/kamailio.cfg from our custom template instead of the general one.

tail -1 /etc/kamailio/kamailio.cfg

This is my last line comment

Tip

The tt2 files use the Template Toolkit language. Therefore you can use all the feature this excellent toolkit provides within

ngcpcfg’s template files (all the ones with the .tt2 suffix).

9.1.2 .prebuild and .postbuild files

After creating the configuration files, the configuration framework can execute some commands before and after placing that file

in its target directory. These commands usually are used for changing the file’s owner, groups, or any other attributes. There are

some rules these commands need to match:

• They have to be placed in a .prebuild or .postbuild file in the same path as the original .tt2 file.

• The file name must be the same as the configuration file, but having the mentioned suffixes.

• The commands must be bash compatible.

• The commands must return 0 if successful.

256

http://template-toolkit.org/

The sip:carrier Handbook mr5.5.7 257 / 577

• The target configuration file is matched by the environment variable output_file.

Example: We need www-data as owner of the configuration file /etc/ngcp-ossbss/provisioning.conf. The configuration framework

will by default create the configuration files with root:root as owner:group and with the same permissions (rwx) as the original

template. For this particular example, we will change the owner of the generated file using the .postbuild mechanism.

echo ’chgrp www-data ${output_file}’ \

> /etc/ngcp-config/templates/etc/ngcp-ossbss/provisioning.conf.postbuild

9.1.3 .services files

.services files are pretty similar and might contain commands that will be executed after the build process. There are two types of

.services files:

• The particular one, with the same name as the configuration file it is associated to.

Example: /etc/ngcp-config/templates/etc/asterisk/sip.conf.services is associated to /etc/asterisk/sip.conf

• The general one, named ngcpcfg.services wich is associated to every file in its target directory.

Example: /etc/ngcp-config/templates/etc/asterisk/ngcpcfg.services is associated to every file under /etc/asterisk/

When the services step is triggered all .services files associated to a changed configuration file will be executed. In case of the

general file, any change to any of the configuration files in the directory will trigger the execution of the commands.

Tip

If the service script has the execute flags set (chmod +x $file) it will be invoked directly. If it doesn’t have execute flags set it will

be invoked under bash. Make sure the script is bash compatible if you do not set execute permissions on the service file.

These commands are usually service reload/restarts to ensure the new configuration has been loaded by running services.

Note

The configuration files mentioned in the following example usually already exist on the platform. Please make sure you don’t

overwrite any existing files if following this example.

Example:

echo ’/etc/init.d/mysql restart’ \

> /etc/ngcpcfg-config/templates/etc/mysql/my.cnf.services

echo ’/etc/init.d/asterisk restart’ \

> /etc/ngcpcfg-config/templates/etc/asterisk/ngcpcfg.services

In this example we created two .services files. Now, each time we trigger a change to /etc/mysql.my.cnf or to /etc/asterisk/* we’ll

see that MySQL or Asterisk services will be restarted by the ngcpcfg system.

257

The sip:carrier Handbook mr5.5.7 258 / 577

9.2 config.yml, constants.yml and network.yml files

The /etc/ngcp-config/config.yml file contains all the user-configurable options, using the YAML (YAML Ain’t Markup Language)

syntax.

The /etc/ngcp-config/constants.yml file provides configuration options for the platform that aren’t supposed to be edited by the

user. Do not manually edit this file unless you really know what you’re doing.

The /etc/ngcp-config/network.yml file provides configuration options for all interfaces and IP addresses on those interfaces. You

can use the ngcp-network tool for conveniently change settings without having to manually edit this file.

The /etc/ngcp-config/ngcpcfg.cfg file is the main configuration file for ngcpcfg itself. Do not manually edit this file unless you really

know what you’re doing.

9.3 ngcpcfg and its command line options

The shared storage used by all nodes is the shared storage of the mgmt pair.

The ngcpcfg utility supports the following command line options:

9.3.1 apply

The apply option is a short-cut for the options "check && build && services && commit" and also executes etckeeper to record

any modified files inside /etc. It is the recommended option to use the ngcpcfg framework unless you want to execute any specific

commands as documented below.

9.3.2 build

The build option generates (and therefore also updates) configuration files based on their configuration (config.yml) and template

files (.tt2). Before the configuration file is generated a present .prebuild will be executed, after generation of the configuration file

the according .postbuild script (if present) will be executed. If a file or directory is specified as argument the build will generate

only the specified configuration file/directory instead of running through all present templates.

Example: to generate only the file /etc/nginx/sites-available/ngcp-panel you can execute:

ngcpcfg build /etc/nginx/sites-available/ngcp-panel

Example: to generate all the files located inside the directory /etc/nginx/ you can execute:

ngcpcfg build /etc/nginx/

9.3.3 commit

The commit option records any changes done to the configuration tree inside /etc/ngcp-config. The commit option should be

executed when you’ve modified anything inside the configuration tree.

258

http://www.yaml.org/

The sip:carrier Handbook mr5.5.7 259 / 577

9.3.4 decrypt

Decrypt /etc/ngcp-config-crypted.tgz.gpg and restore configuration files, doing the reverse operation of the encrypt option. Note:

This feature is only available if the ngcp-ngcpcfg-locker package is installed.

9.3.5 diff

Show uncommited changes between ngcpcfg’s Git repository and the working tree inside /etc/ngcp-config. Iff the tool doesn’t

report anything it means that there are no uncommited changes. If the --addremove option is specified then new and removed

files (iff present) that are not yet (un)registered to the repository will be reported, no further diff actions will be executed then. Note:

This option is available since ngcp-ngcpcfg version 0.11.0.

9.3.6 encrypt

Encrypt /etc/ngcp-config and all resulting configuration files with a user defined password and save the result as /etc/ngcp-config-

crypted.tgz.gpg. Note: This feature is only available if the ngcp-ngcpcfg-locker package is installed.

9.3.7 help

The help options displays ngcpcfg’s help screen and then exits without any further actions.

9.3.8 initialise

The initialise option sets up the ngcpcfg framework. This option is automatically executed by the installer for you, so you shouldn’t

have to use this option in normal operations mode.

9.3.9 pull

Retrieve modifications from shared storage. Note: This option is available in the High Availability setup only.

9.3.10 push

Push modifications to shared storage and remote systems. After changes have been pushed to the nodes the build option will be

executed on each remote system to rebuild the configuration files (unless the --nobuild has been specified, then the build step will

be skipped). If hostname(s) or IP address(es) is given as argument then the changes will be pushed to the shared storage and

to the given hosts only. You can use all as a shortcut to push to the other nodes. If no host has been specified then the hosts

specified in /etc/ngcp-config/systems.cfg are used. Note: This option is available in the High Availability setup only.

9.3.11 services

The services option executes the service handlers for any modified configuration file(s)/directory.

259

The sip:carrier Handbook mr5.5.7 260 / 577

9.3.12 status

The status option provides a human readable interface to check the state of the configuration tree. If you are unsure what should

be done as next step or if want to check the current state of the configuration tree just invoke ngcpcfg status.

If everything is OK and nothing needs to be done the output should look like:

ngcpcfg status

Checking state of ngcpcfg:

OK: has been initialised already (without shared storage)

Checking state of configuration files:

OK: nothing to commit.

Checking state of /etc files

OK: nothing to commit.

If the output doesn’t say "OK" just follow the instructions provided by the output of ngcpcfg status.

Further details regarding the ngcpcfg tool are available through man ngcpcfg on the Sipwise Next Generation Platform.

260

The sip:carrier Handbook mr5.5.7 261 / 577

10 Network Configuration

Starting with version 2.7, the sip:carrier uses a dedicated network.yml file to configure the IP addresses of the system. The reason

for this is to be able to access all IPs of all nodes for all services from any particular node in case of a distributed system on one

hand, and in order to be able the generate /etc/network/interfaces automatically for all nodes based on this central configuration

file.

10.1 General Structure

The basic structure of the file looks like this:

hosts:

self:

role:

- proxy

- lb

- mgmt

interfaces:

- eth0

- lo

eth0:

ip: 192.168.51.213

netmask: 255.255.255.0

type:

- sip_ext

- rtp_ext

- web_ext

- web_int

lo:

ip: 127.0.0.1

netmask: 255.255.255.0

type:

- sip_int

- ha_int

Some more complete, sample configuration is shown in network.yml Overview Section B.3 section of the handbook.

The file contains all configuration parameters under the main key: hosts

In sip:carrier systems all hosts of the system are defined, and the names are the actual host names instead of self, like this:

hosts:

web01a:

peer: web01b

role: ...

interfaces: ...

261

The sip:carrier Handbook mr5.5.7 262 / 577

web01b:

peer: web01a

role: ...

interfaces: ...

10.1.1 Available Host Options

There are three different main sections for a host in the config file, which are role, interfaces and the actual interface definitions.

• role: The role setting is an array defining which logical roles a node will act as. Possible entries for this setting are:

– mgmt : This entry means the host is acting as management node for the platform. In a sip:carrier system this option must

always be set. The management node exposes the admin and CSC panels to the users and the APIs to external applications

and is used to export CDRs. Please note: this is only set on the nodes of the management pairs. This node is also the source

of the installations of other nodes via iPXE and has the approx service (apt proxy).

– lb: This entry means the host is acting as SIP load-balancer for the platform. In a sip:carrier system this option must always

be set. Please note: this is only set on the nodes of the lb pairs. The SIP load-balancer acts as an ingress and egress point

for all SIP traffic to and from the platform.

– proxy : This entry means the host is acting as SIP proxy for the platform. In a sip:carrier system this option must always be

set. Please note: this is only set on the nodes of the proxy pairs. The SIP proxy acts as registrar, proxy and application server

and media relay, and is responsible for providing the features for all subscribers provisioned on it.

– db: This entry means the host is acting as the database node for the platform. In a sip:carrier system this option must always

be set. Please note: this is only set on the nodes of the db pairs. The database node exposes the MySQL and Redis

databases.

– rtp: This entry means the host is acting as the RTP relay node for the platform. In a sip:carrier system this option must always

be set. Please note: this is only set on the nodes of the RTP relay pairs. The RTP relay node runs the rtpengine NGCP

component.

– li : This entry means the host is acting as the interface towards a lawful interception service provider.

• interfaces: The interfaces setting is an array defining all interface names in the system. The actual interface details are set in

the actual interface settings below. It typically includes lo, eth0, eth1 physical and a number of virtual interfaces, like:

bond0, vlanXXX

• <interface name>: After the interfaces are defined in the interfaces setting, each of those interfaces needs to be specified as a

separate set of parameters.

Addtional main parameters of a node:

• dbnode: the sequence number (unique ID) of the node in the database cluster; the value is used only if main DB is set up as an

extended cluster on other than db0x nodes too

• peer : the hostname of the peer node within the pair of nodes (e.g. "web01b" for web01a host). The purpose of that: each node

knows its companion for providing high availability, data replication etc.

262

The sip:carrier Handbook mr5.5.7 263 / 577

• status: one of online, offline, inactive. inactive means that the node is up but is not ready to work in the cluster (installing

process). offline means that the node is not reachable. online is a normal working node.

10.1.2 Interface Parameters

• hwaddr: MAC address of the interface

Caution

This must be filled in properly for the interface that is used as type ha_int, because the value of it will be used

during the boot process of the installation of nodes via iPXE, if PXE-boot is enabled.

• ip: IPv4 address of the node

• v6ip: IPv6 address of the node; optional

• netmask: IPv4 netmask

• shared_ip: shared IPv4 address of the pair of nodes; this is a list of addresses

• shared_v6ip: shared IPv6 address of the pair of nodes; optional; this is a list of addresses

• advertised_ip: the IP address that is used in SIP messages when the NGCP system is behind NAT/SBC. An example of

such a deployment is Amazon AMI, where the server doesn’t have a public IP, so load-balancer component of NGCP needs to

know what his public domain is (→ advertised_ip).

• type: type of services that the node provides; these are usually the VLANs defined for a particular NGCP system.

Note

You can assign a type only once per node.

Available types are:

– api_int: internal, API-based communication interface. It is used for the internal communication of such services as

faxserver, fraud detection and others.

– aux_ext: interface for potentially insecure external components like remote system log collection service.

Note

For example the CloudPBX module can use it to provide time services and remote logging facilities to end customer

devices. The type aux_ext is assigned to lo interface by default. If it is needed to expose this type to the public, it is

recommended to assign the type aux_ext to a separate VLAN interface to be able to limit or even block the incoming traffic

easily via firewalling in case of emergency, like a (D)DoS attack on external services.

– mon_ext: remote monitoring interface (e.g. SNMP)

– rtp_ext: main (external) interface for media traffic

– sip_ext: main (external) interface for SIP signalling traffic between NGCP and other SIP endpoints

263

The sip:carrier Handbook mr5.5.7 264 / 577

– sip_ext_incoming: additional, optional interface for incoming SIP signalling traffic

– sip_int: internal SIP interface used by NGCP components (lb, proxy, etc.)

– ssh_ext: command line (SSH) remote access interface

– web_ext: interface for web-based or API-based provisioning and administration

– web_int: interface for the administrator’s web panel, his API and generic internal API communication

– li_int: used for LI (Lawful Interception) traffic routing

– ha_int: main communication interface between the nodes

– boot_int: the default VLAN used to install nodes via PXE-boot method

– rtp_int: internal interface for handling RTP traffic among NGCP nodes that may reside in greater distance from each other,

like in case of a specialised NGCP configuration with centralized web / DB / proxy nodes and distributed LB nodes (Please

refer to Cluster Sets Section 10.2.3 section for further details)

Note

Please note that, apart from the standard ones described so far, there might be other types defined for a particular NGCP

system.

• vlan_raw_device: tells which physical interface is used by the particular VLAN

• post_up: routes can be defined here (interface-based routing)

• bond_XY: specific to "bond0" interface only; these contain Ethernet bonding properties

10.2 Advanced Network Configuration

You have a typical deployment now and you are good to go, however you may need to do extra configuration depending on the

devices you are using and functionality you want to achieve.

10.2.1 Extra SIP Sockets

By default, the load-balancer listens on the UDP and TCP ports 5060 (kamailio→lb→port) and TLS port 5061 (kamailio→lb→tls→port).

If you need to setup one or more extra SIP listening ports or IP addresses in addition to those standard ports, please edit the

kamailio→lb→extra_sockets option in your /etc/ngcp-config/config.yml file.

The correct format consists of a label and value like this:

extra_sockets:

port_5064: udp:10.15.20.108:5064

test: udp:10.15.20.108:6060

The label is shown in the outbound_socket peer preference (if you want to route calls to the specific peer out via specific

socket); the value must contain a transport specification as in example above (udp, tcp or tls). After adding execute ngcpcfg

apply:

264

The sip:carrier Handbook mr5.5.7 265 / 577

ngcpcfg apply ’added extra socket’ && ngcpcfg push all

The direction of communication through this SIP extra socket is incoming+outgoing. The sip:carrier will answer the incoming client

registrations and other methods sent to the extra socket. For such incoming communication no configuration is needed. For the

outgoing communication the new socket must be selected in the outbound_socket peer preference. For more details read

the next section Section 10.2.2 that covers peer configuration for SIP and RTP in greater detail.

Important

In this section you have just added an extra SIP socket. RTP traffic will still use your rtp_ext IP address.

10.2.2 Extra SIP and RTP Sockets

If you want to use an additional interface (with a different IP address) for SIP signalling and RTP traffic you need to add your new

interface in the /etc/network/interfaces file. Also the interface must be declared in /etc/ngcp-config/network.yml.

Suppose we need to add a new SIP socket and a new RTP socket on VLAN 100. You can use the ngcp-network tool for adding

interfaces without having to manually edit this file:

ngcp-network --set-interface=eth0.100 --host=slb01a --ip=auto --netmask=auto --hwaddr=auto ←↩
--type=sip_ext_incoming

ngcp-network --set-interface=eth0.100 --host=slb01b --ip=auto --netmask=auto --hwaddr=auto ←↩
--type=sip_ext_incoming

ngcp-network --set-interface=eth0.100 --host=prx01a --ip=auto --netmask=auto --hwaddr=auto ←↩
--type=rtp_int_100

ngcp-network --set-interface=eth0.100 --host=prx01b --ip=auto --netmask=auto --hwaddr=auto ←↩
--type=rtp_int_100

The generated file should look like the following:

slb01a:

..

..

eth0.100:

hwaddr: ff:ff:ff:ff:ff:ff

ip: 192.168.1.2

netmask: 255.255.255.0

shared_ip:

- 192.168.1.3

shared_v6ip: ~

type:

- sip_ext_incoming

..

..

interfaces:

265

The sip:carrier Handbook mr5.5.7 266 / 577

- lo

- eth0

- eth0.100

- eth1

..

..

prx01a:

..

..

eth0.100:

hwaddr: ff:ff:ff:ff:ff:ff

ip: 192.168.1.20

netmask: 255.255.255.0

shared_ip:

- 192.168.1.30

shared_v6ip: ~

type:

- rtp_int_100

..

..

interfaces:

- lo

- eth0

- eth0.100

- eth1

..

..

slb01b:

..

..

eth0.100:

hwaddr: ff:ff:ff:ff:ff:ff

ip: 192.168.1.4

netmask: 255.255.255.0

shared_ip:

- 192.168.1.3

shared_v6ip: ~

type:

- sip_ext_incoming

..

..

interfaces:

- lo

- eth0

- eth0.100

- eth1

..

..

266

The sip:carrier Handbook mr5.5.7 267 / 577

prx01b:

..

..

eth0.100:

hwaddr: ff:ff:ff:ff:ff:ff

ip: 192.168.1.40

netmask: 255.255.255.0

shared_ip:

- 192.168.1.30

shared_v6ip: ~

type:

- rtp_int_100

..

..

interfaces:

- lo

- eth0

- eth0.100

- eth1

As you can see from the above example, extra SIP interfaces must have type sip_ext_incoming. While sip_ext should be listed

only once per host, there can be multiple sip_ext_incoming interfaces. The direction of communication through this SIP interface is

incoming only. The sip:carrier will answer the incoming client registrations and other methods sent to this address and remember

the interfaces used for clients’ registrations to be able to send incoming calls to him from the same interface.

In order to use the interface for the outbound SIP communication it is necessary to add it to extra_sockets section in /etc/ngcp-

config/config.yml and select in the outbound_socket peer preference. So if using the above example we want to use the

vlan100 IP as source interface towards a peer, the corresponding section may look like the following:

extra_sockets:

port_5064: udp:10.15.20.108:5064

test: udp:10.15.20.108:6060

int_100: udp:192.168.1.3:5060

The changes have to be applied:

ngcpcfg apply ’added extra SIP and RTP socket’ && ngcpcfg push all

After applying the changes, a new SIP socket will listen on IP 192.168.1.3 on slb01 node and this socket can now be used

as source socket to send SIP messages to your peer for example. In above example we used label int_100. So the new label

"int_100" is now shown in the outbound_socket peer preference.

Also, RTP socket is now listening on 192.168.1.30 on prx01 node and you can choose the new RTP socket to use by setting

parameter rtp_interface to the Label "int_100" in your Domain/Subscriber/Peer preferences.

267

The sip:carrier Handbook mr5.5.7 268 / 577

10.2.3 Cluster Sets

In a sip:carrier system it is possible to have geographically distributed nodes in the same logical NGCP unit. Such a configuration

typcally involves the following elements:

• centralised management (web), database (db) and proxy (prx) nodes: these provide all higher level functionality, like system

administration, subscriber registration, call routing, etc.

• distributed load balancer (lb) nodes: these serve as SBCs for the the whole NGCP and handle SIP and RTP traffic to / from

SIP endpoints (e.g. subscribers); and they also communicate with the central elements of NGCP (e.g. proxy nodes)

In case of such an NGCP node configuration it is possible to define cluster sets which are collections of NGCP nodes providing

the load balancer functionality.

Cluster sets can be assigned to subscriber domains or SIP peers and will determine the route of SIP and RTP traffic for those

sets of SIP endpoints:

• For SIP peers the selected nodes will be used to send outbound SIP traffic through

• For both SIP peers and subscriber domains the selected nodes will provide RTP relay functionality (the rtpengine NGCP com-

ponent will run on those nodes)

10.2.3.1 Configuration of Nodes of Cluster Sets

There are 2 places in NGCP’s main configuration files where an entry for cluster sets must be inserted:

1. Declaration of cluster sets

This happens in /etc/ngcp-config/config.yml file, see an example below:

cluster_sets:

default:

dispatcher_id: 50

default_set: default

poland:

dispatcher_id: 51

type: distributed

Configuration entries are:

• <label>: an arbitrary label of the cluster set; in the above example we have 2 of them: default and poland; the

cluster set default is always defined, even if cluster sets are not used

• <label>.dispatcher_id: a unique, numeric value that identifies a particular cluster set

• default_set: selects the default cluster set

• type: the type of cluster set; can be central or distributed

2. Assignment of cluster sets

This happens in /etc/ngcp-config/network.yml file, see an example below:

268

The sip:carrier Handbook mr5.5.7 269 / 577

.

.

lb03a:

.

.

vlan792:

cluster_sets:

- poland

hwaddr: 00:00:00:00:00:00

ip: 172.30.61.37

netmask: 255.255.255.240

shared_ip: 172.30.61.36

type:

- sip_int

vlan_raw_device: bond0

In the network configuration file typically the load balancer (lb) nodes are assigned to cluster sets. More precisely: network

interfaces of load balancer nodes that have sip_int type — that are used for SIP signalling and NGCP’s internal rtpengine

command protocol — are assigned to cluster sets.

In order to do such an assignment a cluster set’s label has to be added to the cluster_sets parameter, which is a list.

After modifying network configuration with cluster sets, the new configuration must be applied in the usual way:

> ngcpcfg apply ’Added cluster sets’

> ngcpcfg push all

10.2.3.2 Configuration of Cluster Sets for SIP and RTP Traffic

For both SIP peers and subscriber domains you can select the cluster set labels predefined in config.yml file.

• SIP peers: In order to select a particular cluster set for a SIP peer you have to navigate to Peerings→ select the peering group

→ select the peering server→ Preferences→ NAT and Media Flow Control and then Edit lbrtp_set parameter.

269

The sip:carrier Handbook mr5.5.7 270 / 577

Figure 96: Select Cluster Set for a Peer

• Domains: In order to select a particular cluster set for a domain you have to navigate to Domains → select the domain →
Preferences→ NAT and Media Flow Control and then Edit lbrtp_set parameter.

270

The sip:carrier Handbook mr5.5.7 271 / 577

Figure 97: Select Cluster Set for a Domain

271

The sip:carrier Handbook mr5.5.7 272 / 577

11 Licenses

The Sipwise NGCP — starting from mr5.5.1 release — implements software licensing in form of a regular comparison of the li-

censed services and capacities against the actual usage patterns of the platform. The purpose of this function is to monitor

system usage and to raise warnings to the platform operator if the thresholds of commercially agreed license parameters (like

number of provisioned subscribers or number of concurrent calls) are exceeded.

11.1 What is Subject to Licensing?

Sipwise NGCP licenses determine 2 groups of system parameters which are regularly compared with actual values gathered from

the system:

• performance parameters:

– number of provisioned subscribers

– number of registered subscribers

– number of concurrent calls

• feature parameters: additional features / services that are subject to commercial agreement:

– pre-paid billing

– CPBX (Cloud PBX) services

– Push notifications (mobile SIP clients on iOS and Android)

– Lawful Interception services

– Call history available on web interface of NGCP

11.2 How Licensing Works

Sipwise operates a licensing server that is the source of license data for each deployed NGCP node. The nodes themselves

request licensing data from the license server regularly and compare them with actual system performance indicators, check the

activated features against the licensed ones. The presence and activity of the license client module ("licensed" process) may

be confirmed by checking e.g. the output of "monit summary" command. It should contain a line showing:

licensed Running

All nodes of a single NGCP installation share the same license key. This is also valid for geographically distributed setups. This

license key is referred by an ID that has to be configured in the main NGCP configuration file (config.yml), and that ID will be used

to request license data from the license server.

In order for the license validation to work each node of an NGCP installation must be able to connect to the Sipwise license server

via standard HTTPS protocol (TCP, port 443). Alternatively the nodes may use a local, system-wide proxy server and only that

proxy server needs to access the Sipwise license server.

272

The sip:carrier Handbook mr5.5.7 273 / 577

11.3 How to Configure Licenses

The NGCP operator can set the license key in the main configuration file (/etc/ngcp-config/config.yml). The correct

license key has to be entered in the configuration file, at the general.license_key configuration parameter, so that licensing

works as expected.

Tip

You always have to add the license key before being able to upgrade NGCP to release mr5.5.x or above. The upgrade script

will look for the license key and will stop if it does not find the key.

The license key is also shown in the /etc/ngcp-license-key file once the key has been added to the configuration file and

the new configuration has been applied.

Note

There is another configuration parameter related to licenses: general.anonymous_usage_statistics that has an

effect on Sipwise NGCP CE installations only. This parameter enables / disables sending anonymous usage statistics to

Sipwise.

Although not strictly related to NGCP configuration, the platform operator has to keep in mind that all NGCP nodes need to have

access to Sipwise license server: license.sipwise.com

The operator has to ensure that there is no firewall rule or other network configuration that prevents NGCP nodes from connecting

to Sipwise license server via HTTPS protocol (TCP, port 443).

11.4 How to Monitor License Client

As mentioned earlier in this chapter, the presence of license client can be monitored using the built-in utility "monit".

The other way to observe the behaviour of the license client is looking into the log file of "licensed" process: /var/log/

ngcp/licensed.log

The NGCP operator may find entries like the below ones in case of normal operation:

Dec 12 16:20:42 sp1 ngcp-licensed[2205]: Valid license: [ABCDEFGHI_123456789_a1b2c3d4e5f6]:

10000 calls, 1000000 subscribers, 2000000 registered subscribers, valid until Tue Jan 1

00:00:00 2030 (signature valid until Tue Dec 26 16:20:43 2017)

Dec 12 16:22:41 sp1 ngcp-licensed[2205]: Usage report: 0 calls, 18 subscribers, 0 ←↩
registered subscribers

where:

1. The first line shows the licensed capacities

2. The second line shows the actual system usage indicators

273

The sip:carrier Handbook mr5.5.7 274 / 577

12 Software Upgrade

12.1 Release Notes

The sip:carrier version mr5.5.7 has the following important changes:

• Upgrade Debian from Debian 8 (jessie) to Debian 9 (stretch). SysV is still the init system in use. [TT#21905]

• Migration from MariaDB 10.0 to MariaDB 10.1 [TT#21824]

• [PRO/Carrier] Upgrade GlusterFS from 3.8.4 to 3.12.1 [TT#21896]

• [PRO/Carrier] Remove now unused ngcp-glusterfs-config package. [TT#23433]

• The monitoring backend has been migrated away completely from Redis to InfluxDB [TT#18250]

• [PRO/Carrier] ngcp-collective-check will now check the free swap space. [TT#22752]

• [PRO/Carrier] The ngcp-snmp-agent supports logging to syslog. [TT#21756]

• Add ability to configure supported SSL protocols/ciphers in config.yml [TT#12195]

• [PRO/Carrier] Discontinued and removed sems-app and sems-ha (sems-pbx takes over their tasks) [TT#22069] [TT#22070]

• [PRO/Carrier] Presence event as-feature-event is now supported in kamailio with optional CloudPBX module [TT#18851]

• [PRO/Carrier] Extension dialing within Auto-Attendant is now possible with CloudPBX module [TT#18736]

• Implemented request and response processing runtime logging in proxy [TT#22659]

• Updated asterisk to 13.14.1 [TT#20081]

• Updated kamailio to 4.4.6 [TT#18950]

• Implemented ability to check History-Info against allowed_clis or aliases per preference [TT#19559]

• [PRO/Carrier] Add support for the new HTTP/2 and JWT based protocol for sending push messages to Apple/iOS devices

(APNs) [TT#14952]

• [PRO/Carrier] Different SIP domains can now be configured with distinct authentication data for sending push messages (Google

GCM and Apple/iOS APNs) [TT#18841]

• Add support for dynamically adding iptables firewall rules for RTP proxy media ports as they are opened and closed [TT#19350]

• [PRO/Carrier] Add license management and enforcement system [TT#23200]

• Optionally send anonymous usage statistics [TT#23200]

• Adressed an issue in ngcp-credit-warning where it reported only 10 customers [TT#10964]

• Adressed an issue with reseller termination via the API and his related contract remained active [TT#21106]

• Adressed issues with customer and susbcriber lock level settings [TT#21271, TT#14285, TT#19656, TT#18765]

274

The sip:carrier Handbook mr5.5.7 275 / 577

• Addressed an issue with the fraud notification script not enlisting all the automatically locked subscribers [TT#18755]

• Improved NGCP Panel UI and the API performance [TT#22827]

• Added partitioning support for accounting.cdr [TT#3668]

• Optimised performance, addressed several minor issues and introduced partitioning support in the acc-cleanup tool [TT#3668]

• Added a "Manager Secretary" feature, currently only supports Polycom phones [TT#20302]

• Addressed several minor issues in the rewrite rules data representation [TT#23426]

• Added POST method support in the API to generate invoices [TT#17848]

• libmyodbc is no longer supported in Debian and replaced by the MariaDB odbc connector library [TT#21307]

• [PRO/Carrier] - Addressed an issue with reseller manipulation and the rtcengine provisioning when the rtcengine access was

not configured [TT#20690]

• [PRO/Carrier] Added Polycom phones provisioning support [TT#7515]

• [PRO/Carrier] Improved Yealink phones provisioning support [TT#18335]

• [PRO/Carrier] Improved error handling for the SMS delivery [TT#20095]

• [PRO/Carrier] Improved Glusterfs server ngcp volume control [TT#22435]

• [PRO/Carrier] Improved ngcp-sync-db to handle large blobs of data [TT#22806]

• Performance tuning:

– Disable Transparent Huge Pages (THP) support [TT#22160] (Redis performance tuning)

– Linux sysctl changes:

* net.core.somaxconn = 512 [TT#22160] (Redis performance tuning)

* vm.overcommit_memory = 1 [TT#22160] (Redis performance tuning)

* vm.swappiness = 10 [TT#22407] (prevent unnecessary swapping with available RAM)

* sunrpc.min_resvport = 700 [TT#22658] (prevent heartbeat and NFS ports collisions)

Please find the complete changelog in our release notes on our WEB site.

12.2 Overview

The sip:carrier software upgrade procedure to mr5.5.7 will perform several fundamental tasks:

• Upgrade the base system from Debian 8 (jessie) to Debian 9 (stretch)

• Upgrade the NGCP software packages

• Upgrade the NGCP configuration templates

• Upgrade the NGCP DB schema

275

https://www.sipwise.org/category/news/

The sip:carrier Handbook mr5.5.7 276 / 577

• Upgrade the NGCP configuration schema

• Upgrade the base system within Debian 9 (stretch) to the latest package versions

sip:carrier is a PRO-style system that has "A" and "B" sets of nodes with specific roles. The number of nodes can differ between

installations and must be clarified before the upgrade at the planning stage.

The software upgrade is performed by Sipwise engineers with the following steps:

• software upgrade planning

• pre-upgrade steps: customtt, backups

• making all "B" nodes active

• ensure that all "A" nodes are standby

• upgrading all "A" nodes to the new release

• scheduling and performing a switchover to all "A" nodes

• ensuring that "A" nodes work well (otherwise, switch over back to "B" nodes)

• upgrading all "B" nodes to the new release

• performing system post-upgrade testing/cleanup

Warning

The only allowed software upgrade path is the one described above. All the other theoretically possible upgrade

scenarios can lead to unpredictable results.

Warning

Nodes "A" and "B" MUST be used as described in this document. It is NOT allowed to swap them unless proxy

replication (of MySQL on port 3308) is configured on the db01b node.

12.3 Planning a software upgrade

Warning

Debian 9 (stretch) provides OpenSSH 7 with the ssh-dss (DSA) public key algorithm disabled (see more information

here). Please ensure you are NOT using ssh-dss (DSA) based SSH keys, otherwise migrate to modern ssh-ed25519

(ED25519) algorithm BEFORE the upgrade.

Warning

The license key for the sip:carrier must be installed and applied on all the servers before the software upgrade. Please

contact the Sipwise support team to receive the license key.

276

http://www.openssh.com/legacy.html

The sip:carrier Handbook mr5.5.7 277 / 577

Specify the provided license key in /etc/ngcp-config/config.yml

general:

license_key: XXX_XXX_XXX

Have the following information prepared in writing:

• which system should be upgraded (clarify about LAB/LIVE, country, etc.)

• the date and time schedule for each of the steps above (keeping the time zone in mind)

• a confirmed timeframe for the upgrade operation (allowed switchover timeframe)

• a basic functionality test (BFT) to be executed before the start of the software upgrade and after the switchovers to ensure that

the new release does not produce critical issues (the BFT should usually be prepared by the customer engineers)

• actions to be taken if the software upgrade operation cannot be completed within the defined maintenance window

• contact persons and ways of communication in case of emergency

• confirm the steps that will be performed in writing

• ensure that the customer and/or Sipwise engineers have access to the remote console of the servers: KVM, iDRAC, AMM

12.4 Preparing the software upgrade

It is recommended to execute all preparation steps in this chapter a few days before the actual software upgrade. They do not

cause service downtime, so it is safe to execute them in peak hours.

12.4.1 Log into the standby management server (web01a/db01a).

Tip

Use the physical IP addresses instead of the shared one, so you can jump between the nodes later on.

Run the terminal multiplexer under the sipwise user (to reuse the Sipwise .screenrc settings that are convenient for working in

multiple windows):

screen -S ngcp-upgrade

Become root inside your screen session:

sudo -s

Check the overall system status:

ngcp-status --all

277

The sip:carrier Handbook mr5.5.7 278 / 577

Ensure that all the proxy nodes replicate the read-only DB (127.0.0.1:3308) from the db01a node. Otherwise, discuss a special

plan to address this particularity.

For the following steps, investigate and make sure you understand why the custom modifications were introduced and if they are

still required after the software upgrade. If the custom modifications are not required anymore, remove them (e.g. if a bug was

fixed in the target release and the existing patch becomes irrelevant).

Create tickets to Sipwise developers to make relevant custom modifications part of the product in the future releases. This will

allow you to get rid of the customtt files.

Find local changes to the template files by executing:

ngcp-customtt-diff-helper

ngcp-customtt-diff-helper can help you to download the templates for you target release. To do so, you can run the following

command:

ngcp-customtt-diff-helper -d

In the tmp folder provided by the script you can, now, merge the current customtt with the new tt2, creating the new customtt.tt2

files. Once did that, you can TAR the new customtts in a tar.gz file and you can use that after the upgrade to deploy the new

customtt.

ngcp-customtt-diff-helper -t

You can check further details regarding the ngcp-customtt-diff-help with the option "-h".

Check if there are any *.tt2.dpkg-dist files among the templates. They usually appear when tt2 files are modified directly instead

of creating customtt files. If you find any *.tt2.dpkg-dist files, then treat the corresponding tt2 files as if they were custom templates

and introduce the changes from the existing tt2 files into the new templates (by creating associated *.customtt.tt2) before the

software upgrade.

find /etc/ngcp-config -name *.tt2.dpkg-dist

Note that in the end all *.tt2.dpkg-dist files must be removed before the software upgrade.

If you changed the configuration (e.g. added custom templates or changed the existing ones), then the system must be thoroughly

tested when these changes are applied. Continue with the software upgrade preparation only when the results of the tests are

successful.

Check and remove dpkg files left from previous software upgrades.

Make sure that the list is empty before you continue:

find /etc/ngcp-config -name *.tt2.dpkg*

Warning

If the installation uses locally specified mirrors, then the mirrors must be switched to the Sipwise APT repositories

(at least for the software upgrade). Otherwise, the public Debian mirrors may not provide packages for old Releases

anymore or at least provide outdated ones!

278

The sip:carrier Handbook mr5.5.7 279 / 577

12.4.2 Log into the remaining servers

Open separate windows for all the servers inside your "screen" session. (Press Ctrl+a + c to open a new window, Ctrl+a

+ a or Ctrl+a + [0-9] to change the window. Ctrl+a + " shows the list of all your windows. Use Ctrl+a + A to

change the window names to corresponding hosts).

Check the system for locally modified files (move them to appropriate customtt.tt2 files if necessary) on all servers:

ngcp-status --integrity

Make sure the cluster status is OK: on all nodes manually run:

• ngcpcfg status - must print OK on all nodes

Check all nodes in parallel, using clish and parallel-ssh:

• ngcp-clish "ngcp version summary" - ensure that all cluster nodes have correct/expected from version

• ngcp-clish "ngcp version package installed ngcp-ngcp-carrier" - ensure that the metapackages version is equal to the ngcp

version above

• ngcp-clish "ngcp version package check" - ensure that all nodes have the identical Debian package installed

Note

Software on all nodes must be identical before and after the upgrade!

• ngcp-clish "ngcp cluster ssh connectivity" - check SSH connectivity from the current node to all other nodes

• ngcp-clish "ngcp cluster ssh crossconnectivity" - check SSH connectivity from all nodes to all other nodes

• ngcp-clish "ngcp monit summary" - should not report any problems

• ngcp-clish "ngcp cluster status" - active nodes (with all services running) must print "all", the others must print "none"

• ngcp-clish "ngcp status collective-check" - should not report any problems

• ngcp-clish "ngcp show date" - date and time must be in sync on all the servers

• ngcp-clish "ngcp show dns-servers" - ensure that DNS records are correct

Note

to exit from ngcp-clish press Ctrl+Z (or type exit):

279

The sip:carrier Handbook mr5.5.7 280 / 577

root@web01b:~# ngcp-clish

Entering ’clish-enable’ view (press Ctrl+Z to exit)...

exit

root@web01b:~#

Run "apt-get update" on all nodes. Ensure that you have no warnings/errors here.

Test the cluster failover to see if everything works fine on "B" nodes as well. On all the standby nodes execute:

ngcp-make-active

Afterwards, check ngcp-status --all again.

12.5 Upgrading the sip:carrier

Log in to all nodes and execute the checks from Section 12.4 again. This will ensure that nothing was broken since the preparation

steps were finished. Also, execute ngcpcfg show and ngcpcfg status to check the latest configuration changes.

Perform the BFT test.

12.5.1 Preparing for maintenance mode

Sipwise NGCP introduced Maintenance Mode with its mr5.4.1 release. The maintenance mode of NGCP will disable some

background services (for instance, mediator) during the software upgrade. It thus prevents the system from getting into an

inconsistent state while the upgrade is being performed. You can activate maintenance mode by applying a simple configuration

change as described later.

Important

For sip:carrier systems running NGCP release older than mr5.4.1: As upgrading from an earlier release to mr5.4.1 or

later will result in a system being aware and making use of the maintenance mode, it is necessary to prepare the NGCP

for it before the software upgrade.

Enable maintenance mode:

• Pull pending configuration (if any):

ngcpcfg pull

• Edit /etc/ngcp-config/config.yml file:

– For systems running NGCP release older than mr5.4.1: insert a new line: "maintenance: yes" in the general

section of the configuration file

– For systems running NGCP release mr5.4.1 or later: set the general.maintenance parameter to yes

280

The sip:carrier Handbook mr5.5.7 281 / 577

general:

maintenance: yes

Disabling background services

These tasks are for systems currently running NGCP release older than mr5.4.1. The maintenance mode of NGCP is not

available in your system prior to the software upgrade. It is therefore necessary to manually disable the following background

services to avoid a potential system inconsistency:

• Heartbeat watchdog

• Mediator

• Rate-o-mat

• CDR Exporter

Execute the following:

1. Stop HB watchdog on all nodes:

monit stop hb_watchdog

2. Stop mediator and rate-o-mat services on proxy (prxNNy) nodes :

monit stop mediator

monit stop rate-o-mat

3. Prevent background services from (re)starting. You need to change configuration in the /etc/ngcp-config/con

fig.yml file: set the enable parameter to "no":

heartbeat:

hb_watchdog:

enable: no

...

mediator:

enabled: no

...

rateomat:

enable: no

4. In order to disable the CDR exporter process, add a new custom template file because there is no such file by default:

config="/etc/cron.d/ngcp-cdr-exporter"

customtt="/etc/ngcp-config/templates/etc/cron.d/ngcp-cdr-exporter.customtt.tt2"

[-f "${customtt}"] || cp "${config}" "${customtt}"

vim "${customtt}"

Comment out this single line in the file:

281

The sip:carrier Handbook mr5.5.7 282 / 577

25,55 * * * * root . /etc/default/ngcp-roles; if ...

Please don’t forget to reverse the manual changes after the software upgrade as described in Enabling background services

section of the handbook!

For all NGCP systems, regardless of their version:

Apply configuration changes by executing s:

ngcpcfg apply ’Enabling maintenance mode before the upgrade to mr5.5.7’

ngcpcfg push all

To upgrade the sip:carrier to mr5.5.7 release, execute the following commands on the standby management "A" node:

12.5.2 Upgrading ONLY the first standby management node "A" (web01a/db01a)

Note

Sometimes the DB and MGMT roles are assigned to the same host. This is OK.

Warning

Do NOT execute the software upgrade on web01a and db01a in parallel!

The main goal of the following commands is to download the new packages into the approx cache. So all the nodes in the cluster

will get identical packages.

NGCP_CURRENT_VERSION=$(cat /etc/ngcp_version)

sed -i "s/$NGCP_CURRENT_VERSION/mr5.5.7/" /etc/apt/sources.list.d/sipwise.list

sed -i "s/jessie/stretch/g" /etc/apt/sources.list.d/sipwise.list /etc/apt/sources.list.d/ ←↩
debian.list

[-r /etc/default/ngcp-proxy] && source /etc/default/ngcp-proxy

mgmt_node=$(cat /etc/ngcp_mgmt_node)

grep -q "debian-debug" /etc/apt/sources.list.d/debian.list || \

echo "deb http://${mgmt_node:-web01}:${APPROX_RO_PORT:-9998}/debian-debug/ stretch-debug ←↩
main contrib non-free" >> /etc/apt/sources.list.d/debian.list

grep -q "debian-debug" /etc/approx/approx.conf || \

echo "debian-debug https://debian.sipwise.com/debian-debug" >> /etc/approx/approx.conf

ngcp-approx-cache-helper --auto --node localhost

apt-get update

apt-get install ngcp-upgrade-pro

282

The sip:carrier Handbook mr5.5.7 283 / 577

Note

Don’t worry, ngcp-upgrade-carrier does not exist, use ngcp-upgrade-pro as outlined above.

Warning

Do not use "ngcpcfg apply/build" after executing the steps from the above section, otherwise the changes will be

overwritten and you will have to redo these steps. The same applies to similar sections below.

Execute ngcp-upgrade on the standby node as root :

ngcp-upgrade

Note

sip:carrier can be upgraded to mr5.5.7 from previous release or previous build only. The script ngcp-upgrade will find all the

possible destination releases for the upgrade and allow to choose the proper one.

Note

If there is an error during the upgrade, the ngcp-upgrade script will request you to solve it. Once you’ve fixed the problem, just

execute ngcp-upgrade again and it will continue from the previous step.

Merge/add the custom configuration templates if needed.

Apply the changes to configuration templates:

ngcpcfg apply ’applying customtt for new release mrX.X on node xxx01a’

Send the new templates to the shared storage and the other nodes

ngcpcfg push --nobuild --noapply all

Warning

Do NOT execute ngcpcfg push --shared-only at this stage, as it will affect further upgrades due to noticed outdated

local ngcpcfg storage. If you did so, run ngcpcfg push --nobuild --noapply all once again to pull ngcpcfg changes on all

the nodes from glusterfs.

12.5.3 Upgrading the standby database node "A" (db*a)

Note

If the DB and MGMT roles are assigned to the same host, then skip this step as you have already upgraded the standby MGMT

node "A" above.

283

The sip:carrier Handbook mr5.5.7 284 / 577

Run the following commands to upgrade the standby DB node "A" (select the same release version as above and follow the

on-screen recommendations):

NGCP_CURRENT_VERSION=$(cat /etc/ngcp_version)

sed -i "s/$NGCP_CURRENT_VERSION/mr5.5.7/" /etc/apt/sources.list.d/sipwise.list

sed -i "s/jessie/stretch/g" /etc/apt/sources.list.d/sipwise.list /etc/apt/sources.list.d/ ←↩
debian.list

apt-get update

apt-get install ngcp-upgrade-pro

ngcp-upgrade

Note

It is important to upgrade db01a node before upgrading any proxy nodes. Otherwise, the "local" MySQL (127.0.0.1:3308) on

proxy nodes may become out of sync in case the new release has _not_replicated.up DB statements.

12.5.4 Upgrading other standby nodes "A" (lb*a/prx*a)

Run the below commands selecting the same release version and follow the on-screen recommendations:

NGCP_CURRENT_VERSION=$(cat /etc/ngcp_version)

sed -i "s/$NGCP_CURRENT_VERSION/mr5.5.7/" /etc/apt/sources.list.d/sipwise.list

sed -i "s/jessie/stretch/g" /etc/apt/sources.list.d/sipwise.list /etc/apt/sources.list.d/ ←↩
debian.list

apt-get update

apt-get install ngcp-upgrade-pro

ngcp-upgrade

12.5.5 Promote ALL standby nodes "A" to active.

Warning

Ensure that all standby nodes "A" are: * upgraded to the new release (check /etc/ngcp_version or use ngcp-clish)

* have been rebooted (run ngcp-status on each standby node)

On all "A" nodes run:

ngcp-make-active

Ensure that the "A" nodes became active, by executing the ’ngcp-status’ and ’ngcp-clish’ commands described above.

Ensure that ALL "B" nodes are standby now!

284

The sip:carrier Handbook mr5.5.7 285 / 577

12.5.6 Upgrading ALL standby nodes "B" (web*b/db*b/lb*b/prx*b)

Run the following commands selecting the same release version and following the on-screen recommendations:

NGCP_CURRENT_VERSION=$(cat /etc/ngcp_version)

sed -i "s/$NGCP_CURRENT_VERSION/mr5.5.7/" /etc/apt/sources.list.d/sipwise.list

sed -i "s/jessie/stretch/g" /etc/apt/sources.list.d/sipwise.list /etc/apt/sources.list.d/ ←↩
debian.list

apt-get update

apt-get install ngcp-upgrade-pro

ngcp-upgrade

Note

You can upgrade all standby "B" nodes simultaneously (including the ones with the mgmt and db roles).

12.6 Post-upgrade steps

12.6.1 Disabling maintenance mode

In order to disable the maintenance mode, do the following:

• Pull outstanding ngcpcfg changes (if any):

ngcpcfg pull

• Disable the maintenance mode:

ngcpcfg set /etc/ngcp-config/config.yml "general.maintenance=no"

Enabling background services

If you upgraded from NGCP release earlier than mr5.4.1, you have to manually reverse the changes you applied before the

upgrade in the (Disabling background services) section.

1. Enable background services:

ngcpcfg set /etc/ngcp-config/config.yml "heartbeat.hb_watchdog.enable=yes"

ngcpcfg set /etc/ngcp-config/config.yml "mediator.enabled=yes"

ngcpcfg set /etc/ngcp-config/config.yml "rateomat.enable=yes"

2. In order to enable the CDR exporter process, remove the corresponding customtt file:

rm /etc/ngcp-config/templates/etc/cron.d/ngcp-cdr-exporter.customtt.tt2

285

The sip:carrier Handbook mr5.5.7 286 / 577

For all NGCP systems, regardless of their previous version:

• Execute the commands:

ngcpcfg apply ’Disable the maintenance mode after the upgrade to mr5.5.7’

ngcpcfg push all

12.6.2 Post-upgrade checks

When everything has finished successfully, check that replication is running. Check ngcp-status --all. Finally, do a basic

functionality test. Check the web interface, register two test subscribers and perform a test call between them to ensure call routing

works.

Note

You can find a backup of some important configuration files of your existing installation under /var/backup/ngcp-mr5.5.7-* (where

* is a place holder for a timestamp) in case you need to roll back something at any time. A log file of the upgrade procedure is

available at /var/backup/ngcp-mr5.5.7-*/upgrade.log.

286

The sip:carrier Handbook mr5.5.7 287 / 577

13 Backup, Recovery and Database Maintenance

13.1 sip:carrier Backup

For any service provider it is important to maintain a reliable backup policy as it enables prompt services restoration after any

force majeure event. Although the design of sip:carrier implies data duplication and high availability of services, we still strongly

suggest you to configure a backup procedure. The sip:carrier has a built-in solution that can help you back up the most crucial

data. Alternatively, it can be integrated with any Debian compatible backup software.

13.1.1 What data to back up

• The database

This is the most important data in the system. All subscriber and billing information, CDRs, user preferences, etc. are stored in

the MySQL server. It is strongly recommended to have up-to-date dumps of all the databases on corresponding NGCP nodes.

• System configuration

The system configuration files such as /etc/mysql/sipwise.cnf and the /etc/ngcp-config/ directory should be included in the backup

as well. We suggest backing up the whole /etc folder.

• Exported CDRs (optional)

The /home/jail/home/cdrexport directory contains the exported CDRs. It depends on your call data retention policy whether or not

to remove these files after exporting them to an external system.

13.1.2 The built-in backup solution

The sip:carrier comes with an easy-to-use solution that creates everyday backups of the most important data:

• The system configuration files. The whole /etc directory is backed up.

• Exported CDRs. The /home/jail/home/cdrexport directory with csv files.

• All required databases on corresponding servers.

This functionality is disabled by default and can be enabled and configured in the backuptools subsection in the config.yml file.

Please, refer to the “C.1.3 backup tools” section of the “NGCP configs overview” chapter for the backup configuration options.

Once you set the required configuration options, apply the changes:

ngcpcfg apply ’enabled the backup feature’

ngcpcfg push all

287

The sip:carrier Handbook mr5.5.7 288 / 577

Once you activate the feature, the sip:carrier will create backups in the off-peak time on the standby nodes and put them to the

/var/backup/ngcp_backup directory. You can copy these files to your backup server using scp or ftp.

Note

make sure that you have enough free disk space to store the backups for the specified number of days.

13.2 Recovery

In the worst case scenario, when the system needs to be recovered from a total loss, you only need 4 steps to get the services

back online:

• Install the sip:carrier as explained in chapter 2.

• Restore the /etc/ngcp-config/ directory and the /etc/mysql/sipwise.cnf file from the backup, overwriting your local files.

• Restore the database from the latest MySQL dump.

• Apply the changes to bring the original configuration into effect:

ngcpcfg apply ’restored the system from the backup’

ngcpcfg push all

13.3 Reset Database

Important

All existing data will be wiped out! Use this script only if you want to clear all previously configured services and start

configuration from scratch.

To reset database to its original state you can use a script provided by CE: * Execute ngcp-reset-db. It will assign new unique

passwords for the NGCP services and reset all services. The script will also create dumps for all NGCP databases.

13.4 Accounting Data (CDR) Cleanup

Sipwise sip:carrier offers an easy way to cleanup, backup or archive old accounting data — i.e. CDRs — that is not necessary

for further processing any more, or must be deleted according to the law. There are some NGCP components designed for

this purpose and they are commonly called cleanuptools. These are basically configurable scripts that interact with NGCP’s

accounting and kamailio databases, or remove exported CDR files in order to clean or archive the unnecessary data.

288

The sip:carrier Handbook mr5.5.7 289 / 577

13.4.1 Cleanuptools Configuration

The configuration parameters of cleanuptools are located in the main NGCP configuration file: /etc/ngcp-config/con

fig.yml. Please refer to the config.yml file description: Cleanuptools Configuration Data Section B.1.8 for configuration

parameter details.

In case the system administrator needs to modify some configuration value, the new configuration must be activated in the usual

way, by running the following commands:

> ngcpcfg apply ’Modified cleanuptools config’

> ngcpcfg push all

As a result new configuration files will be generated for the accounting database and the exported CDR cleanup tools. Please

read detailed description of those tools in subsequent sections of the handbook.

The NGCP system administrator can also select the time when cleanup scripts are run, by modifying the schedule here: /etc/

cron.d/cleanup-tools

13.4.2 Accounting Database Cleanup

The script responsible for cleaning up the database is: /usr/sbin/acc-cleanup.pl

The configuration file used by the script is: /etc/ngcp-cleanup-tools/acc-cleanup.conf

An extract from a sample configuration file is provided here:

############

batch = 10000

archive-target = /var/backup/cdr

compress = gzip

username = dbcleaner

password = rcKamRdHhx7saYRbkJfP

host = localhost

connect accounting

time-column = from_unixtime(start_time)

backup-months = 2

backup-retro = 2

backup cdr

connect accounting

archive-months = 2

archive cdr

connect kamailio

289

The sip:carrier Handbook mr5.5.7 290 / 577

time-column = time

cleanup-days = 90

cleanup acc

Clean up after mediator by deleting old leftover acc entries and deleting

old entries out of acc_trash and acc_backup

connect kamailio

time-column = time

cleanup-days = 30

cleanup acc_trash

cleanup acc_backup

The configuration file itself contains a detailed description of how database cleanup script works. It consists of a series of state-

ments, one per line, which are going to be executed in sequence. A statement can either just set a variable to some value, or

perform an action.

There are 3 types of actions the database cleanup script can take:

• backup CDRs

• archive CDRs

• cleanup CDRs

These actions are discussed in following sections.

A generic action is connecting to the proper database: connect <database name>

13.4.2.1 Backup CDRs

The database cleanup tool can create monthly backups of CDRs in the accounting database and store those data records in

separate tables named: cdr_YYYYMM. The instruction in the configuration file looks like: backup <table name>, by default

and typically it is: backup cdr

Configuration values that govern the backup procedure are:

• time-column: Which column in cdr table shows the month which a CDR belongs to.

• batch: How many records to process within a single SQL statement. If unset, less than or equals 0, all of them are processed

at once.

• backup-months: How many months worth of records to keep in the cdr table — where current CDRs are stored — and not

move into the monthly backup tables.

Important

Months are always processed as a whole, thus the value specifies how many months to keep AT MOST. In other

words, if the script is started on December 15th and this value is set to "2", then all of December and November is

kept, and all of October will be backed up.

290

The sip:carrier Handbook mr5.5.7 291 / 577

• backup-retro: How many months to process for backups, going backwards in time. Using the example above, with this value

set to "3", the months October, September and August would be backed up, while any older records would be left untouched.

13.4.2.2 Archive CDRs

The database cleanup tool can archive (dump) old monthly backup tables. The statement used for this purpose is: archive

<table name>, by default and typically it is: archive cdr

This creates an SQL dump out of too old tables created by the backup statement and drop them afterwards from database.

Archiving uses the following configuration values:

• archive-months: Uses the same logic as the backup-months variable above. If set to "12" and the script was started

on December 15th, it will start archiving with the December table of the previous year.

Important

Note that the sum of backup-retro + backup-months values cannot be larger than archive-months

value for the same table. Otherwise you end up creating empty monthly backup tables, only to dump and delete them

right afterwards.

• archive-target: Target directory for writing the SQL dump files into. If explicitly specified as "/dev/null", then no actual

archiving will be performed, but instead the tables will only be dropped from database.

• compress: If set to "gzip", then gzip the dump files after creation. If unset, do not compress.

• host, username and password: As dumping is performed by an external command, those variables are reused from the

connect statement.

13.4.2.3 Cleanup CDRs

The database cleanup tool may do database table cleanup without performing backup. In order to do that, the statement: clean

up <table name> is used. Typically this has to be done in kamailio database, examples:

• cleanup acc

• cleanup acc_trash

• cleanup acc_backup

Basically the cleanup statement works just like the backup statement, but doesn’t actually backup anything, but rather just

deletes old records. Configuration values used by the procedure:

• time-column: Gives the database column name that shows the time of CDR creation.

• batch: The same as with backup statement.

• cleanup-days: Any record older than this many days will be deleted.

291

The sip:carrier Handbook mr5.5.7 292 / 577

13.4.3 Exported CDR Cleanup

The script responsible for cleaning up exported CDR files is: /usr/sbin/cleanup-old-cdr-files.pl

The configuration file used by exported CDR cleanup script is: /etc/ngcp-cleanup-tools/cdr-files-cleanup.

yml

A sample configuration file is provided here:

enabled: no

max_age_days: 30

paths:

-

path: /home/jail/home/*/20[0-9][0-9][0-9][0-9]/[0-9][0-9]

wildcard: yes

remove_empty_directories: yes

max_age_days: ~

-

path: /home/jail/home/cdrexport/resellers/*/20[0-9][0-9][0-9][0-9]/[0-9][0-9]

wildcard: yes

remove_empty_directories: yes

max_age_days: ~

-

path: /home/jail/home/cdrexport/system/20[0-9][0-9][0-9][0-9]/[0-9][0-9]

wildcard: yes

remove_empty_directories: yes

max_age_days: ~

The exported CDR cleanup tool simply deletes CDR files in the directories provided in the configuration file, if those have already

expired.

Configuration values that define the files to be deleted:

• enabled: Enable (yes) or disable (no) exported CDR cleanup.

• max_age_days: Gives the expiration time of the exported CDR files in days. There is a general value which may be overridden

by a local value provided at a specific path. The local value is valid for the particular path only.

• paths: an array of path definitions

– path: a path where CDR files are to be found and deleted; this may contain wildcard characters

– wildcard: Enable (yes) or disable (no) using wildcards in the path

– remove_empty_directories: Enable (yes) or disable (no) removing empty directories if those are found in the given

path

– max_age_days: the local expiration time value for files in the particular path

292

The sip:carrier Handbook mr5.5.7 293 / 577

14 Platform Security, Performance and Troubleshooting

Once the sip:carrier is in production, security and maintenance becomes really important. In this chapter, we’ll go through a set of

best practices for any production system.

14.1 Sipwise SSH access to sip:carrier

The sip:carrier provides SSH access to the system for Sipwise operational team for debugging and final tuning. Operational team

uses user sipwise which can be logged in through SSH key only (password access is disabled) from dedicated access server

jump.sipwise.com only.

To completely remove Sipwise access to your system, please execute as user root:

root@myserver:~# ngcp-support-access --disable && apt-get install ngcp-support-noaccess

Note

you have to execute the command above on each node of your sip:carrier system!

Warning

please ensure that the script complete successfully:

* Support access successfully disabled.

If you need to restore Sipwise access to the system, please execute as user root:

root@myserver:~# apt-get install ngcp-support-access && ngcp-support-access --enable

Warning

please ensure that the script complete successfully:

* Support access successfully enabled.

14.2 Firewalling

14.2.1 Firewall framework

The sip:carrier runs a wide range of services. In order to secure the platfrom while allowing access to the sip:carrier, the NGCP

configuration framework provides a set of predefined network zones. Services are aggregated into appropriate zones by default.

Zones are assigned to network interfaces (and VLANs if applicable) in /etc/ngcp-config/network.yml.

293

The sip:carrier Handbook mr5.5.7 294 / 577

Caution

Though the default firewall setup provided by the NGCP configuration framework provides a safe setup for sip:carrier,

security audits of the platform performed by qualified engineers before commissioning the platform into service are

strongly recommended. Customization of the setup requires in-depth knowledge of firewalling principles in general and

the netfilter facility in particular.

Table 19: NGCP network zones

Zone name Description

ha_int Internal cluster interface providing internal cluster communications between cluster

pairs (heartbeat) and synchronization of data and configuration

mon_ext Interface to conect external monitoring appliances (SNMP)

rtp_ext Interface for external RTP media relay between sip:carrier and endpoints (e.g. user

agents, peers)

sip_ext Interface for external SIP signalling between sip:carrier and endpoints (e.g. user

agents, peers)

sip_int Interface for internal signalling, e.g. between load-balancers, proxies and applications

servers

ssh_ext Interface providing external access to the sip:carrier command line interface

web_ext Interface providing access to the customers’ self-care Web panel

web_int Interface for access to the administrative Web panel, its REST APIs and internal API

communications

Note

Additional custom zones may be configured, but will not be automatically integrated into the firewall configuration.

To facilitate firewall functionality, sip:carrier uses the Kernel’s netfilter facility and iptables-persistent as an interface to netfilter.

Netfilter is using tables and within that chains to store rules in this hierarchy: table → chain → rule. Default firewall setups of

sip:carrier do not use netfilter tables nat and raw, but only default table filter.

Note

Custom nat rules for IPv4 and IPv6 may be added in file /etc/ngcp-config/config.yml in sections security→firewall→nat_rules4

and security→firewall→nat_rules6.

Each chain deploys a default policy handling packets which did not trigger and rule in a prticular chain.

294

The sip:carrier Handbook mr5.5.7 295 / 577

Table 20: NGCP netfilter default policies

Chain Default

policy

Description

INPUT DROP Handling all packets directly destined for a sip:carrier node (only packets

matching a rule are allowed)

FORWARD DROP Handling all packets received by a sip:carrier node and destined for

another, non-local IP destination (no default rules added)

OUTPUT ACCEPT Handling all packets originating on a sip:carrier node (no default rules

added)

rtpengine N/A Container for rptengine rule to allow the rule to persist even when the

Kernel module is unloaded (e.g. during upgrades)

The default firewall setup provided by sip:carrier:

• adds rules to INPUT to secure access to platform and services

• blocks all traffic from and to FORWARD

• allows all OUTPUT traffic

14.2.2 NGCP firewall configuration

The sip:carrier comes with a preconfigured set of firewall rules, which can be enabled and configured in /etc/ngcp-config/

config.yml in section security→firewall. Refer to Section B.1.32 for available configuration options.

Firewall configuration is applied by running ngcpcfg apply. However, this will not activate new rules automatically to avoid

inadvertent self-lockout. To finally activate new firewall rules run iptables-apply. This will prompt for another system logon

to verify access remains available. If the prompt is not confirmed, firewall rules will automatically be reverted to the previous state

re-enabling access to the command line.

Caution

The NGCP firewall subsystem by default is disabled in /etc/ngcp-config/config.yml key security.firewall.ena

ble: no. This is to avoid blocking any traffic inadvertently during installation. After the firewall subsystem has been

configured appropriately, it needs to be enabled by setting security.firewall.enable: yes in /etc/ngcp-

config/config.yml.

14.2.3 IPv4 System rules

The following set of rules is added by the system upon activation of the firewall subsystem. Individual system rules are configured

in /etc/ngcp-config/templates/etc/iptables/rules.v4.tt2 and /etc/ngcp-config/templates/etc/iptables/rules.v6.tt2

295

The sip:carrier Handbook mr5.5.7 296 / 577

Table 21: Firewall system rules

Zone Chain Target Rule Description

all INPUT rtpengine -p udp -j rtpengine Redirects all incoming UDP

packets to chain rtpengine (putting

RTPENGINE rule into a dedicated

chain allows for the rule to persist

even when the Kernel module gets

unloaded, e.g. during upgrades)

all rtpengine RTPENGINE -p udp -j RTPENGINE --

id 0

Feeds all RTP packets to

RTPENGINE Kernel module

n/a INPUT ACCEPT -i lo -j ACCEPT Accept all packets received by

local loopback interface

all INPUT ACCEPT -m state --state

RELATED,ESTABLISHED -j

ACCEPT

Accept all incoming packets tied to

related or established connections

all INPUT (IPv4) ACCEPT -p icmp -m icmp --

icmp-type 8 -j ACCEPT

Accept all ICMP echo messages

all INPUT (IPv4) ACCEPT -p icmp -m icmp --

icmp-type 0 -j ACCEPT

Accept all ICMP echo reply

messages

all INPUT (IPv6) ACCEPT -A INPUT -p ipv6-icmp

-j ACCEPT

Accept all ICMPv6 messages

all INPUT cluster -j cluster Divert all incoming packets to the

cluster chain

all cluster ACCEPT -s <node_ip> -j ACCEPT Set of rules white-listing all

IP-addresses owned by the NGCP

platform for incoming traffic

api_int INPUT ACCEPT -p tcp --dport

<ossbss.port> -j

ACCEPT

Set of rules for all api_int

interfaces accepting all incoming

packets for API port defined in

/etc/ngcp-config/config.yml with

key ossbss.port

mon_ext INPUT ACCEPT +-p udp -s <snmpclient_ip>

--dport 161 -j ACCEPT

Set of rules for all mon_ext

interfaces based on a list of IPs for

all SNMP communities configured

in checktools.snmpd.communities

rtp_ext INPUT ACCEPT/name -p udp --dport

<rtpproxy.minport>:

’<rtpproxy.maxport>’ -

j ACCEPT/name

Set of rules for all rtp_ext

interfaces accepting all incoming

packets for RTP port range

defined in

/etc/ngcp-config/config.yml with

keys rtpproxy.minport and

rtpproxy.maxport (see note below

for custom options)

296

The sip:carrier Handbook mr5.5.7 297 / 577

Table 21: (continued)

Zone Chain Target Rule Description

sip_ext INPUT ACCEPT -p udp --dport

<kamailio.lb.port> -j

ACCEPT

Set of rules for all sip_ext

interfaces accepting all packets on

the loda balancer’s SIP signalling

port defined in

/etc/ngcp-config/config.yml with

key kamailio.lb.port (UDP)

sip_ext INPUT ACCEPT -p tcp --dport

<kamailio.lb.port> -j

ACCEPT

Set of rules for all sip_ext

interfaces accepting all packets on

the loda balancer’s SIP signalling

port defined in

/etc/ngcp-config/config.yml with

key kamailio.lb.port (TCP)

sip_ext INPUT ACCEPT -p tcp --dport

<kamailio.lb.tls.port>

-j ACCEPT

Set of rules for all sip_ext

interfaces accepting all packets on

the loda balancer’s SIP signalling

port defined in

/etc/ngcp-config/config.yml with

key kamailio.lb.tls.port (TCP/TLS)

sip_ext INPUT ACCEPT -p tcp --dport 5222 -j

ACCEPT

Set of rules for all sip_ext

interfaces accepting all packets on

TCP port 5222 (XMPP client)

sip_ext INPUT ACCEPT -p tcp --dport 5269 -j

ACCEPT

Set of rules for all sip_ext

interfaces accepting all packets on

TCP port 5269 (XMPP server)

sip_ext INPUT ACCEPT -p tcp --dport <pushd.

port> -j ACCEPT

Set of rules for all sip_ext

interfaces accepting all packets

incoming for the pushd server port

configured in

/etc/ngcp-config/config.yml with

key pushd.port

ssh_ext INPUT ACCEPT -A INPUT -i

<ssh_ext_interface> -p

tcp -s <sshd.

permit_support_from> -

-dport sshd.port -j

ACCEPT

List of rules to accept incoming

packets for SSH on all ssh_ext

interfaces from hosts configured in

/etc/ngcp-config/config.yml with

key sshd.permit_support_from

297

The sip:carrier Handbook mr5.5.7 298 / 577

Table 21: (continued)

Zone Chain Target Rule Description

web_ext INPUT ACCEPT -p tcp --dport

<www_admin.http_csc.

port> -j ACCEPT

List of rules to accept incoming

packets for the Customer Self

Care interface defined in

/etc/ngcp-config/config.yml with

key www_admin.http_csc.port on

all web_ext interfaces

web_int INPUT ACCEPT -p tcp --dport

<www_admin.http_admin.

port> -j ACCEPT

List of rules to accept incoming

packets for the Admin Panel

interface defined in

/etc/ngcp-config/config.yml with

key www_admin.http_admin.port

on all web_int interfaces

Caution

To function correctly, the rtpengine requires an additional iptables rule installed. This rule (with a target of RTPENGINE)

is automatically installed and removed when the rtpengine starts and stops, so normally you don’t need to worry about

it. However, any 3rd party firewall solution can potentially flush out all existing iptables rules before installing its own,

which would leave the system without the required RTPENGINE rule and this would lead to decreased performance.

It is imperative that any 3rd party firewall solution either leaves this rule untouched, or installs it back into place after

flushing all rules out. The complete parameters to install this rule (which needs to go into the INPUT chain of the

filter table) are: -p udp -j RTPENGINE --id 0

Note

Some of the parameters used to populate the firewall rules automatically may contain hostnames instead of IP addresses.

Since firewall rules need to be configured based on IP addresses by design, the NGCP configuration framework will lookup

such hostnames during ngcpcfg apply and expand them to the IP addresses as returnd by gethostbyname. If DNS resolving

changes for such hostnames due to changes to DNS the rules will not update automatically. Another run of ngcpcfg apply will

be needed to reperform the lookup and update the rules to reflect chages in DNS. If this step is omitted, clients may be locked

out of the system.

298

The sip:carrier Handbook mr5.5.7 299 / 577

Note

By default, the rules for the rtp_ext zone are created with a target of ACCEPT. It is optionally possible to create these rules

with another iptables chain as target, and instruct the RTP proxy to dynamically manage individual rules for each running call

in this chain. If this is enabled, the chain with the name given in the /etc/ngcp-config/config.yml key rtpprox

y→firewall_iptables_chain will be created as empty, leaving the effective target for UDP packets within the RTP

port range as the table’s default policy (normally DROP). The RTP proxy will then dynamically created one ACCEPT rule for

each open RTP media port in the given chain when a call starts, and delete it when the call is finished. It should be noted that

dynamically creating and deleting iptables rules can incur a singificant performance overhead, especially in scenarios with high

call volumes, and it is therefore not recommended to enable this feature in such cases.

14.2.4 Custom rules

The NGCP configuration framework allows to add custom rules to the firewall setup in /etc/ngcp-config/config.yml. The custom

rules are added after the system rules. Hence, they apply for packets not matched by the systems rules only.

Example custom rule to whitelist all IPv4 traffic from network interface eth1.301 effectively making VLAN 301 a trusted network:

rules4:

- ’-A INPUT -i eth1.301 -j ACCEPT’

Example custom rule to accept incoming traffic from monitoring station 203.0.113.93 for an optionally installed check_mk agent:

rules4:

- ’-A INPUT -p tcp -s 203.0.113.93 --dport 6556 -j ACCEPT’

To add hosts or networks to the SSH whitelist they can be either added to key sshd.permit_support_from in /etc/ngcp-config/config.yml

or a custom rule may be used:

rules4:

- ’-A INPUT -s 198.51.100.0/24 --dport 22 - j ACCEPT’

- ’-A INPUT -s 203.0.113.93 --dport 22 -j ACCEPT’

Note

In custom rules keys from /etc/ngcp-config/config.yml cannot be referenced. Thus, the values need to be manually looked up,

hard coded, and kept in sync manually. This is by design of YAML.

14.2.5 Example firewall configuration section

An example for NGCP firewall configuration in /etc/ngcp-config/config.yml enabling both the firewall subsystem and the logging

facility may look like:

security:

firewall:

enable: ’yes’

299

The sip:carrier Handbook mr5.5.7 300 / 577

logging:

enable: ’yes’

file: ’/var/log/firewall.log’

tag: ’NGCPFW’

policies:

input: ’DROP’

forward: ’DROP’

output: ’ACCEPT’

rules4:

- ’-A INPUT -i eth0 -j ACCEPT’

14.3 Password management

The sip:carrier comes with some default passwords the user should change during the deployment of the system. They have been

explained in the previous chapters of this handbook.

Important

Many NGCP services use MySQL backend. Users and passwords for these services are created during the installation.

These passwords are unique for each installation, and the connections are restricted to localhost. You should not

change these users and passwords.

14.3.1 The "root" account

The sip:carrier’s super-user account comes with a preconfigured password. It is imperative that this password is changed by

the operator immediately after the sip:carrier is shipped and before it is connected to any potentially unsecure public or private

network using a secure password in compliance with existing password policies of the operator. The "root" password must not be

shared outside of the operator’s organization including Sipwise engineers. The "root" password must not be shared in any publicly

accessible communications including e-mail or ticketing systems.

To change the root password log into the freshly deployed system as "root" using the preconfigured password and execute:

root@myserver:~# passwd

Then follow the prompts to change the password.

14.3.2 The "administrator" account

The sip:carrier Web-interface comes with a preconfigured "administrator" account deployed with a default password. This account

can be considered the NGCP application super-user and has far-reaching access to application specific settings via the Web-

interface. It is imperative that the password for this account is changed by the operator immediately after the sip:carrier is shipped

and before it is connected to any potentially unsecure public or private network using a secure password in compliance with existing

password policies of the operator. The "administrator" password must not be shared outside of the operator’s organization including

300

The sip:carrier Handbook mr5.5.7 301 / 577

Sipwise engineers. The "administrator" password must not be shared in any publicly accessible communications including e-mail

or ticketing systems.

The password for the "administrator" account can be changed via the Web-interface.

14.3.3 The "cdrexport" account

The login for the system account cdrexport is disabled by default. Although this is a jailed account, it has access to sensitive

information, namely the Call Detail Records of all calls. SSH keys should be used to login this user, or alternatively a really strong

password should be used when setting the password via passwd cdrexport.

14.3.4 The MySQL "root" user

The root user in MySQL has no default password. A password should be set using the mysqladmin password command.

14.3.5 The "ngcpsoap" account

Generate new password for user ngcpsoap to access the provisioning interfaces, see the details in Section 8.

14.4 SSL certificates.

The sip:carrier provides default, self-signed SSL certificates for SSL connections. These certificates are common for every instal-

lation. Before going to production state, the system administrator should provide SSL certificates for the web services. These

certificates can either be shared by all web interfaces (provisioning, administrator interface and customer self care interface), or

separate ones for each them can be used.

• Generate the certificates. The customer self care interface certificate should be signed by a certification authority to avoid

browser warnings.

• Upload the certificates to the system

• Set the path to the new certificates in /etc/ngcp-config/config.yml :

– ossbss→apache→autoprov→sslcertfile and ossbss→apache→autoprov→sslcertkeyfile for the provisioning interface.

– ossbss→apache→restapi→sslcertfile and ossbss→apache→restapi→sslcertkeyfile for the REST interface.

– www_admin→http_admin→sslcertfile and www_admin→http_admin→sslcertkeyfile for the admin interface.

– www_admin→http_csc→sslcertfile and www_admin→http_csc→sslcertkeyfile for the customer self care interface.

• Apply the configuration changes with ngcpcfg apply ’added web ssl certs’.

The sip:carrier also provides the self-signed SSL certificates for SIP over TLS services. The system administrator should re-

place them with certificates signed by a trusted certificate authority if he is going to enable it for the production usage (ka-

mailio→lb→tls→enable (disabled by default)).

301

The sip:carrier Handbook mr5.5.7 302 / 577

• Generate the certificates.

• Upload the certificates to the system

• Set the path to the new certificates in /etc/ngcp-config/config.yml :

– kamailio→lb→tls→sslcertfile and kamailio→lb→tls→sslcertkeyfile .

• Apply the configuration changes with ngcpcfg apply ’added kamailio certs’.

14.5 Securing your sip:carrier against SIP attacks

The sip:carrier allows you to protect your VoIP system against SIP attacks, in particular Denial of Service and brute-force

attacks. Let’s go through each of those attacks and let’s see how to configure your system in order to face such situations and

react against them.

14.5.1 Denial of Service

As soon as you have packets arriving on your sip:carrier server, it will require a bit of time of your CPU. Denial of Service attacks

are aimed to break down your system by sending floods of SIP messages in a very short period of time and keep your system

busy to handle such huge amount of requests. sip:carrier allows you to block such kind of attacks quite easily, by configuring the

following section in your /etc/ngcp-config/config.yml :

security:

dos_ban_enable: ’yes’

dos_ban_time: 3600

dos_reqs_density_per_unit: 50

dos_sampling_time_unit: 2

dos_whitelisted_ips: []

dos_whitelisted_subnets: []

Basically, as soon as sip:carrier receives more than 50 messages from the same IP in a time window of 2 seconds, that IP will be

blocked for 3600 sec, and you will see in the the kamailio-lb.log a line saying:

Nov 9 00:11:53 sp1 lb[41958]: WARNING: <script>: IP ’1.2.3.4’ is blocked and banned - R=< ←↩
null> ID=304153-3624477113-19168@tedadg.testlab.local

The banned IP will be stored in kamailio memory, you can check the list via web interface or via the following command:

ngcp-kamctl lb fifo sht_dump ipban

Important

You have to run this command on ACTIVE load balancer node.

302

The sip:carrier Handbook mr5.5.7 303 / 577

Excluding SIP endpoints from banning

There may be some SIP endpoints that send a huge traffic towards NGCP from a specific IP address. A typical example is a SIP

Peering Server.

Caution

sip:carrier supports handling such situations by excluding all defined SIP Peering Servers from DoS protection mecha-

nism.

The NGCP platform administrator may also add whitelisted IP addresses manually in /etc/ngcp-config/config.yml

at kamailio.lb.security.dos_whitelisted_ips and kamailio.lb.security.dos_whitelisted_sub

nets parameters.

14.5.2 Bruteforcing SIP credentials

This is a very common attack you can easily detect checking your /var/log/ngcp/kamailio-proxy.log. You will see INVITE/REGISTER

messages coming in with strange usernames. Attackers is trying to spoof/guess subscriber’s credentials, which allow them to call

out. The very first protection against these attacks is: ALWAYS USE STRONG PASSWORD. Nevertheless sip:carrier allow you

to detect and block such attacks quite easily, by configuring the following /etc/ngcp-config/config.yml section:

failed_auth_attempts: 3

failed_auth_ban_enable: ’yes’

failed_auth_ban_time: 3600

You may increase the number of failed attempt if you want (in same cases it’s better to be safed, some users can be banned

accidentally because they are not writing the right password) and adjust the ban time. If a user try to authenticate an INVITE (or

REGISTER) for example and it fails more then 3 times, the "user@domain" (not the IP as for Denial of Service attack) will be block

for 3600 seconds. In this case you will see in your /var/log/ngcp/kamailio-lb.log the following lines:

Nov 9 13:31:56 sp1 lb[41952]: WARNING: <script>: Consecutive Authentication Failure for ’ ←↩
sipvicous@mydomain.com’ UA=’sipvicous-client’ IP=’1.2.3.4’ - R=<null> ID ←↩
=313793-3624525116-589163@testlab.local

Both the banned IPs and banned users are shown in the Admin web interface, you can check them by accessing the Security

Bans section in the main menu. You can check the banned user as well by retrieving the same info directly from kamailio memory,

using the following commands:

ngcp-kamctl lb fifo sht_dump auth

Important

You have to run this command on ACTIVE load balancer node.

303

The sip:carrier Handbook mr5.5.7 304 / 577

14.6 Topology Hiding

14.6.1 Introduction to Topology Hiding on NGCP

The term "topology hiding" in SIP is used to describe the measures taken by typically an SBC (Session Border Controller) to hide

detailed information of the internal network at the border of which it is located. Pieces of information such as IP addresses and

port numbers used by SIP endpoints and intermediaries within the network are considered sensitive, as these can give some hints

to potential attackers about the topology of the network.

In a typical SIP session the mandatory headers may carry that sensitive information, for example: Contact, Via, Record-Route, To,

From, Call-ID. An SBC applying topology hiding will mangle the content of those headers.

Concealment of sensitive information is achieved through encoding the original content of selected SIP headers. Then NGCP will

create a new SIP URI using a preselected IP address and the encoded content as URI parameter, finally re-assembling the SIP

header.

Examples for encoded SIP headers:

Record-Route: <sip:127.0.0.8;line=sr-NvaAlWtecghucEhu6WtAcu...>

Contact: <sip:127.0.0.8;line=sr-NvaAli-1VeL.kRxLcbN86W...>

The load-balancer element of the Sipwise NGCP has an SBC role, from the SIP peers point of view. The LB offers topology hiding

function that can be simply activated through a configuration change. By default the function is disabled.

14.6.2 Configuration of Topology Hiding

Activating topology hiding function is possible through the modification of the following configuration parameters in /etc/ngcp-

config/config.yml file (shown below with default values of parameters):

kamailio:

lb:

security:

topoh:

enable: no

mask_callid: no

mask_ip: 127.0.0.8

Meaning of the configuration parameters:

• enable: if set to yes, the topology hiding will be activated

• mask_callid: if set to yes, the SIP Call-ID header will also be encoded

• mask_ip: an IP address that will be used to create valid SIP URIs, after encoding the real/original header content.

Tip

Any valid, preferably private network address can be used. The suggestion is however to use an address that is not used by

any other SIP endpoint or intermediary element in the network.

304

The sip:carrier Handbook mr5.5.7 305 / 577

14.6.3 Considerations for Topology Hiding

Although hiding sensitive information about a SIP provider’s network is desired, there are some potential side effects caused by

topology hiding.

The most common example is the consequence that SIP message size may grow when applying topology hiding. The fact that

SIP messages become larger may even prevent NGCP from communicating successfully with another SIP entity (a peer SBC, for

example). This can be expected under following circumstances:

• SIP transport protocol is UDP

• SIP messages have more Via and Record-Route headers

• IP packets of SIP messages without the topology hiding feature already have a size close to the MTU

In such a case the IP packets carrying SIP messages with encoded headers will have a size exceeding the MTU, that will cause

loss of data.

The recommended solution in such a case is to use TCP transport for SIP messages.

14.7 System Requirements and Performance

The sip:carrier is a very flexible system, capable of serving from hundreds to several tens of thousands of subscribers in a single

node. The system comes with a default configuration, capable of serving up to 50.000 subscribers in a normal environment. But

there is no such thing as a normal environment. And the sip:carrier has sometimes to be tunned for special environments, special

hardware requirements or just growing traffic.

Note

If you have performance issues with regards to disk I/O please consider enabling the noatime mount option for the root filesys-

tem. Sipwise recommends the usage of noatime, though remove it if you use software which conflicts with its presence.

In this section some parameters will be explained to allow the sip:carrier administrator tune the system requirements for optimum

performance.

Table 22: Requirement_options

Option Default value Requirement impact

cleanuptools→binlog_days 15 Heavy impact on the harddisk storage needed for mysql logs. It can help

to restore the database from backups or restore broken replication.

database→bufferpoolsize 64MB For test systems or low RAM systems, lowering this setting is one of the

most effective ways of releasing RAM. The administrator can check the

innodb buffer hit rate on production systems; a hit rate over 99% is

desired to avoid bottlenecks.

305

The sip:carrier Handbook mr5.5.7 306 / 577

Table 22: (continued)

Option Default value Requirement impact

kamailio→lb→pkg_mem 16 This setting affects the amount of RAM the system will use. Each

kamailio-lb worker will have this amount of RAM reserved. Lowering this

setting up to 8 will help to release some memory depending on the

number of kamailio-lb workers running. This can be a dangerous setting

as the lb process could run out of memory. Use with caution.

kamailio→lb→shm_mem 1/16 * Total

System RAM

The installer will set this value to 1/16 of the total system RAM. This

setting does not change even if the system RAM does so it’s up to the

administrator to tune it. It has been calculated that 1024 (1GB) is a good

value for 50K subscriber environment. For a test environment, setting the

value to 64 should be enough. "Out of memory" messages in the

kamailio log can indicate that this value needs to be raised.

kamailio→lb→tcp_children 8 Number of TCP workers kamailio-lb will spawn per listening socket. The

value should be fine for a mixed UDP-TCP 50K subscriber system.

Lowering this setting can free some RAM as the number of kamailio

processes would decrease. For a test system or a pure UDP subscriber

system 2 is a good value. 1 or 2 TCP workers are always needed.

kamailio→lb→tls→enable yes Enable or not TLS signaling on the system. Setting this value to "no" will

prevent kamailio to spawn TLS listening workers and free some RAM.

kamailio→lb→udp_children 8 See kamailio→lb→tcp_children explanation

kamailio→proxy→children 8 See kamailio→lb→tcp_children explanation. In this case the proxy only

listens udp so these children should be enough to handle all the traffic. It

could be set to 2 for test systems to lower the requirements.

kamailio→proxy→*_expires Set the default and the max and min registration interval. The lower it is

more REGISTER requests will be handled by the lb and the proxy. It can

impact in the network traffic, RAM and CPU usage.

kamailio→proxy→natping_interval 30 Interval for the proxy to send a NAT keepalive OPTIONS message to the

nated subscriber. If decreased, this setting will increase the number of

OPTIONS requests the proxy needs to send and can impact in the

network traffic and the number of natping processes the system needs to

run. See kamailio→proxy→natping_processes explanation.

kamailio→proxy→natping_processes 7 Kamailio-proxy will spawn this number of processes to send keepalive

OPTIONS to the nated subscribers. Each worker can handle about 250

messages/second (depends on the hardware). Depending the number of

nated subscribers and the kamailio→proxy→natping_interval parameter

the number of workers may need to be adjusted. The number can be

calculated like

nated_subscribers/natping_interval/pings_per_second_per_process. For

the default options, assuming 50K nated subscribers in the system the

parameter value would be 50.000/30/250 = (6,66) 7 workers. 7 is the

maximum number of processes kamailio will accept. Raising this value

will cause kamailio not to start.

306

The sip:carrier Handbook mr5.5.7 307 / 577

Table 22: (continued)

Option Default value Requirement impact

kamailio→proxy→shm_mem 1/16 * Total

System RAM

See kamailio→lb→shm_mem explanation.

rateomat→enable yes Set this to no if the system shouldn’t perform rating on the CDRs. This

will save CPU usage.

rsyslog→external_log 0 If enabled, the system will send the log messages to an external server.

Depending on the rsyslog→external_loglevel parameter this can

increase dramatically the network traffic.

rsyslog→ngcp_logs_preserve_days 93 This setting will set the number of days ngcp logs under /var/log/ngcp will

be kept in disk. Lowering this setting will free a high amount of disk

space.

Tip

In case of using virtualized environment with limited amount of hardware resources, you can use the script ngcp-toggle-

performance-config to adjust sip:carrier configuration for high/low performance:

root@spce:~# /usr/sbin/ngcp-toggle-performance-config

/usr/sbin/ngcp-toggle-performance-config - tool to adjust sip:provider configuration for ←↩
low/high performance

--help Display this usage information

--high-performance Adjust configuration for system with normal/high performance

--low-performance Adjust configuration for system with low performance (e.g. VMs)

root@spce:~#

14.8 Troubleshooting

The sip:carrier platform provides detailed logging and log files for each component included in the system via rsyslog. The main

folder for log files is /var/log/ngcp/, it contains a list of self explanatory log files named by component name.

The sip:carrier is a high performance system which requires compromise between traceability (maximum amount of debug infor-

mation being written to hard drive) and productivity (minimum load on IO subsystem). This is the reason why different log levels

are configured for the provided components by default.

Most log files are designed for debugging sip:carrier by Sipwise operational team while main log files for daily routine usage are:

307

The sip:carrier Handbook mr5.5.7 308 / 577

Log file Content Estimated size

/var/log/ngcp/api.log API logs

providing type

and content of

API requests

and

responses as

well as

potential

errors

medium

/var/log/ngcp/panel.log

/var/log/ngcp/panel-

debug.log

Admin Web UI

logs when

performing

operational

tasks on the

ngcp-panel

medium

/var/log/ngcp/cdr.log mediation and

rating logs,

e.g. how

many CDRs

have been

generated

and potential

errors in case

of CDR

generation or

rating fails for

particular

accounting

data

medium

308

The sip:carrier Handbook mr5.5.7 309 / 577

Log file Content Estimated size

/var/log/ngcp/ha.log fail-over

related logs in

case a node

in a pair loses

connection to

the other side,

when a

standby node

takes over or

an active

node goes

standby due

to intra-node

communica-

tion issues or

external ping

node

connection

issues

small

/var/log/ngcp/kamailio-

proxy.log

Overview of

SIP requests

and replies

between lb,

proxy and

sems

processes. It’s

the main log

file for SIP

overview

huge

/var/log/ngcp/kamailio-lb.log Overview of

SIP requests

and replies

along with

network

source and

destination

information

flowing

through the

platform

huge

309

The sip:carrier Handbook mr5.5.7 310 / 577

Log file Content Estimated size

/var/log/ngcp/sems.log Overview of

SIP requests

and replies

between lb,

proxy and

sems

processes

small

/var/log/ngcp/rtp.log rtpengine

related log,

showing

information

about RTP

communica-

tion

small

Warning

it is highly NOT recommended to change default log levels as it can cause system IO overloading which will affect call

processing.

Note

the exact size of log files depend on system type, system load, system health status and system configuration, so cannot be

estimated with high precision. Additionally operational network parameters like ASR and ALOC may impact the log files’ size

significantly.

14.8.1 Collecting call information from logs

The easiest way to fetch information about a single call among the log files is the search for the SIP CallID (a unique identifier

for a SIP dialog). The call ID is used as call marker in almost all the voip related log file, such as /var/log/ngcp/kamailio-lb.log ,

/var/log/ngcp/kamailio-proxy.log , /var/log/ngcp/sems.log or /var/log/ngcp/rtp.log. Example of kamailio-proxy.log line:

Nov 19 00:35:56 sp1 proxy[7475]: NOTICE: <script>: New request on proxy - M=REGISTER R=sip: ←↩
sipwise.local

F=sip:jdoe@sipwise.local T=sip:jdoe@sipwise.local IP=10.10.1.10:5060 (127.0.0.1:5060) ID ←↩
=364e4676776621034977934e055d19ea@127.0.0.1 UA=’SIP-UA 1.2.3.4’

The above line shows the SIP information you can find in a general line contained in /var/log/ngcp/kamailio-* :

• M=REGISTER : The SIP Method

• R=sip:sipwise.local : The SIP Request URI

• F=sip:jdoe@sipwise.local : The SIP From header

310

The sip:carrier Handbook mr5.5.7 311 / 577

• T=sip:jdoe@sipwise.local : The SIP To header

• IP=10.10.1.10:5060 (127.0.0.1:5060) : The source IP where the message is coming from. Between brackets it is shown the

local internal IP where the message come from (in this case Load Balancer)

• ID=364e4676776621034977934e055d19ea@127.0.0.1 : The SIP CallID.

• UAIP=10.10.1.10 : The User Agent source IP

• UA=SIP-UA 1.2.3.4 : The SIP User Agent header

In order to collect the full log related to a single call, it’s necessary to "grep" the /var/log/ngcp/kamailio-proxy.log using the ID=

string, for example:

grep "364e4676776621034977934e055d19ea@127.0.0.1" /var/log/ngcp/kamailio-proxy.log

14.8.2 Collecting SIP traces

The sip:carrier platform provides several tools to collect SIP traces. It can be used the sip:carrier ngrep-sip tool to collect SIP

traces, for example to fetch traffic in text format from outbound and among load balancer, proxy and sems :

ngrep-sip b

see the manual to know all the options:

man ngrep-sip

The ngrep debian tool can be used in order to make a SIP trace and save it into a .pcap file :

ngrep -s0 -Wbyline -d any -O /tmp/SIP_trace_file_name.pcap port 5062 or port 5060

The sngrep debian graphic tool as well can be used to visualize SIP trace and save them in a .pcap file :

sngrep

311

mailto:364e4676776621034977934e055d19ea@127.0.0.1

The sip:carrier Handbook mr5.5.7 312 / 577

15 Monitoring and Alerting

15.1 Internal Monitoring

15.1.1 Process monitoring via monit

The platform uses the internal monit service to monitor all essential services. Since the sip:carrier runs in an active/standby mode,

not all services are always running on both nodes, some of them will only run on the active node and be stopped on the standby

node. The following commands show the most critical services on the platform: * monit summary - to get the list of services

and their current status, * monit status - to get the list of services with detailed status.

Important

When you perform a stop/start/monitor/unmonitor operation on a service, monit affects other services that depend on

the initial one. Hence, if you stop or unmonitor a service all services that depend on it will be stopped or unmonitored

as well.

For example, monit stop mysql operation will stop kamailio, sbc, asterisk, prosody and some other services. Although the

recommended way to operate on services is via the ngcp-services wrapper which will take care of abstracting the underlying

process monitoring implementation.

If any service ever fails for whatever reason the monit daemon quickly restarts it. When that happens, the daemon will send

a notification email to the address specified in the config.yml file under the general.adminmail key. It will also send

warning emails to this address under certain abnormal conditions, such as high memory consumption (> 75% is used) or high

CPU load.

Important

In order for monit to be able to send emails to the specified address, the local MTA (exim4) must be configured correctly.

If you haven’t done so already, run dpkg-reconfigure exim4-config to do this. The CE edition’s handbook

contains more information about this in the Installation chapter.

15.1.2 System monitoring via Telegraf

The platform uses the internal telegraf service to monitor many aspects of the system, including CPU, memory, swap, disk,

filesystem, network, processes, NTP, Nginx, Redis and MySQL.

The gathered information is stored in InfluxDB, in the telegraf database.

15.1.3 NGCP-specific monitoring via ngcp-witnessd

The platform uses the internal ngcp-witnessd service to monitor NGCP-specific metrics or system metrics currently not tracked by

telegraf, including memory, process count, Heartbeat, MTA, Kamailio, SIP and MySQL.

312

The sip:carrier Handbook mr5.5.7 313 / 577

The gathered information is stored in InfluxDB, in the ngcp database.

15.1.4 Monitoring data in InfluxDB

The platform uses InfluxDB as a time series database, to store most of the metrics collected in the system.

On a sip:carrier each node stores its own metrics and the ones for their peer node, and the management nodes store the metrics

for all the nodes in the cluster. This is done via influxdb-relay which listens for InfluxDB writes and multiplexes them to the local

node and any other node necessary.

The monitoring data is used by various components of the platform, including ngcp-collective-check, ngcp-snmp-agent and by the

statistics dashboard powered by Grafana.

The monitoring data can also be accessed directly by various means; by using the influx command-line tool in CLI or TUI modes;

by using the ngcp-influxdb-extract wrapper which provides two convenience commands to run arbitrary queries or to fetch the last

value for a measurement’s field; or by using the HTTP API with curl (or other HTTP fetchers), or with the Sipwise::InfluxDB::HTTP

perl module.

See https://docs.influxdata.com/influxdb/v1.1/query_language/spec/ for information about InfluxQL, the query language used by

InfluxDB.

Tip

To get the list of all measurements for a specific database the following query can be used SHOW MEASUREMENTS.

Tip

To get the list of fields for a specific measurement the following query can be used SELECT LAST(*) FROM "measurem

ent".

Tip

To get the list of tags for a specific measurement the following query can be used SHOW TAG KEYS FROM "measureme

nt", and for all the current tag values for a tag SHOW TAG VALUES FROM "measurement" WITH KEY = "tag".

See Section F.2.1 for detailed information about the list of data currently stored in the InfluxDB ngcp monitoring database.

15.2 Statistics Dashboard

The platform’s administration interface (described in Section 4) provides a graphical overview based on Grafana of the most

important system health indicators, such as memory usage, load averages and disk usage. VoIP statistics, such as the number of

concurrent active calls, the number of provisioned and registered subscribers, etc. is also present.

313

https://docs.influxdata.com/influxdb/v1.1/query_language/spec/

The sip:carrier Handbook mr5.5.7 314 / 577

15.3 External Monitoring Using SNMP

15.3.1 Overview and Initial Setup

The sip:carrier exports a variety of cluster health data and statistics over the standard SNMP interface. By default, the SNMP

interface can only be accessed locally. To make it possible to provide the SNMP data to an external system, the config.yml

file needs to be edited and the list of allowed community names and allowed hosts/IP ranges must be populated. This list can be

found under the checktools.snmpd.communities key and it consists of one or more community/source value pairs.

The community is the allowed community name, while source is an IP address or an IP block where to allow the requests

from.

The SNMP notifications can also be configured in a similar way, to send them to an external system, by populating the checkt

ools.snmpd.trap_communities key with community/target value pairs. The community is the value that will be

used when sending the trap, while the target is an IP address where to send the trap.

The public entries with the localhost source and target are used for local testing of SNMP functionality. It is recommended

that you leave these entries in place. Other legal sources can be formed as single IP addresses or IP blocks in IP/prefix notation,

for example 192.168.115.0/24. Other targets can be formed as single IP addresses.

Tip

To locally check if SNMP is working correctly, execute the command snmpwalk -v2c -cpublic localhost . (note

the trailing dot). This will generate a long list of raw SNMP OIDs and their values, provided that the default SNMP community

key has been left in place.

Tip

To locally check if SNMP notifications (or traps) are working correctly, install the snmptrapd package, which will be configured

by default to catch the traps sent by the localhost SNMP agent. The traps will show up on /var/log/daemon.log, and a

couple of traps can be generated simply by running service snmpd restart.

INFO: SNMP version 1 and version 2c are supported.

15.3.2 Details

There are two types of information that can be retrieved from SNMP. The first one is the native NGCP cluster overview from the

Sipwise MIBs (Management Information Bases). The second is the legacy ad-hoc information using the Net-SNMP extension

OIDs, and detailed information for the node running the SNMP daemon using standard OIDs (Object Identifiers).

15.3.2.1 Sipwise NGCP OIDs

The entire NGCP cluster can be monitored by using the SIPWISE-NGCP-MIB, SIPWISE-NGCP-MONITOR-MIB and SIPW

ISE-NGCP-STATS-MIB. These OIDs are rooted at the Sipwise NGCP slot .1.3.6.1.4.1.34274.1.*.

314

The sip:carrier Handbook mr5.5.7 315 / 577

The MIBs are self-documented, and can be found as part of the ngcp-snmp-mibs package (running dpkg -S SIPWISE*MIB

will list their pathnames). The NGCP SNMP Agent is a part of the ngcp-snmp-agent package, which is installed by default and

works out-of-the-box as long as the snmpd has been properly configured.

The SIPWISE-NGCP-MIB acts as the root MIB and provides information about the cluster licensing and layout (which is mostly

static data about each node, such as node name, its IP address, its roles, etc.) and information required to access the OIDs from

the other MIBs.

The SIPWISE-NGCP-MONITOR-MIB provides current monitoring information, global health conditions, the number of provi-

sioned and registered subscribers and devices. It also provides per node information (independently of the number of nodes or

their names) on their filesystem, processes, databases, system load, memory, heartbeat status, MTA queues, etc.

The SIPWISE-NGCP-STATS-MIB provides accumulated statistics on billing, performance and processed SIP messages.

NOTICE: OIDs under the following trees are not yet implemented: ngcpMonitorFraud, ngcpMonitorPerformance.perfCAPSCurTable

and ngcpStats.

INFO: The NGCP SNMP Agent uses Redis and InfluxDB as data sources. This data is essential for accurate and complete

monitoring data in the SNMP OID tree. In addition, the Redis database must be available on a shared IP address, so that

ngcp-witnessd can always write to it.

15.3.2.2 Legacy OIDs

Note

The following OIDs have been superseded by the Sipwise NGCP OIDs, but they are still provided for backwards compatibility.

All basic system health variables (such as memory, disk, swap, CPU usage, network statistics, process lists, etc.) for the mgmt

node can be found in standard OID slots from standard MIBs. For example, memory statistics can be found through the UCD-

SNMP-MIB in OIDs such as memTotalSwap.0, memAvailSwap.0, memTotalReal.0, memAvailReal.0, etc., which

translate to numeric OIDs .1.3.6.1.4.1.2021.4.*. In fact, UCD-SNMP-MIB is the most useful MIB for overall system

health checks.

Additionally, there’s a list of specially monitored processes, also found through the UCD-SNMP-MIB. UCD-SNMP-MIB::prNa

mes (.1.3.6.1.4.1.2021.2.1.2) gives the list of monitored processes, prCount (.1.3.6.1.4.1.2021.2.1.5) is

how many of each process are running and prErrorFlag (.1.3.6.1.4.1.2021.2.1.100) gives a 0/1 error indication

(with prErrMessage (.1.3.6.1.4.1.2021.2.1.101) providing an explanation of any error).

Tip

Some of these processes are not supposed to be running on the standby node, so you’ll see the error flag raised there. A

possible solution is to run these SNMP checks against the shared service IP of the cluster.

Furthermore, UCD-SNMP-MIB provides a list of custom external checks. The names of these can be found under the UCD-

SNMP-MIB::extNames (.2) tree, with extOutput (.101) providing the output (one line) from each check and extResult

(.100) the exit code from each check.

315

The sip:carrier Handbook mr5.5.7 316 / 577

The first of these external checks called collective_check provides a combined and overall system health status indicator.

It gathers information from both nodes and returns 0 in extResult.1 (.100.1) if everything is OK and running as it should. If

it finds a problem somewhere, but with the system still operational (e.g. a service is stopped on the inactive node), extResult.

1 will return 1 and extOutput.1 will be set to a string that can be used to diagnose the problem. In case the system is found

in a critical and non-operational state, extResult.1 will return 2, again with an error message set. If you want to keep it really

simple, you can just monitor this one OID and raise an alarm if it ever goes to non-zero.

INFO: The 0/1/2 status codes allow for easy integration with Nagios.

The remaining external checks simply return statistics on the system, they all return a number in extOutput and have extRe

sult always set to zero.

The full list of such checks is below. All of these checks have three modes: the first returns the statistics from sp1 (the first

node in the sip:carrier pair), the second - from sp2, and the third - from whichever node is being queried (which is useful when

querying the shared service IP). For example, the local SIP response time from sp1 is in sip_check_sp1, from sp2 - is in

sip_check_sp2, and from the host itself - is in sip_check_self.

The base OID of the Result and Output OIDs is always .1.3.6.1.4.1.2021.8.1, so if you read .100.1, the full OID is .

1.3.6.1.4.1.2021.8.1.100.1.

Name in MIB Result OID Output OID Name Description

UCD-SNMP-

MIB::extNames.1

.100.1 .101.1 collective_check Summarized platform

check

UCD-SNMP-

MIB::extNames.2

.100.2 .101.2 sip_check_sp1 SIP response time in

seconds on sp1

UCD-SNMP-

MIB::extNames.3

.100.3 .101.3 sip_check_sp2 SIP response time in

seconds on sp2

UCD-SNMP-

MIB::extNames.4

.100.4 .101.4 mysql_check_sp1 Average number of

MySQL queries per

second on sp1

UCD-SNMP-

MIB::extNames.5

.100.5 .101.5 mysql_check_sp2 Average number of

MySQL queries per

second on sp2

UCD-SNMP-

MIB::extNames.6

.100.6 .101.6 mysql_replication_check_sp1MySQL replication

delay in seconds on

sp1

UCD-SNMP-

MIB::extNames.7

.100.7 .101.7 mysql_replication_check_sp2MySQL replication

delay in seconds on

sp2

UCD-SNMP-

MIB::extNames.8

.100.8 .101.8 mpt_check_sp1 RAID status on sp1

UCD-SNMP-

MIB::extNames.9

.100.9 .101.9 mpt_check_sp2 RAID status on sp2

UCD-SNMP-

MIB::extNames.10

.100.10 .101.10 exim_queue_check_sp1 Number of mails

undelivered in MTA

queue on sp1

316

The sip:carrier Handbook mr5.5.7 317 / 577

Name in MIB Result OID Output OID Name Description

UCD-SNMP-

MIB::extNames.11

.100.11 .101.11 exim_queue_check_sp2 Number of mails

undelivered in MTA

queue on sp2

UCD-SNMP-

MIB::extNames.12

.100.12 .101.12 provisioned_subscribers_check_sp1Number of

subscribers

provisioned on sp1

UCD-SNMP-

MIB::extNames.13

.100.13 .101.13 provisioned_subscribers_check_sp2Number of

subscribers

provisioned on sp2

UCD-SNMP-

MIB::extNames.14

.100.14 .101.14 kam_dialog_active_check_sp1Number of active

calls on sp1

UCD-SNMP-

MIB::extNames.15

.100.15 .101.15 kam_dialog_active_check_sp2Number of active

calls on sp2

UCD-SNMP-

MIB::extNames.16

.100.16 .101.16 kam_dialog_early_check_sp1Number of calls in

Early Media state on

sp1

UCD-SNMP-

MIB::extNames.17

.100.17 .101.17 kam_dialog_early_check_sp2Number of calls in

Early Media state on

sp2

UCD-SNMP-

MIB::extNames.18

.100.18 .101.18 kam_dialog_type_local_check_sp1Number of active

calls local on sp1

UCD-SNMP-

MIB::extNames.19

.100.19 .101.19 kam_dialog_type_local_check_sp2Number of active

calls local on sp2

UCD-SNMP-

MIB::extNames.20

.100.20 .101.20 kam_dialog_type_relay_check_sp1Number of active

calls routed via peers

on sp1

UCD-SNMP-

MIB::extNames.21

.100.21 .101.21 kam_dialog_type_relay_check_sp2Number of active

calls routed via peers

on sp2

UCD-SNMP-

MIB::extNames.22

.100.22 .101.22 kam_dialog_type_incoming_check_sp1Number of incoming

calls on sp1

UCD-SNMP-

MIB::extNames.23

.100.23 .101.23 kam_dialog_type_incoming_check_sp2Number of incoming

calls on sp2

UCD-SNMP-

MIB::extNames.24

.100.24 .101.24 kam_dialog_type_outgoing_check_sp1Number of outgoing

calls on sp1

UCD-SNMP-

MIB::extNames.25

.100.25 .101.25 kam_dialog_type_outgoing_check_sp2Number of outgoing

calls on sp2

UCD-SNMP-

MIB::extNames.26

.100.26 .101.26 kam_usrloc_regusers_check_sp1Number of

subscribers with at

least one active

registration on sp1

317

The sip:carrier Handbook mr5.5.7 318 / 577

Name in MIB Result OID Output OID Name Description

UCD-SNMP-

MIB::extNames.27

.100.27 .101.27 kam_usrloc_regusers_check_sp2Number of

subscribers with at

least one active

registration on sp2

UCD-SNMP-

MIB::extNames.28

.100.28 .101.28 kam_usrloc_regdevices_check_sp1Total number of

registered end

devices on sp1

UCD-SNMP-

MIB::extNames.29

.100.29 .101.29 kam_usrloc_regdevices_check_sp2Total number of

registered end

devices on sp2

UCD-SNMP-

MIB::extNames.30

.100.30 .101.30 mysql_replication_discrepancies_check_sp1Number of MySQL

tables not in sync

between sp1 and sp2

UCD-SNMP-

MIB::extNames.31

.100.31 .101.31 mysql_replication_discrepancies_check_sp2Number of MySQL

tables not in sync

between sp1 and sp2

UCD-SNMP-

MIB::extNames.32

.100.32 .101.32 sip_check_self Summarized platform

check on active node

UCD-SNMP-

MIB::extNames.33

.100.33 .101.33 mysql_check_self Average number of

MySQL queries per

second on active

node

UCD-SNMP-

MIB::extNames.34

.100.34 .101.34 mysql_replication_check_selfMySQL replication

delay in seconds on

active node

UCD-SNMP-

MIB::extNames.35

.100.35 .101.35 mpt_check_self RAID status on active

node

UCD-SNMP-

MIB::extNames.36

.100.36 .101.36 exim_queue_check_self Number of mails

undelivered in MTA

queue on active node

UCD-SNMP-

MIB::extNames.37

.100.37 .101.37 provisioned_subscribers_check_selfNumber of

subscribers

provisioned on active

node

UCD-SNMP-

MIB::extNames.44

.100.44 .101.44 kam_usrloc_regusers_check_selfNumber of

subscribers with at

least one active

registration on active

node

UCD-SNMP-

MIB::extNames.45

.100.45 .101.45 kam_usrloc_regdevices_check_selfTotal number of

registered end

devices on active

node

318

The sip:carrier Handbook mr5.5.7 319 / 577

Name in MIB Result OID Output OID Name Description

UCD-SNMP-

MIB::extNames.46

.100.46 .101.46 mysql_replication_discrepancies_check_selfNumber of MySQL

tables not in sync

between sp1 and sp2

UCD-SNMP-

MIB::extNames.47

.100.47 .101.47 kam_dialog_type_local_check_prx0XNumber of active

local calls on active

proxy X

UCD-SNMP-

MIB::extNames.48

.100.48 .101.48 kam_dialog_type_relay_check_prx0XNumber of active

calls routed via peers

on active proxy X

UCD-SNMP-

MIB::extNames.49

.100.49 .101.49 kam_dialog_type_incoming_check_prx0XNumber of incoming

calls on active proxy

X

UCD-SNMP-

MIB::extNames.50

.100.50 .101.50 kam_dialog_type_outgoing_check_prx0XNumber of outgoing

calls on active proxy

X

UCD-SNMP-

MIB::extNames.51

.100.51 .101.51 kam_dialog_active_check_prx0XNumber of active calls

on active proxy X

UCD-SNMP-

MIB::extNames.52

.100.52 .101.52 kam_dialog_early_check_prx0XNumber of calls in

Early Media state on

active proxy X

Tip

Some of the checks can be disabled (most are enabled by default) through the config.yml file, and those checks will then

return an error message or an empty string in their extOutput. Enable those checks in the config file to get their output in

the SNMP OID tree. The enable/disable flags can be found in the checktools section.

319

The sip:carrier Handbook mr5.5.7 320 / 577

16 Extensions and Additional Modules

16.1 Cloud PBX

The sip:carrier comes with a commercial Cloud PBX module to provide B2B features for small and medium sized enterprises. The

following chapters describe the configuration of the PBX features.

16.1.1 PBX Device Provisioning

16.1.1.1 How it works

A device gets provisioned with the following steps:

• Your customer creates a PBX device for a supported model and inputs a device’s MAC address.

• sip:carrier sends the provided MAC address to the device vendor (e.g. rps.yealink.com).

• When the corresponding device is connected to the network, the device fetches the provisioning URL from the vendor site.

• The device downloads its specific configuration and the firmware from sip:carrier.

• The phone updates the firmware and automatically sets the SIP proxy server, username and password and other SIP parameters

received from sip:carrier.

PBX device provisioning requires appropriate device models, firmwares, configurations and profiles to be added to the system.

A device model defines a specific hardware device, like the vendor, the model name, the number of keys and their capabilities.

For example, a Cisco SPA504G has 4 keys, which can be used for private lines, shared lines (SLA) and busy lamp field (BLF). If

you have an additional attendant console, you get 32 more buttons, which can only do BLF. The list of supported devices can be

found in Section 16.1.12.

A device firmware is used to update a potentially outdated factory firmware on a device. The default firmwares included in

sip:carrier were tested with the provided device configurations and hence guarantee that all the supported features work as

expected. That is why we recommend using the default firmwares and device configurations provided by Sipwise.

To make device provisioning easy-to-use for end-users, they do not have to care about firmwares or configurations mentioned

above. Instead, you provide a device profile for every supported device model and associate such a device profile with a specific

device configuration and firmware. When a customer employee with administrative rights provisions PBX devices for the company,

he just selects the corresponding device profiles and specifies MAC addresses if necessary. sip:carrier will take care of the rest.

sip:carrier is supplied with a set of supported device models, their firmwares, configurations and profile. You can just enable them

and your customers will be able to use PBX device provisioning immediately.

To perform basic configuration and upload the set for a specific vendor, device model(s) or for all supported devices, execute the

steps described in the following section.

320

The sip:carrier Handbook mr5.5.7 321 / 577

16.1.1.2 Initial device provisioning configuration

Execute the following initial steps before your customers can easily and securely provision their PBX devices:

1. Set the certificates and the keys for your HTTPs FQDN

2. Upload the required device models/firmwares/configurations/profiles

16.1.1.3 Set the certificates and the key for your web domain

You can create new ones or use the existing certificate and the key for your web FQDN.

• Put the required files into the /etc/ngcp-config/ssl folder.

• Specify the paths to the files and the FQDN in the following config.yml parameters:

– server_certfile

– server_keyfile

– Specify the FQDN in autoprov.server.host

– Optionally, enable nginx_debug

The final configuration should look similar to this one:

autoprov:

hardphone:

skip_vendor_redirect: no

server:

bootstrap_port: ’1445’

ca_certfile: /etc/ngcp-config/ssl/client-auth-ca.crt

host: portal.yourdomain.com

nginx_debug: yes

port: ’1444’

server_certfile: /etc/ngcp-config/ssl/certificate.pem

server_keyfile: /etc/ngcp-config/ssl/private_key.pem

ssl_enabled: yes

softphone:

config_lockdown: ’0’

webauth: ’0’

• Apply and push the changes

ngcpcfg apply ’PBX device provisioning configuration’

ngcpcfg push all

321

The sip:carrier Handbook mr5.5.7 322 / 577

16.1.1.4 Upload the required device items

To upload device models/firmwares/configurations/profiles for devices with ZTP support, you need to obtain credentials from the

corresponding vendor or its local distributor in advance. These credentials are required to send information about your devices

and their provisioning URLs to the corresponding ZTP/RPS systems.

The /usr/sbin/ngcp-insert-pbx-devices.pl script will insert the specified items into the database. For example, to upload items for

all supported Yealink devices for the default reseller, execute the script with the following parameters on your management server

(web01a/db01a):

/usr/sbin/ngcp-insert-pbx-devices.pl --api-user youruser --api-pass yourpassword --yealink- ←↩
user user --yealink-password password

Tip

Execute /usr/sbin/ngcp-insert-pbx-devices.pl --help to find other useful parameters, e.g. --device-models, --resellers and others.

16.1.2 Preparing PBX Rewrite Rules

In a PBX environment, the dial-plans usually looks different than for normal SIP subscribers. PBX subscribers should be able to

directly dial internal extensions (e.g. 100) instead of the full number to reach another PBX subscriber in the same PBX segment.

Therefore, we need to define specific Rewrite Rules to make this work.

The PBX dial plans are different from country to country. In the Central European area, you can directly dial an extension (e.g.

100), and if you want to dial an international number like 0049 1 23456, you have to dial a break-out digit first (e.g. 0), so the

number to be dialed is 0 0049 1 23456. Other countries are used to other break-out codes (e.g. 9), which then results in 9

0049 1 23456. If you dial a national number like 01 23456, then the number to actually be dialled is 9 01 23456.

Since all numbers must be normalized to E.164 format via inbound rewrite rules, the rules need to be set up accordingly.

Let’s assume that the break-out code for the example customers created below is 0, so we have to create a Rewrite Rule Set with

the following rules.

16.1.2.1 Inbound Rewrite Rules for Caller

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: ${caller_cloud_pbx_base_cli}\1

• Description: extension to e164

• Direction: Inbound

• Field: Caller

322

The sip:carrier Handbook mr5.5.7 323 / 577

Figure 98: Inbound Rewrite Rule for Caller

16.1.2.2 Inbound Rewrite Rules for Callee

These rules are the most important ones, as they define which number formats the PBX subscribers can dial. For the break-out

code of 0, the following rules are necessary e.g. for German dialplans to allow pbx internal extension dialing, local area calls

without area codes, national calls with area code, and international calls with country codes.

PBX INTERNAL EXTENSION DIALIN

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: ${caller_cloud_pbx_base_cli}\1

• Description: extension to e164

• Direction: Inbound

• Field: Callee

LOCAL DIALING WITHOUT AREA CODE (USE BREAK-OUT CODE 0)

323

The sip:carrier Handbook mr5.5.7 324 / 577

• Match Pattern: ˆ0([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}${caller_ac}\1

• Description: local to e164

• Direction: Inbound

• Field: Callee

NATIONAL DIALING (USE BREAK-OUT CODE 0 AND PREFIX AREA CODE BY 0)

• Match Pattern: ˆ00([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}\1

• Description: national to e164

• Direction: Inbound

• Field: Callee

INTERNATIONAL DIALING (USE BREAK-OUT CODE 0 AND PREFIX COUNTRY CODE BY 00)

• Match Pattern: ˆ000([1-9][0-9]+)$

• Replacement Pattern: \1

• Description: international to e164

• Direction: Inbound

• Field: Callee

324

The sip:carrier Handbook mr5.5.7 325 / 577

Figure 99: Inbound Rewrite Rule for Callee

16.1.2.3 Outbound Rewrite Rules for Caller

When a call goes to a PBX subscriber, it needs to be normalized in a way that it’s call-back-able, which means that it needs to have

the break-out code prefixed. We create a rule to show the calling number in international format including the break-out code. For

PBX-internal calls, the caller name will be shown (this is handled by implicitly setting domain preferences accordingly, so you don’t

have to worry about that in rewrite rules).

ADDING A BREAK-OUT CODE (USE BREAK-OUT CODE 0 AND PREFIX COUNTRY CODE BY 00)

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: 000\1

• Description: e164 to full international

• Direction: Outbound

• Field: Caller

325

The sip:carrier Handbook mr5.5.7 326 / 577

DISPLAYING THE EXTENSION IN THE CALLER NUMBER FOR PBX-INTERNAL CALLS

• Match Pattern: ˆ@{callee_cloud_pbx_account_cli_list}$

• Replacement Pattern: ${caller_cloud_pbx_ext}

• Description: e164 to full international

• Direction: Outbound

• Field: Caller

Figure 100: Outbound Rewrite Rule for Caller

Create a new Rewrite Rule Set for each dial plan you’d like to support. You can later assign it to customer domains and even to

subscribers, if a specific subscriber of a PBX customer would like to have his own dial plan.

16.1.3 Creating Customers and Pilot Subscribers

As with a normal SIP Account, you have to create a Customer contract per customer, and one Subscriber, which the customer

can use to log into the web interface and manage his PBX environment.

16.1.3.1 Creating a PBX Customer

Go to Settings→Customers and click Create Customer. We need a Contact for the customer, so press Create Contact.

326

The sip:carrier Handbook mr5.5.7 327 / 577

Figure 101: Create PBX Customer Part 1

Fill in the desired fields (you need to provide at least the Email Address) and press Save.

327

The sip:carrier Handbook mr5.5.7 328 / 577

Figure 102: Create PBX Customer Contact

The new Contact will be automatically selected now. Also select a Billing Profile you want to use for this customer. If you don’t

have one defined yet, press Create Billing Profile, otherwise select the one you want to use.

328

The sip:carrier Handbook mr5.5.7 329 / 577

Figure 103: Create PBX Customer Part 2

Next, you need to select the Product for the PBX customer. Since it’s going to be a PBX customer, select the product Cloud PBX

Account.

Since PBX customers are supposed to manage their subscribers by themselves, they are able to create them via the web interface.

To set an upper limit of subscribers a customer can create, define the value in the Max Subscribers field.

Important

As you will see later, both PBX subscribers and PBX groups are normal subscribers, so the value defined here limits

the overall amount of subscribers and groups. A customer can create an unlimited amount of subscribers if you leave

this field empty.

Press Save to create the customer.

329

The sip:carrier Handbook mr5.5.7 330 / 577

Figure 104: Create PBX Customer Part 3

16.1.3.2 Creating a PBX Pilot Subscriber

Once the customer is created, you need to create at least one Subscriber for the customer, so he can log into the web interface

and manage the rest by himself.

Click the Details button on the newly created customer to enter the detailed view.

330

The sip:carrier Handbook mr5.5.7 331 / 577

Figure 105: Go to Customer Details

To create the subscriber, open the Subscribers row and click Create Subscriber.

331

The sip:carrier Handbook mr5.5.7 332 / 577

Figure 106: Go to Create Subscriber

For your pilot subscriber, you need a SIP domain, a pilot number (the main number of the customer PBX), the web credentials for

the customer to log into the web interfaces, and the SIP credentials to authenticate via a SIP device.

Important

In a PBX environment, customers can create their own subscribers. As a consequence, each PBX customer should

have its own SIP domain, in order to not collide with subscribers created by other customers. This is important because

two customers are highly likely to create a subscriber (or group, which is also just a subscriber) called office. If they

are in the same SIP domain, they’d both have the SIP URI office@pbx.example.org, which is not allowed, and

the an end customer will probably not understand why office@pbx.example.org is already taken, because he

(for obvious reasons, as it belongs to a different customer) will not see this subscriber in his subscribers list.

332

The sip:carrier Handbook mr5.5.7 333 / 577

Tip

To handle one domain per customer, you should create a wild-card entry into your DNS server like *.pbx.example.org,

which points to the IP address of pbx.example.org, so you can define SIP domains like customer1.pbx.example.

org or customer2.pbx.example.org without having to create a new DNS entry for each of them. For proper secure

access to the web interface and to the SIP and XMPP services, you should also obtain a SSL wild-card certificate for *.pbx.

example.org to avoid certification warnings on customers’ web browsers and SIP/XMPP clients.

So to create a new domain for the customer, click Create Domain.

Figure 107: Go to Create Customer Domain

Specify the domain you want to create, and select the PBX Rewrite Rule Set which you created in Section 16.1.2, then click Save.

333

The sip:carrier Handbook mr5.5.7 334 / 577

Figure 108: Create Customer Domain

Finish the subscriber creation by providing an E.164 number, which is going to be the base number for all other subscribers within

this customer, the web username and password for the pilot subscriber to log into the web interface, and the sip username and

password for a SIP device to connect to the PBX.

The parameters are as follows:

• Domain: The domain in which to create the pilot subscriber. Each customer should get his own domain as described above to

not collide with SIP usernames between customers.

• E.164 Number: The primary number of the PBX. Calls to this number are routed to the pilot subscriber, and each subsequent

subscriber created for this customer will use this number as its base number, suffixed by an individual extension. You can later

assign alias numbers also for DID support.

• Display Name: This field is used on phones to identify subscribers by their real names instead of their number or extension.

On outbound calls, the display name is signalled in the Display-Field of the From header, and it’s used as a name in the XMPP

contact lists.

• Web Username: The username for the subscriber to log into the customer self-care web interface. This is optional, if you don’t

334

The sip:carrier Handbook mr5.5.7 335 / 577

want a subscriber to have access to the web interface.

• Web Password: The password for the subscriber to log into the customer self-care web interface.

• SIP Username: The username for the subscriber to authenticate on the SIP and XMPP service. It is automatically used for

devices, which are auto-provisioned via the Device Management, or can be used manually by subscribers to sign into the SIP

and XMPP service with any arbitrary clients.

• SIP Password: The password for the subscriber to authenticate on the SIP and XMPP service.

Figure 109: Create Pilot Subscriber Part 1

335

The sip:carrier Handbook mr5.5.7 336 / 577

Figure 110: Create Pilot Subscriber Part 2

Once the subscriber is created, he can log into the customer self-care interface at https://<your-ip>/login/subsc

riber and manage his PBX, like creating other users and groups, assigning Devices to subscribers and configure the Auto

Attendant and more.

As an administrator, you can also do this for the customer, and we will walk through the typical steps as an administrator to

configure the different features.

Go the the Customer Details of the PBX customer you want to configure, e.g. by navigating to Settings→Customers and clicking

the Details button of the customer you want to configure.

16.1.4 Creating Regular PBX Subscribers

Since we already created a pilot subscriber, more settings now appear on the Customer Details view. The sections we are

interested in for now are the Subscribers and PBX Groups sections.

336

The sip:carrier Handbook mr5.5.7 337 / 577

Figure 111: Subscribers and PBX Groups

To create another subscriber for the customer PBX, open the Subscribers row and click Create Subscriber.

337

The sip:carrier Handbook mr5.5.7 338 / 577

Figure 112: Create a Subscriber Extension

When creating another subscriber in the PBX after having the pilot subscriber, some fields are different now, because the Domain

and E.164 Number are already pre-defined at the pilot subscriber level.

What you need to define for a new subscriber is the Group the subscriber is supposed to be in. We don’t have a group yet, so

create one by clicking Create Group.

A PBX Group has four settings:

• Name: The name of the group. This is used to identify a group when assigning it to subscribers on one hand, and also

subscribers are pushed as server side contact lists to XMPP clients, where they are logically placed into their corresponding

groups.

• Extension: The extension of the group, which is appended to the primary number of the pilot subscriber, so you can actually

call the group from the outside. If our pilot subscriber number is 43 1 9999 and the extension is 100, you can reach the

group from the outside by dialing 43 1 9999 100. Since PBX Groups are actually just normal subscribers in the system,

you can assign Alias Numbers to it for DID later, e.g. 43 1 9998.

• Hunting Policy: If you call a group, then all members in this group are ringing based on the policy you choose. Serial

338

The sip:carrier Handbook mr5.5.7 339 / 577

Ringing causes each of the subscribers to be tried one after another, until one of them picks up or all subscribers are tried.

Parallel Ringing causes all subscribers in the group to be tried in parallel. Note that a subscriber can have a call-forward

configured to some external number (e.g. his mobile phone), which will work as well.

• Serial Hunting Timeout: This value defines for how long to ring each member of a group in case of serial hunting until the next

subscriber is being tried.

We will only fill in the Name and Extension for now, as the hunting policy can be changed later if needed. Click Save to create the

group.

Figure 113: Create a PBX Group

Once the group is created and selected, fill out the rest of the form as needed. Instead of the E.164 Number, you can now only

choose the Extension, which is appended to the primary number of the pilot subscriber and is then used as primary number for

this particular subscribers. Again, if your pilot number is 43 1 9999 and you choose extension 101 here, the number of this

subscriber is going to be 43 1 9999 101. Also, you can again later assign more alias numbers (e.g. 43 1 9997) to this

subscriber for DID.

The rest of the fields is as usual, with Display Name defining the real name of the user, Web Username and Web Password

allowing the subscriber to log into the customer self-care interface, and the SIP Username and SIP Password to allow signing into

339

The sip:carrier Handbook mr5.5.7 340 / 577

the SIP and XMPP services.

Figure 114: Finish PBX Subscriber Creation Part 1

Click Save to create the subscriber.

340

The sip:carrier Handbook mr5.5.7 341 / 577

Figure 115: Finish PBX Subscriber Creation Part 2

Repeat the steps to create all the subscribers and groups as needed. An example of a small company configuration in terms of

subscribers and groups might look like this:

341

The sip:carrier Handbook mr5.5.7 342 / 577

Figure 116: Example of Subscribers List

Tip

The subscribers can be reached via 3 different ways. First, you can call them by their SIP URIs (e.g. by dialing frank.

fowler@customer1.pbx.example.org) from both inside and outside the PBX. Second, you can dial by the full number

(e.g. 43 1 9999 201; depending on your rewrite rules, you might need to add a leading \+ or 00 or leave out the country

code when dialing from the outside, and adding a 0 as break-out digit when dialing from the inside) from both inside and

outside the PBX. Third, you can dial just the extension (e.g. 201) from inside the PBX. If the subscriber also has an alias

number assigned, you can dial that number also, according to your dial-plan in the rewrite rules.

16.1.5 Assigning Subscribers to a Device

Basically, you can register any SIP phone with the system using a SIP subscriber credentials. However, the platform supports

PBX Device Provisioning of certain vendors and models, as described in Section 16.1.1.

To configure a physical device, expand the PBX Devices section in the Customer Details page and click Create Device.

Set up three general parameters for the new device, which are:

342

The sip:carrier Handbook mr5.5.7 343 / 577

• Device Profile: The actual device profile you want to use. This has been pre-configured in the Device Management by the

administrator or reseller, and the customer can choose from the list of profiles (which is a combination of an actual device plus

its corresponding configuration).

• MAC Address/Identifier: The MAC address of the phone to be added. The information can usually either be found on the back

of the phone, or in the phone menu itself.

• Station Name: Since you can (depending on the actual device) configure more lines on a phone, you can give it a station name,

like Reception or the name of the owner of the device.

In addition to that information, you can configure the lines (subscribers) you want to use on which key, and the mode of operation

(e.g. if it’s a normal private phone line, or if you want to monitor another subscriber using BLF, or if you want it to act as shared

line using SLA).

For example, a Cisco SPA504G has 4 keys you can use for private and shared lines as well as BLF on the phone itself, and in our

example we have an Attendant Console attached to it as well, so you have 32 more keys for BLF.

The settings per key are as follows:

• Subscriber: The subscriber to use (for private/shared lines) or to monitor (for BLF).

• Line/Key: The key where to configure this subscriber to.

• Line/Key Type: The mode of operation for this key, with the following options (depending on which options are enabled in the

Device Model configuration for this device:

– Private Line: Use the subscriber as a regular SIP phone line. This means that the phone will register the subscriber, and you

can place and receive phone calls with/for this subscriber.

– Shared Line: The subscriber is also registered on the system and you can place and receive calls. If another phone has the

same subscriber also configured as shared line, both phones will ring on incoming calls, and you can pick the call up on either

of them. You cannot place a call with this subscriber though if the line is already in use by another subscriber. However, you

can "steal" a running call by pressing the key where the shared line is configured to barge into a running call. The other party

(the other phone where the shared line is configured too) will then be removed from the call (but can steal the call back the

same way).

– BLF Key: The Busy Lamp Field monitors the call state of another subscriber and provides three different functionalities,

depending on the actual state:

* Speed Dial: If the monitored subscriber is on-hook, the user can press the button and directly call the monitored subscriber.

* Call Pickup: If the monitored subscriber is ringing, the user can press the button to pick up the call on his own phone.

* State Indication: It the monitored subscriber is on the phone, the key is indicating that the monitored subscriber is currently

busy.

In our example, we will configure a private line on the first key, and the BLF for another subscriber on the second key.

343

The sip:carrier Handbook mr5.5.7 344 / 577

Figure 117: Configuring a PBX Device

Once the PBX device is saved, you will see it in the list of PBX Devices.

16.1.5.1 Initial provisioning of a PBX Device

Depending on a manufacturer and the model, there are two ways of provisioning a device:

• putting the provisioning URL directly to the device via a web browser (this option is used e.g. for Cisco devices);

• using the device’s Zero Touch Provisioning (ZTP) feature. For Yealink it is called Redirection and Provisioning Service (RPS).

16.1.5.2 Direct device provisioning

Since a stock device obtained from an arbitrary distributor doesn’t know anything about your system, it can’t fetch its configuration

from there. For that to work, you need to push the URL of where the phone can get the configuration to the phone once.

In order to do so, click the Sync Device button on the device you want to configure for the very first time.

344

The sip:carrier Handbook mr5.5.7 345 / 577

Figure 118: Go to Sync Device

Important

As you will see in the next step, you need the actual IP address of the phone to push the provisioning URL onto it. That

implies that you need access to the phone to get the IP, and that your browser is in the same network as the phone in

order to be able to connect to it, in case the phone is behind NAT.

Enter the IP Address of the phone (on Cisco SPAs, press Settings 9, where Settings is the paper sheet symbol, and note

down the Current IP setting), then click Push Provisioning URL.

345

The sip:carrier Handbook mr5.5.7 346 / 577

Figure 119: Sync Device

You will be redirected directly to the phone, and the Provisioning URL is automatically set. If everything goes right, you will see a

confirmation page from the phone that it’s going to reboot.

346

The sip:carrier Handbook mr5.5.7 347 / 577

Figure 120: Device Sync Confirmation from Phone

You can close the browser window/tab and proceed to sync the next subscriber.

Tip

You only have to do this step once per phone to tell it the actual provisioning URL, where it can fetch the configuration from.

From there, it will regularly sync with the server automatically to check for configuration changes and apply them automatically.

16.1.5.3 Provisioning a device using ZTP/RPS

All Polycom, Panasonic, Snom, Grandstream and Yealink phones supported by sip:carrier can be provisioned using ZTP/RPS

service without physically accessing the devices. You only need to input MAC addresses of corresponding devices and associate

them with subscribers. sip:carrier will then immediately supply this information to the ZTP/RPS system of the corresponding

device vendor. When a subscriber unpacks the phone and connects it to the Internet for the first time, the phone will contact the

manufactorer’s ZTP/RPS service and get its provisioning URL to sip:carrier. Then, the phone downloads all required items from

sip:carrier and automatically configures itself. Immediately after that, the subscriber can make the first call.

347

The sip:carrier Handbook mr5.5.7 348 / 577

To prepare a PBX device for ZTP/RPS provisioining, follow these steps:

• Go to the PBX Devices section of the corresponding customer and click Create PBX Device.

• Specify the device and its SIP lines parameters:

– Select the required device model

– Input the device MAC address

– Specify the name of this line for your convenience

– Select a subscriber from the list for the corresponding SIP line. Some devices support multiple lines and you can provision all

of them at once.

– Select the line type: private, shared or BLF.

Figure 121: Create a PBX device

• Click Save. You will see the device in the list of customer’s PBX devices.

348

The sip:carrier Handbook mr5.5.7 349 / 577

Figure 122: Created a new PBX device

Tip

If you have already provisioned a specific device on another platform or for another reseller, then you might need to delete that

MAC address manually from the ZTP/RPS service.

When the PBX device provisions itself, it will become registered with your SIP proxy server. From then, it will be listed in the

subscriber’s Registered Devices page.

Figure 123: Registered devices

If you need to troubleshoot the provisioning process, the following logs would help you:

• /var/log/ngcp/nginx (e.g. SSL errors are collected here: autoprov_error.log)

• /var/log/ngcp/panel-debug.log (general provisioning logs)

Tip

In case you would like to edit a device model, firmware, configuration or profile, refer to Section C.12

349

The sip:carrier Handbook mr5.5.7 350 / 577

16.1.6 Configuring Sound Sets for the Customer PBX

In the Customer Details view, there is a row Sound Sets, where the customer can define his own sound sets for Auto Attendant,

Music on Hold and the Office Hours Announcement.

To create a new sound set, open the Sound Sets row and click Create Sound Set.

If you do this as administrator or reseller, the Reseller and/or Customer is pre-selected, so keep it as is. If you do this as customer,

you don’t see any Reseller or Customer fields.

So the important settings are:

• Name: The name of the sound set as it will appear in the Subscriber Preferences, where you can assign the sound set to a

subscriber.

• Description: A more detailed description of the sound set.

• Default for Subscribers: If this setting is enabled, then the sound set is automatically assigned to all already existing sub-

scribers which do NOT have a sound set assigned yet, and also for all newly created subscribers.

Fill in the settings and click Save.

350

The sip:carrier Handbook mr5.5.7 351 / 577

Figure 124: Create Customer Sound Set

To upload files to your Sound Set, click the Files button for the Sound Set.

16.1.6.1 Uploading a Music-on-Hold File

Open the music_on_hold row and click Upload on the music_on_hold entry. Choose a WAV file from your file system, and click

the Loopplay setting if you want to play the file in a loop instead of just once. Click Save to upload the file.

351

The sip:carrier Handbook mr5.5.7 352 / 577

Figure 125: Upload MoH Sound File

16.1.7 Auto-Attendant Function

The Auto-Attendant is a built-in IVR feature that is available to Cloud PBX subscribers. It provides an automatic voice menu that

enables the caller to select from a number of destinations, which could be other PBX subscribers or groups.

Another typical use case for the Auto-Attendant function is when the customer would like to have an "office assistant" that auto-

matically takes incoming calls and routes them to the desired extension (i.e. to a subscriber).

The Auto-Attendant offers 2 ways of selecting the final call destination:

• option selection: selecting one of the pre-configured destinations by pressing a single digit (0-9)

• extension dialing: entering an arbitrary PBX extension number directly

16.1.7.1 Enabling the Auto-Attendant

The Auto-Attendant feature can be activated for any subscriber in the Customer PBX individually. There are three steps involved:

352

The sip:carrier Handbook mr5.5.7 353 / 577

1. You have to prepare a Sound Set to have Auto-Attendant sound files.

2. You have to configure the destinations for the various options you provide (e.g. pressing 1 should go to the marketing

subscriber, 2 to development and 3 to some external number).

3. You have to set a Call Forward to the Auto-Attendant.

To do so, go to Customer Details and in the Subscribers section, click the Preferences button of the subscriber, where the Auto-

Attendant should be set.

16.1.7.2 Preparing the Sound Set

Create a Sound Set and upload the Sound Files for it as described below. Afterwards in the Subscriber Preferences view, set the

Customer Sound Set preference to the Sound Set to be used. To do so, click Edit on the Customer Sound Set preference and

assign the set to be used.

Uploading Auto-Attendant Sound Files

When configuring a Call Forward to the Auto-Attendant, it will play the following files:

• aa_welcome: This is the welcome message (the greeting) which is played when someone calls the Auto-Attendant.

• each available pair of aa_X_for/aa_X_option: Each menu item in the Auto-Attendant consists of two parts. The for part,

which plays something like Press One for, and the option part, which play something like Marketing. The Auto-Attendant only

plays those menu options where both the for part and the option part is present, so if you only have 3 destinations you’d like

to offer, and you want them to be on keys 1, 2 and 3, you have to upload files for aa_1_for, aa_1_option, aa_2_for,

aa_2_option and aa_3_for and aa_3_option.

Important

The sound files only define the general structure of what is being played to the caller. The actual destinations behind

your options are configured separately in Configuring the Auto-Attendant Slots Section 16.1.7.4.

An example configuration could look like this:

353

The sip:carrier Handbook mr5.5.7 354 / 577

Figure 126: Upload Auto-Attendant Options Sound Files

In order to activate the extension dialing function within the Auto-Attendant, you have to upload the following prompt files:

• aa_star_for, aa_star_option: the announcement "Press star for connecting to an extension" (or similar message,

depending on customer’s needs)

• aa_enter_extension: will instruct the caller to enter the phone number of the extension he wants to connect to

• aa_invalid_extension: will be played when the phone number entered does not match any of the customer’s extensions

354

The sip:carrier Handbook mr5.5.7 355 / 577

Figure 127: Upload Auto-Attendant Extension Dialing Sound Files

16.1.7.3 Auto-Attendant Flowchart with Voice Prompts

The illustration below shows the sequence of voice prompts played when Auto-Attendant feature is activated and a caller listens

the IVR menu.

355

The sip:carrier Handbook mr5.5.7 356 / 577

Figure 128: Flowchart of Auto-Attendant

16.1.7.4 Configuring the Auto-Attendant Slots

In the Auto-Attendant Slots section, click the Edit Slots button to configure the destination options. There are up to 10 available

slots to configure, from keys 0 to 9.

Tip

Be aware that only configured slots will be prompted in the Auto-Attendant menu.

Click Add another Slot to add a destination option, select the Key the destination should be assigned to, and enter a Destination.

The destination can be a subscriber username (e.g. marketing), a full SIP URI (e.g. sip:michelle.miller@custom

er1.pbx.example.org or any external SIP URI) or a number or extension (e.g. 491234567 or 101).

Repeat the step for every option you want to add, then press Save.

356

The sip:carrier Handbook mr5.5.7 357 / 577

Figure 129: Define the Auto-Attendant Slots

16.1.7.5 Activating the Auto-Attendant

Once the Sound Set and the Slots are configured, activate the Auto-Attendant by setting a Call Forward to Auto-Attendant.

To do so, open the Call Forwards section in the Subscriber Preferences view and press Edit on the Call Forward type (e.g. Call

Forward Unconditional if you want to redirect callers unconditionally to the Auto-Attendant).

Select Auto-Attendant and click Save to activate the Auto-Attendant.

357

The sip:carrier Handbook mr5.5.7 358 / 577

Figure 130: Set a Call Forward to Auto-Attendant

Tip

As with any other Call Forward, you can define more complex forwarding rules in the Advanced View to only forward the call to

the Auto-Attendant during specific time periods, or as a fallback if no one picks up the office number.

16.1.8 Configuring Call Queues

The sip:carrier platform offers call queueing feature for Cloud PBX subscribers. For any subscriber within the PBX the NGCP

system administrator or the subscriber himsef may activate the Call Queue. This is done individually for each subscriber on

demand.

If call queue activation has been done and the subscriber receives more than 1 call at a time, then the second and all further

callers will be queued until the subscriber finishes his call with the first caller and gets free.

358

The sip:carrier Handbook mr5.5.7 359 / 577

16.1.8.1 Activating the Call Queue

The call queue configuration is available at the path: Subscribers→ select one→ Details→ Preferences→ Cloud PBX.

Following configuration parameters may be set for call queueing:

• cloud_pbx_callqueue : shows the status of call queueing (enabled / disabled); by default it is disabled

• max_queue_length : the length of call queue, i.e. the maximum number of callers in a queue; the default is 5

• queue_wrap_up_time : the delay in seconds between the ending of the previous call and the connection of the next queued

caller with the subscriber; the default is 10

In order to change the actual setting, press the Edit button in the relevant row.

Figure 131: Call Queue Configuration

16.1.8.2 Call Queue Voice Prompts

Queued callers first hear a greeting message then information about their position in the queue and finally a waiting music / signal.

Table 23: Call Queue Voice Prompts

Prompt handle Prompt content

queue_greeting All lines are busy at the moment, you are being queued.

queue_prefix You are currently number. . .

queue_suffix . . . in the queue, please hold the line.

queue_full All lines are busy at the moment, please try again later.

queue_waiting_music <waiting music>

359

The sip:carrier Handbook mr5.5.7 360 / 577

16.1.8.3 Call Queue Flowchart with Voice Prompts

The following illustration shows which voice prompts are played to the caller when the call gets into a queue.

Figure 132: Flowchart of Call Queue

16.1.9 Device Auto-Provisioning Security

16.1.9.1 Server Certificate Authentication

The Cisco SPA phones can connect to the provisioning interface of the PBX via HTTP and HTTPS. When perform secure provi-

sioning over HTTPS, the phones validate the server certificate to check if its a legitimate Cisco provisioning server. To pass this

check, the provisioning interface must provide a certificate signed by Cisco for that exact purpose.

360

The sip:carrier Handbook mr5.5.7 361 / 577

The following steps describe how to obtain such a certificate.

First, a new SSL key needs to be generated:

$ openssl genrsa -out provisioning.key 2048

Generating RSA private key, 2048 bit long modulus

...+++

...+++

e is 65537 (0x10001)

Next, a certificate signing request needs to be generated as follows. Provide your company details.

Important

The Common Name (e.g. server FQDN or YOUR name) field is crucial here. Provide an FQDN which the phones

will later use via DNS to connect to the provisioning interface, for example pbx.example.org. Cisco does NOT support

wild-card certificates.

Important

Leave the password empty when asked for it (press Enter without entering anything).

$ openssl req -new -key provisioning.key -out provisioning.csr

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:AT

State or Province Name (full name) [Some-State]:Vienna

Locality Name (eg, city) []:Vienna

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Sipwise GmbH

Organizational Unit Name (eg, section) []:Operations

Common Name (e.g. server FQDN or YOUR name) []:pbx.example.org

Email Address []:office@sipwise.com

Please enter the following ’extra’ attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

Finally, compress the provisioning.csr file via ZIP and send it to our Cisco sales representative. If in doubt, you can try to

send it directly to ciscosb-certadmin@cisco.com asking them to sign it.

361

The sip:carrier Handbook mr5.5.7 362 / 577

Important

Only send the CSR file. Do NOT send the key file, as this is your private key!

Important

Ask for both the signed certificate AND a so-called combinedca.crt which is needed to perform client authentication via

SSL. Otherwise you can not restrict access to Cisco SPAs only.

You will receive a signed CRT file, which Sipwise can use to configure the PBX provisioning interface.

16.1.9.2 Client Certificate Authentication

If a client connects via HTTPS, the server also checks for the client certificate in order to validate that the device requesting the

configuration is indeed a legitimate Cisco phone, and not a fraudulent user with a browser trying to fetch user credentials.

Cisco Client Root Certificate can be obtained from Download Client Certificates website.

16.1.10 Device Bootstrap and Resync Workflows

The IP phones supported by the PBX need to initially be configured to fetch their configuration from the system. Since the phones

have no initial information about the system and its provisioning URL, they need to be boot-strapped. Furthermore, changes for a

specific device might have to be pushed to the device immediately instead of waiting for it to re-fetch the configuration automatically.

The following sections describe the work-flows how this is accomplished without having the customer directly accessing the phone.

16.1.10.1 Cisco SPA Device Bootstrap

Initial Bootstrapping

362

https://webapps.cisco.com/software/edos/home

The sip:carrier Handbook mr5.5.7 363 / 577

Figure 133: Initially bootstrap a PBX device

Subsequent Device Resyncs

If one of the subscribers configured on a PBX device is registered via SIP, the system can trigger a re-sync of the phone directly

via SIP without having the customer enter the IP of the phone again. This is accomplished by sending a special NOTIFY message

to the subscriber:

NOTIFY sip:subscriber@domain SIP/2.0

To: <sip:subscriber@domain>

From: <sip:subscriber@domain>;tag=some-random-tag

363

The sip:carrier Handbook mr5.5.7 364 / 577

Call-ID: some-random-call-id

CSeq: 1 NOTIFY

Subscription-State: active

Event: check-sync

Content-Length: 0

In order to prevent unauthorized re-syncs, the IP phone challenges the request with its own SIP credentials, so the NOTIFY is

sent twice, once without authentication, and the second time with the subscriber’s own SIP credentials.

Figure 134: Resync a registered PBX device

16.1.10.2 Panasonic Device Bootstrap

Initial Bootstrapping

Panasonic provides a zero-touch provisioning mechanism in their firmwares, which causes the factory-reset phones to connect to

a Panasonic web service at https://provisioning.e-connecting.net to check if a custom provisioning URL is configured for the MAC

address of the phone. If an association between the MAC and a provisioning URL is found, the web service redirects the phone

to the provisioning URL, where the phone connects to in order to obtain the configuration file.

364

The sip:carrier Handbook mr5.5.7 365 / 577

Figure 135: Initially bootstrap a Panasonic phone

The CloudPBX module ensures that when an end customer creates a Panasonic device, the MAC address is automatically

provisioned on the Panasonic web service via an API call, so the customer’s phone can use the correct provisioning URL to

connect to the auto-provisioning server of the CloudPBX.

As a result, no customer interaction is required to bootstrap Panasonic phones, other than just creating the phone with the proper

MAC on the CloudPBX web interface.

Factory Reset

For already provisioned phones, the end customer might need to perform a factory reset:

• Press Settings or Setup

• Enter #136

• Select Factory Setting and press Enter

• Select Yes and press Enter

• Select Yes and press Enter

The default username for factory-reset phones is admin with password adminpass.

Subsequent Device Resyncs

The same procedure as with Cisco SPA phones applies, once a subscriber configured on the phone is registered.

16.1.10.3 Yealink Device Bootstrap

Initial Bootstrapping

365

The sip:carrier Handbook mr5.5.7 366 / 577

Yealink provides a zero-touch provisioning mechanism in their firmwares, which causes the factory-reset phones to connect to

a Yealink web service at https://rps.yealink.com to check if a custom provisioning URL is configured for the MAC address of the

phone. If an association between the MAC and a provisioning URL is found, the web service redirects the phone to the provisioning

URL, where the phone connects to in order to obtain the configuration file.

If both Cisco SPA and Yealink phones are used, an issue with the Cisco-signed server certificate configured on the provisioning port

(1444 by default) of the CloudPBX provisioning server arises. Yealink phones by default only connect to trusted server certificates,

and the Cisco CA certificate used to sign the server certificate is not trusted by Yealink. Therefore, a two-step approach is used to

disable the trusted check via a plain insecure http port (1445 by default) first, where only device-generic config options are served.

No user credentials are provided in this case, because no SSL client authentication can be performed. The generic configuration

disables the trusted check, and at the same time changes the provisioning URL to the secure port, where the Yealink phone is

now able to connect to.

Figure 136: Initially bootstrap a Yealink phone

The CloudPBX module ensures that when an end customer creates a Yealink device, the MAC address is automatically provisioned

on the Yealink web service via an API call, so the customer’s phone can use the correct insecure bootstrap provisioning URL to

connect to the auto-provisioning server of the CloudPBX for the generic configuration, which in turn provides the information on

where to connect to for the secure, full configuration.

As a result, no customer interaction is required to bootstrap Yealink phones, other than just creating the phone with the proper

MAC on the CloudPBX web interface.

Factory Enable Yealink Auto-Provisioning

Older Yealink firmwares don’t automatically connect to the Yealink auto-provisioning server on initial boot, so it needs to be enabled

manually by the end customer.

366

The sip:carrier Handbook mr5.5.7 367 / 577

• Log in to http://phone-ip/servlet?p=hidden&q=load using admin and admin as user/password when prompted

• Change Redirect Active to Enabled

• Press Confirm and power-cycle phone

Subsequent Device Resyncs

The same procedure as with Cisco SPA phones applies, once a subscriber configured on the phone is registered.

16.1.10.4 Audiocodes Mediant Device Bootstrap and Configuration

Initial Bootstrapping

An Audiocodes device provides a zero-touch provisioning mechanism in its firmware which causes a factory-reset device to

connect to the URL built into the firmware. This URL is pointing to the NGCP provisioning server (in case of NGCP Carrier:

web01 node) listening on TCP port 1444 for HTTPS sessions.

The prerequisites for the device provisioning are that the device has a routable IP address and can reach the IP address of the

NGCP provisioning interface.

The Audiocodes device should request the firmware file or CLI configuration file from the NGCP platform. The firmware versions

and CLI config versions are decoupled from each other; the NGCP can not enforce specific version of the firmware on the device.

Instead, it should be requested by the device itself. In other words, provisioning is a pull and not a push process.

NGCP expects the provisioning request from the Audiocodes device after SSL handshake and serves the requested file to the

device if the device provides valid MAC address as the part of the URL. The MAC address is used to identify the device to the

NGCP platform. The firmware and CLI config files are provided at the following URLs:

• the base URL to download firmwares: https://<NGCP_IP>:1444/device/autoprov/firmware/001122334

455/from/0/latest

• the base URL to download CLI config: https://<NGCP_IP>:1444/device/autoprov/config/001122334455

where 001122334455 should be replaced with the actual device’s MAC address and <NGCP_IP> with IP address of the NGCP

provisioning interface.

367

The sip:carrier Handbook mr5.5.7 368 / 577

Figure 137: Initially bootstrap a Mediant gateway

Device management basics

The list of device models, firmwares and configurations are global to a reseller and are available for end customer. This data is

initially provided by Sipwise as bulk upload of all supported phone models. The firmwares and settings are stored in the database

on the DB node pair(s). The NGCP leverages the Cloud PBX module with its template system to generate the configurations and

firmware files from database on the fly. Please refer to the following chapters in NGCP handbook for the current information on

how to perform device management:

• Uploading device firmwares Section C.12.2

• Creating device configuration Section C.12.3

• Creating device profiles Section C.12.4

Parameterizing the Device Configuration Template

The device-specific parameters are filled in by the system individually when a physical device fetches its configuration file. Param-

eters from the NGCP panel:

• username: Subscriber Details→ Master Data→ SIP Username

368

The sip:carrier Handbook mr5.5.7 369 / 577

• password: Subscriber Details→ Master Data→ SIP Password

• domain: Subscriber Details→ Master Data→ Domain

• extension: Subscriber Details→ Master Data→ Extension

• area code: Subscriber Preferences→ Number Manipulations→ ac

• country code: Subscriber Preferences→ Number Manipulations→ cc

The produced CLI config file has the following structure:

1. SIP account credentials:

"sip-definition account 0"

• user-name [username]

• password [password]

• host-name [domain]

• register reg

• contact-user "[country code][area code][extension]"

2. IP Groups:

"voip-network ip-group 1" and "voip-network ip-group 2"

• sip-group-name [domain]

3. Proxy and registration settings:

"sip-definition proxy-and-registration"

• set gw-name [domain]

4. Manipulations:

• manipulation-name "from trunk domain":

"sbc manipulations message-manipulations 3"

– action-value "[% line.domain %]"

• manipulation-name "clip no screening":

"sbc manipulations message-manipulations 8"

– action-value "’<sip:+[country code][area code][extension]@’ + param.ipg.dst.host + ’

>’"

Specific CLI parameters are:

369

The sip:carrier Handbook mr5.5.7 370 / 577

• [IPPBX_Hostname]

• [IPPBX_server_IP]

which are used at the following configuration parameters:

• Proxy settings:

"voip-network proxy-ip 1"

– proxy-address [IPPBX_Hostname]

• Manipulations:

"sbc manipulations message-manipulations 1"

– action-value [IPPBX_Hostname]

16.1.11 Device Provisioning and Deployment Workflows

This chapter provides information and hints for preparing and performing the deployment of certain VoIP devices at customer sites,

that have a customer-facing interface which also needs customisation.

16.1.11.1 Audiocodes Mediant Device Provisioning Workflow

Audiocodes ISDN gateways and eSBCs are devices used to connect legacy (ISDN) PBX and IP-PBX to the Sipwise NGCP

platform and maintain their operations within the Operator’s network. Sipwise NGCP offers a SipConnect 1.1 compliant signaling

and media interface to connect SIP trunks to the platform. In addition to this interface, the Sipwise NGCP provides an auto-

provisioning mechanism to configure SIP endpoints like IP phones, media gateways and eSBCs.

Provisioning URL

An Audiocodes device needs to obtain the provisioning URL of the Sipwise NGCP in one way or the other to request its device

configuration and subsequently download specific firmwares, obtain SIP credentials to connect to the network facing side, and con-

figure the customer facing side for customer devices to connect either via ISDN or SIP. Typical ways of obtaining the provisioning

URL for a SIP endpoint are:

• using DHCP option-66 (in a pre-staging environment or directly at the customer premise) where vendor-specific Redirect Servers

are configured in the default configuration or firmware

• getting pre-configured per deployment from the SIP endpoint vendor

• getting pre-configured per deployment by a 3rd party distributor

The assumption is that Audiocodes devices are supplied with a firmware (and all required SSL certificates) being pre-configured

and the provisioning URL pointing to an Operator URL the Sipwise NGCP is serving, before handing the devices over to field

service engineers doing the truck rolls.

370

The sip:carrier Handbook mr5.5.7 371 / 577

Field Configuration

The Sipwise NGCP provides a SipConnect 1.1 compliant interface on the network side for the Audiocodes devices. This interface

clearly defines the numbering formats of the calling and called party, the SIP header mechanisms to provide CLI restriction, the

RTP codecs, etc.

On the customer facing side, however, those variables might be different from deployment to deployment:

• An IP-PBX might choose to only send its extension as calling party number, or might choose to send the full number in national

format.

• It might choose to use the SIP From-header mechanisms to suppress displaying of the CLI, or use the SIP Privacy header.

• The same uncertainty exists to some extent for a legacy PBX connecting via ISDN to the Audiocodes device.

The assumption here is that a field service engineer is NOT supposed to change the Audiocodes configuration in order to make

the customer interface work, as this will lead to big issues in maintaining those local changes, especially if a replacement of the

device is necessary. Instead, the Audiocodes configuration must ensure that all different kinds of variants in terms of SIP headers,

codecs and number formats are translated correctly to the network side and vice versa. If it turns out that there are scenarios

in the field which are not handled correctly, temporary local changes might be performed to finish a truck roll, but those changes

MUST be communicated to the platform operator, and the server-side configuration templates must be adapted to handle those

scenarios gracefully as well.

For deployments with ISDN interfaces on the customer facing side of the Audiocodes, different Device Profiles with specific Device

Configurations per Device Model must exist to handle certain scenarios, specifically whether the ISDN interface is operating

in Point-to-Point or Point-to-Multipoint mode. Configuration options like which side is providing the clock-rate are to be defined

up-front, and the PBX must be reconfigured to adhere to the configuration.

Network Configuration

On the network facing side, both the ISDN and eSBC style deployments have to be designed to obtain an IP address via DHCP.

The definition of the IP address ranges is up to the Operator. It may or may not be NAT-ed, but it is advised to use a private IP

range directly routed in the back-bone to avoid NAT.

On the customer facing side, networking is only relevant for the eSBC deployment. In order to make the IP-PBX configuration as

stream-lined as possible, a pre-defined network should be established on the customer interface of the Audiocodes device.

Tip

The proposal is to define a network 192.168.255.0/24 with the Audiocodes device using the IP 192.168.255.2 (leaving the

192.168.255.1 to a possible gateway). The IP-PBX could obtain its IP address via DHCP from a DHCP server running on the

Audiocodes device (e.g. serving IP addresses in the range of 192.168.255.100-254), or could have it configured manually (e.g.

in the range of 192.168.255.3-99). Since the Audiocodes device IP on the customer side is always fixed at 192.168.255.2, the

IP-PBX for each customer can be configured the same way, pointing the SIP proxy/registrar or outbound proxy always to this

IP.

The customer facing side is outside the Sipwise demarcation line, that’s why the network configuration mentioned above only

serves as proposal and any feedback is highly welcome. However, it must be clearly communicated how the customer facing

371

The sip:carrier Handbook mr5.5.7 372 / 577

network is going to be configured, because the Sipwise NGCP needs to incorporate this configuration into the Audiocodes config-

uration templates.

16.1.11.2 Audiocodes Mediant Device Deployment Workflow

Pre-Configuration on Sipwise NGCP platform

1. Before connecting a customer to a SIP trunk, it must be clear which Audiocodes Device Model is going to be used (depend-

ing on if, which and how many ISDN ports are necessary) and which Device Profile for the Device Model is required (eSBC

mode, ISDN P-to-P or P-to-MP mode). Based on that, the correct physical device must be picked.

2. Next, the customer has to be created on the Sipwise NGCP. This step requires the creation of the customer, and the creation

of a subscriber within this customer. For the subscriber, the proper E.164 numbers or number blocks must be assigned, and

the correct subscriber preferences must be set for the network interface to adhere to the SipConnect 1.1 interface. This step

is automated by a script provided by Sipwise until the provisioning work-flow is fully integrated with Operator’s OSS/BSS

systems. Required parameters are:

• an external customer id to relate the customer entity on the Sipwise NGCP with a customer identifier in Operator’s IT

systems

• a billing profile name

• a subscriber username and password, the domain the subscriber is configured for

• the numbers or number blocks assigned to the subscriber, and the network provided number of the subscriber

• optional information is geographic location information and IP network information to properly map emergency calls

3. Finally, the association between the MAC address of the Audiocodes device and the SIP subscriber to be used on the SIP

trunk must be established. This step is also automated by a script provided by Sipwise. Required parameters are:

• the subscriber id

• the Device Profile to be used

• and the MAC address of the Audiocodes device

Installation

Once the above requirements are fulfilled and the customer is created on the Sipwise NGCP, the Audiocodes device can be

installed at the customer premise.

When the Audiocodes device boots, it requests the configuration file from the Sipwise NGCP by issuing a GET request via HTTPS.

For authentication and authorization purposes, the Sipwise NGCP requests an SSL client certificate from the device and will

check whether it’s signed by a Certificate Authority known to the Sipwise NGCP. Therefore, Audiocodes must provide the CA

certificate used to sign the devices’ client certificates to Sipwise to allow for this process. Also, the Sipwise NGCP will provide

an SSL server certificate to the device. The device must validate this certificate in order to prevent man-in-the-middle attacks.

Options here are to have:

• Sipwise provide a self-signed certificate to Audiocodes for Audiocodes or a 3rd party distribution partner to configure it as trusted

CA in the pre-staging process

372

The sip:carrier Handbook mr5.5.7 373 / 577

• the Operator provide a certificate signed by a CA which is already in the trust store of the Audiocodes devices.

Once the secured HTTPS connection is established, the Sipwise NGCP will provide a CLI style configuration file, with its content

depending on the pre-configured Device Profile and subscriber association to the device’s MAC address.

The configuration includes the firmware version of the latest available firmware configured for the Device Model, and a URL

defining from where to obtain it. The configuration details on how the Audiocodes devices manage the scheduling of firmware

updates are to be provided by Audiocodes or its partners, since this is out of scope for Sipwise. Ideally, firmware updates should

only be performed if the device is idle (no calls running), and within a specific time-frame (e.g. between 1 a.m. and 5 a.m. once a

certain firmware version is reached, including some random variation to prevent all devices to download a new firmware version

at the same time).

Device Replacement

If a customer requires the replacement of a device, e.g. due to hardware issues or due to changing the number or type of ISDN

interfaces, a new association of the new device MAC, its Device Profile and the subscriber must be established.

In order to make the change as seamless as possible for the customer, a new device is created for the customer with the new

MAC, a proper Device Profile, but the same subscriber as used on the old device. Once the new device boots at the customer

premise, it will obtain its configuration and will register with the same subscriber as the old device (in case it’s still operational). For

inbound calls to the customer, this will cause parallel ringing to take place, and it’s up to the customer or the field engineer when

to re-configure or re-cable the PBX to connect to one or the other device.

Once the old device is decommissioned, the old MAC association can be deleted on the Sipwise NGCP.

16.1.12 List of available pre-configured devices

Vendor Model Available from release

Audiocodes Mediant800 mr4.1.1.1

Cisco ATA112 mr3.4.1.1

Cisco ATA122 mr3.4.1.1

Cisco SPA232D mr3.4.1.1

Cisco SPA301 mr3.4.1.1

Cisco SPA303 mr3.4.1.1

Cisco SPA501G mr3.4.1.1

Cisco SPA502G mr3.4.1.1

Cisco SPA512G mr3.4.1.1

Cisco SPA504G mr3.4.1.1

Cisco SPA504G + SPA500S mr3.7.1.4

Cisco SPA504G + two SPA500S mr3.7.1.4

Cisco SPA514G mr3.4.1.1

Cisco SPA508G mr3.4.1.1

Cisco SPA509G mr3.4.1.1

Cisco SPA525G mr3.4.1.1

Grandstream HT814 mr5.1.1.1

373

The sip:carrier Handbook mr5.5.7 374 / 577

Vendor Model Available from release

Grandstream GXW-4008 mr5.1.1.1

Grandstream GXW-4216 mr5.1.1.1

Innovaphone IP2X2X mr3.8.3.3

Innovaphone IP230-X mr3.8.3.3

Innovaphone IP232 mr3.8.3.3

Innovaphone IP222 mr3.8.3.3

Innovaphone IP240 mr3.8.3.3

Innovaphone IP22 mr3.8.3.3

Innovaphone IP111 mr3.8.3.3

Panasonic KX-UT113 mr3.7.1.1

Panasonic KX-UT123 mr3.7.1.1

Panasonic KX-UT133 mr3.7.1.1

Panasonic KX-UT136 mr3.7.1.1

Panasonic KX-UT248 mr3.7.1.1

Panasonic KX-TGP600 mr5.1.1.1

Panasonic KX-HDV330 mr5.1.1.1

Panasonic KX-HDV230 mr5.1.1.1

Panasonic KX-HDV130 mr5.1.1.1

Polycom VVX300 mr5.4.1.1

Polycom VVX400 mr5.4.1.1

Polycom VVX500 mr5.4.1.1

Yealink CP860 mr5.2.1.1

Yealink SIP-T19P mr3.7.1.1

Yealink SIP-T20P mr3.7.1.1

Yealink SIP-T21P mr3.7.1.1

Yealink SIP-T22P mr3.7.1.1

Yealink SIP-T23P mr3.7.1.1

Yealink SIP-T23G mr3.7.1.1

Yealink SIP-T26P mr3.7.1.1

Yealink SIP-T28P mr3.7.1.1

Yealink SIP-T32G mr3.7.1.1

Yealink SIP-T38G mr3.7.1.1

Yealink SIP-T41P mr3.7.1.1

Yealink SIP-T42G mr3.7.1.1

Yealink SIP-T46G mr3.7.1.1

Yealink SIP-T48G mr3.7.1.1

Yealink SIP-T28P + EXP39 mr3.8.1.1

Yealink SIP-T28P + two EXP39 mr3.8.1.1

Yealink W52P mr3.7.1.6

16.1.12.1 Audiocodes Devices

374

The sip:carrier Handbook mr5.5.7 375 / 577

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

Speed

Dial

Mediant800 Y Y Y dhcp 1 0 0 N

16.1.12.2 Cisco Devices

IP Phones

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

Extension

Boards

SPA301 N Y Y http 1 1 0 N

SPA303 N Y Y http 1-3 1-3 1-2 N

SPA501G N Y Y http 1-8 1-8 1-7 N

SPA502G N Y Y http 1 1 0 N

SPA512G N N Y http 1 1 0 N

SPA504G N Y Y http 1-4 1-4 1-3 2

SPA514G N N Y http 1-4 1-4 1-3 N

SPA508G N Y Y http 1-8 1-8 1-7 N

SPA509G N Y Y http 1-12 1-12 1-11 N

SPA525G N Y N http 1-5 1-5 1-4 N

Analog Adapters

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

SPA232D N Y Y http 1-6 0 0

ATA112 Y Y Y http 1-2 0 0

ATA122 Y Y Y http 1-2 0 0

Extension Boards

Model Ports Buttons Busy Lamp Supported phones

SPA500S 2 32 1-32 SPA500

16.1.12.3 Grandstream Devices

Analog Adapters

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

HT814 N Y Y redirect 4 N N

GXW-4008 N Y Y redirect 8 N N

375

The sip:carrier Handbook mr5.5.7 376 / 577

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

GXW-4216 N Y Y redirect 16 N N

16.1.12.4 Innovaphone Devices

IP Phones

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

Extension

Boards

IP232 N Y Y dhcp 1 0 1-16 2

IP222 N Y Y dhcp 1 0 1-16 2

IP240 N N N dhcp 1 0 1-15 2

IP111 N Y Y dhcp 1 0 1-16 0

Analog Adapters

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

IP22 N Y Y dhcp 1 0 0

Extension Boards

Model Ports Buttons Busy Lamp Supported phones

IP2X2X 2 64 1-32 IP2x2

IP230-X 2 30 1-30 IP230

16.1.12.5 Panasonic Devices

IP Phones

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

Extension

Boards

KX-UT113 N N N redirect 1-2 1-2 0 N

KX-UT123 N N N redirect 1-2 1-2 0 N

KX-UT133 N N N redirect 1-4 1-4 1-23 N

KX-UT136 N N N redirect 1-4 1-4 1-23 N

KX-UT248 N N Y redirect 1-6 1-6 1-23 N

KX-TGP600 Y Y Y redirect 1-8 N N N

KX-HDV330 Y Y Y redirect 1-12 Y Y N

KX-HDV230 Y Y Y redirect 1-6 Y Y N

KX-HDV130 Y Y Y redirect 1-2 Y Y N

376

The sip:carrier Handbook mr5.5.7 377 / 577

16.1.12.6 Polycom Devices

IP Phones

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

Extension

Boards

VVX300 N N Y redirect 1-6 1-6 Y N

VVX400 N N Y redirect 1-12 1-12 Y N

VVX500 N N Y redirect 1-12 1-12 Y N

16.1.12.7 Yealink Devices

IP Phones

Model IPv6 TLS SRTP
Auto

provisioning

Private

Line

Shared

Line

Busy

Lamp

Extension

Boards

CP860 Y Y Y redirect 1 N N N

SIP-T19P Y Y Y redirect 1 1 0 N

SIP-T20P Y Y Y redirect 1 1 0 N

SIP-T21P Y Y Y redirect 1-2 1-2 1 N

SIP-T22P Y Y Y redirect 1-3 1-3 1-2 N

SIP-T23P Y Y Y redirect 1-3 1-3 1-2 N

SIP-T23G Y Y Y redirect 1-3 1-3 1-2 N

SIP-T26P Y Y Y redirect 1-3 1-3 1-12 N

SIP-T28P Y Y Y redirect 1-6 1-6 1-15 2

SIP-T32G Y Y Y redirect 1-3 1-3 1-2 N

SIP-T38G Y Y Y redirect 1-6 1-6 1-15 N

SIP-T41P Y Y Y redirect 1-3 1-3 1-14 N

SIP-T42G Y Y Y redirect 1-3 1-3 1-14 N

SIP-T46G Y Y Y redirect 1-6 1-6 1-26 N

SIP-T48G Y Y Y redirect 1-6 1-6 1-28 N

W52P N Y Y redirect 1-5 1-5 0 N

16.1.13 Phone features

16.1.13.1 Cisco phones

SPA301

1) Soft keys

Not available.

2) Hard keys

377

The sip:carrier Handbook mr5.5.7 378 / 577

• vm

• hold/unhold

3) Line keys

Not available.

4) VSC

• directed pickup

• park/unpark

SPA303

1) Soft keys

Idle:

redial lcr dir dnd >

< cfwd unpark

Idle with missed calls:

lcr miss

Call:

hold endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer ignore

2) Hard keys

• vm

• hold/unhold

378

The sip:carrier Handbook mr5.5.7 379 / 577

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• directed pickup

SPA501G

1) Soft keys

Idle:

redial lcr dir dnd >

< cfwd unpark

Idle with missed calls:

lcr miss

Call:

hold/resume endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer reject

2) Hard keys

• vm

• hold/unhold

3) Line keys

379

The sip:carrier Handbook mr5.5.7 380 / 577

• BLF monitoring

• directed pickup

4) VSC

• directed pickup

SPA502G

1) Soft keys

Idle:

redial lcr dir dnd >

< cfwd unpark

Idle with missed calls:

lcr miss

Call:

hold/resume endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer reject

2) Hard keys

• vm

• hold/unhold

3) Line keys

Not available.

4) VSC

380

The sip:carrier Handbook mr5.5.7 381 / 577

• directed pickup

SPA504G

1) Soft keys

Idle:

redial lcr dir dnd >

< cfwd unpark

Idle with missed calls:

lcr miss

Call:

hold/resume endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer reject

2) Hard keys

• vm

• hold/unhold

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• directed pickup

381

The sip:carrier Handbook mr5.5.7 382 / 577

SPA512G

1) Soft keys

Idle:

redial lcr dir dnd >

< cfwd unpark

Idle with missed calls:

lcr miss

Call:

hold/resume endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer reject

2) Hard keys

• vm

• hold/unhold

3) Line keys

Not available.

4) VSC

• directed pickup

SPA514G

1) Soft keys

Idle:

382

The sip:carrier Handbook mr5.5.7 383 / 577

redial lcr dir dnd >

< cfwd unpark

Idle with missed calls:

lcr miss

Call:

hold/resume endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer reject

2) Hard keys

• vm

• hold/unhold

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• directed pickup

SPA509G

1) Soft keys

Idle:

redial lcr dir dnd >

< cfwd unpark

383

The sip:carrier Handbook mr5.5.7 384 / 577

Idle with missed calls:

lcr miss

Call:

hold/resume endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer reject

2) Hard keys

• vm

• hold/unhold

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• directed pickup

SPA508G

1) Soft keys

Idle:

redial lcr dir dnd >

< cfwd unpark

Idle with missed calls:

384

The sip:carrier Handbook mr5.5.7 385 / 577

lcr miss

Call:

hold/resume endCall conf xfer >

< bxfer park

Call on hold:

resume endCall newCall redial >

< dir cfwd dnd

Ringing:

answer reject

2) Hard keys

• vm

• hold/unhold

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• directed pickup

SPA525G

1) Soft keys

Idle:

Redial call Rtn Directory DND >

< Forward Unpark

Idle with missed calls:

Call Rtn Miss

385

The sip:carrier Handbook mr5.5.7 386 / 577

Call:

Hold End Call Conf Transfer >

BlindXfer Park

Call on hold:

Resume EndCall EewCall Redial >

< Directory Forward DND

Ringing:

Answer Ignore

2) Hard keys

• vm

• hold/unhold

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• directed pickup

16.1.13.2 Yealink phones

T19P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

386

The sip:carrier Handbook mr5.5.7 387 / 577

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

Not available.

4) VSC

• transfer park

• directed pick up

• park/unpark

T20P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

387

The sip:carrier Handbook mr5.5.7 388 / 577

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• transfer park

• park/unpark

T21P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

388

The sip:carrier Handbook mr5.5.7 389 / 577

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• transfer park

• park/unpark

T22P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

389

The sip:carrier Handbook mr5.5.7 390 / 577

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• park/unpark

• transfer park

T23P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

390

The sip:carrier Handbook mr5.5.7 391 / 577

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• park/unpark

• transfer park

T23G

1) Soft keys

Idle:

History Dir DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf EndCall

Call on hold:

Tran Resume NewCall EndCall

Ringing:

Answer FWD Reject

391

The sip:carrier Handbook mr5.5.7 392 / 577

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• unpark

• transfer park

T26P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

392

The sip:carrier Handbook mr5.5.7 393 / 577

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• unpark

• transfer park

T28P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

393

The sip:carrier Handbook mr5.5.7 394 / 577

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• park/unpark

• transfer park

T32G

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

394

The sip:carrier Handbook mr5.5.7 395 / 577

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• unpark

• transfer park

T38G

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

395

The sip:carrier Handbook mr5.5.7 396 / 577

• BLF monitoring

• directed pickup

4) VSC

• unpark

• transfer park

T41P

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

396

The sip:carrier Handbook mr5.5.7 397 / 577

4) VSC

• park/unpark

• transfer park

T42G

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

397

The sip:carrier Handbook mr5.5.7 398 / 577

• park/unpark

• transfer park

T46G

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• park/unpark

• transfer park

398

The sip:carrier Handbook mr5.5.7 399 / 577

T48G

1) Soft keys

Idle:

History DND Menu

Idle with missed calls:

Exit View

Call:

Tran Hold Conf Cancel

Call on hold:

Tran Resume NewCall Cancel

Ringing:

Answer FWD Silence Reject

2) Hard keys

• vm

• redial

• transfer

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• park/unpark

• transfer park

W52P

1) Soft keys

399

The sip:carrier Handbook mr5.5.7 400 / 577

Idle:

400

The sip:carrier Handbook mr5.5.7 401 / 577

History Line

Idle with missed calls:

Exit View

Call:

Ext. Call Options

Call on hold:

Resume Line

Ringing:

Accept

2) Hard keys

• vm

• redirect

3) VSC

• park/unpark

• transfer park

16.1.13.3 Panasonic phones

KX-UT113

1) Soft keys

Idle:

Settings Call Log Phone book

Call:

Blind Phone book

401

The sip:carrier Handbook mr5.5.7 402 / 577

Call on hold:

Call Log Phone book

Ringing:

Answer Reject

2) Hard keys

• vm

• forward/dnd

• hold/unhold

• redial

• recall

• transfer

• conf

3) Line keys

Not available.

4) VSC

• park/unpark

• transfer park

KX-UT123

1) Soft keys

Idle:

Settings Call Log Phone book

Call:

Blind Phone book

Call on hold:

Call Log Phone book

402

The sip:carrier Handbook mr5.5.7 403 / 577

Ringing:

Answer Reject

2) Hard keys

• vm

• forward/dnd

• hold/unhold

• redial

• recall

• transfer

• conf

3) Line keys

Not available.

4) VSC

• park/unpark

• transfer park

KX-UT133

1) Soft keys

Idle:

Settings Call Log Phone book

Call:

Blind Phone book

Call on hold:

Call Log Phone book

Ringing:

Answer Reject

403

The sip:carrier Handbook mr5.5.7 404 / 577

2) Hard keys

• vm

• forward/dnd

• hold/unhold

• redial

• recall

• transfer

• conf

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• unpark

• transfer park

KX-UT136

1) Soft keys

Idle:

Settings Call Log Phone book

Call:

Blind Phone book

Call on hold:

Call Log Phone book

Ringing:

Answer Reject

404

The sip:carrier Handbook mr5.5.7 405 / 577

2) Hard keys

• vm

• forward/dnd

• hold/unhold

• redial

• recall

• transfer

• conf

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• park/unpark

• transfer park

KX-UT248

1) Soft keys

Idle:

Settings Call Log Phone book

Call:

Blind Phone book

Call on hold:

Call Log Phone book

Ringing:

Answer Reject

405

The sip:carrier Handbook mr5.5.7 406 / 577

2) Hard keys

• vm

• forward/dnd

• hold/unhold

• redial

• recall

• transfer

• conf

3) Line keys

• BLF monitoring

• directed pickup

4) VSC

• park/unpark

• transfer park

16.1.13.4 Innovaphone

IP222

1) Soft keys

Idle:

Setup All Calls Home Calls My favorites Phonebook

Call:

Hold Transfer Park Cancel

Call on hold:

Resume Transfer Park Cancel

Ringing:

406

The sip:carrier Handbook mr5.5.7 407 / 577

Answer Transfer Silence Reject

2) Hard keys

• hold

• redial

3) Line keys

• BLF monitoring

4) VSC

• unpark

• transfer park

IP232

1) Soft keys

Idle:

Setup All Calls Home Calls My favorites Phonebook

Call:

Hold Transfer Park Cancel

Call on hold:

Resume Transfer Park Cancel

Ringing:

Answer Transfer Silence Reject

2) Hard keys

• hold

• redial

3) Line keys

407

The sip:carrier Handbook mr5.5.7 408 / 577

• BLF monitoring

4) VSC

• unpark

• transfer park

IP111

1) Soft keys

Idle:

Setup All Calls Home Calls My favorites Phonebook

Call:

Hold Transfer Park Cancel

Call on hold:

Resume Transfer Park Cancel

Ringing:

Answer Transfer Silence Reject

2) Hard keys

• hold

• redial

3) Line keys

• BLF monitoring

4) VSC

• unpark

• transfer park

IP240

408

The sip:carrier Handbook mr5.5.7 409 / 577

1) Soft keys

Not available.

2) Hard keys

• hold

• redial

• conference

• dnd

• forward

3) Line keys

• BLF monitoring

4) VSC

• transfer park

• unpark

16.1.14 Shared line appearance

In PBX environment, shared line appearance is supported for PBX subscribers. In comparison to the private line, subscriber

registering for the shared line will, immediately after the successful registration, subscribe for Call-Info event. This subscribe

is challenged for authentication and if the credentials are provided, subscriber is notified that the subscription is active. In the

respective NOTIFY message, this is reflected in Subscription-State header set to active. NOTIFY also contains information about

the status of the shared line in Call-Info header. If the appearance is not used, Call-Info header will describe the state as idle. In

the NOTIFY message, this is reflected as “appearance-index=*;appearance-state=idle”.

If there is incoming call to the subscriber, the appearance index is created after the call is accepted and state will be set to active.

Call-Info header will contain “appearance-index=1; appearance-state=active”. After call is finished and appearance is not used

elsewhere, appearance index is removed and state is set to idle. In the case of outgoing call, subscription to line-seize event is

required to be able to dial. Before dialing can be started, SUBSCRIBE to line-seize is sent. Consequently, subscriber receives

NOTIFY for line-seize with active subscription state. Call-info subscription is updated accordingly, appearance is created and its

state is set to seized. As soon as the call starts ringing, Call-Info status is updated to progressing and line-seize subscription is

set to terminated with “reason=noresource” in Subscription-State header. When the call is accepted, Call-Info status is changed

to active and set again to idle when call is finished. Also, the appearance index is removed.

16.2 Sipwise sip:phone App (SIP client)

You can order two commercial Unified Communication Clients for full end-to-end integration of voice, video, chat and presence

features. There are two applications available:

409

The sip:carrier Handbook mr5.5.7 410 / 577

• the sip:phone Desktop Client for Microsoft Windows, Apple OSX, and Linux;

• the sip:phone Mobile App for iOS and Android.

Both clients are fully brandable to the customer’s corporate identity. The clients are not part of the standard delivery and need to

be licensed separately. This handbook discusses the mobile client in details.

We continuously develop the mobile clients to provide new features, as they do not support the full range of features yet.

The sip:phone Mobile App is a mobile client for iOS and Android that supports voice calls via SIP, as well as presence and instant

messaging via XMPP. The following sections describe the steps needed to integrate it into your sip:carrier.

16.2.1 Zero Config Launcher

Part of the mobile apps is a mechanism to sign up to the service via a 3rd party website, which is initiated on the login screen and

rendered within the app. During the sign-up process, the 3rd party service is supposed to create a new account and subscriber in

the sip:carrier (e.g. automatically via the API) and provide the end user with the access credentials.

The mobile apps come with a zero config mechanism to simplify the end-customer log in using these credentials (especially ruling

out the need to manually enter them). It makes it possible to deliver the access credentials via a side channel (e.g. Email, SMS)

packed into a URL. The user just clicks the URL, and it automatically launches the app with the correct credentials. The following

picture shows the overall workflow.

410

The sip:carrier Handbook mr5.5.7 411 / 577

Figure 138: Provisioning Push Workflow

There are two components provided by a 3rd party system. One is the 3rd Party Sign-Up Form, and the other is the 3rd Party

Launch Handler. The purpose of these components is to allow an end customer to open a link with the access credentials via the

sip:phone app.

16.2.1.1 3rd Party Sign-Up Form

The 3rd Party Sign-Up Form is a website the app shows to the end user when he taps the sign-up link on the app Login Screen.

There, the end customer usually provides his contact details like name, address, phone number and email address, etc. After

validation, the website creates an account and a subscriber in the sip:carrier via the API.

After successfully creating the account and the subscriber, this site needs to construct a specially crafted URL, which is sent back

to the end customer via a side channel. Ideally, this channel would be an SMS if you want to verify the end customer’s mobile

number, or an email if you want to check the email address.

The sip:phone app registers a URL schema handler for URLs starting with sipphone://. If you start such a link, the app

performs a Base64 decoding of the string right after the sipphone:// prefix and then decrypts the resulting binary string via

AES using the keys defined during the branding step. The resulting string is supposed to be

411

The sip:carrier Handbook mr5.5.7 412 / 577

username=$user&server=$domain&password=$password.

Therefore, the 3rd Party Sign-Up Form needs to construct this string using the credentials defined while creating the subscriber

via the sip:carrier API, then encrypt it via AES, and finally perform a Base64 encoding of the result.

Note

Up until and including version mr5.5.7 of the sip:carrier, the SIP login credentials are used here. Future versions will connect to

the REST interface of the sip:carrier using the web credentials first and fetch the SIP credentials along with other settings from

there.

An example Perl code performs encoding of such a string. The AES key and initialization vector ($key and $iv) are the standard

values of the sip:phone app and should work until you specified other values during the branding process.

#!/usr/bin/perl -w

use strict;

use Crypt::Rijndael;

use MIME::Base64;

use URI::Escape;

my $key = ’iBmTdavJ8joPW3HO’;

my $iv = ’tww21lQe6cmywrp3’;

my $plain = do { local $/; <> };

pkcs#5 padding to 16 bytes blocksize

my $pad = 16 - (length $plain) % 16;

$plain .= pack(’C’, $pad) x $pad;

my $cipher = Crypt::Rijndael->new(

$key,

Crypt::Rijndael::MODE_CBC()

);

$cipher->set_iv($iv);

my $crypted = $cipher->encrypt($plain);

store b64-encoded string and print to STDOUT

my $b64 = encode_base64($crypted, ’’);

print $b64, "\n";

print to STDOUT using URL escaping also

print uri_escape($b64), "\n";

This snippet takes a string from STDIN, encrypts it via AES, encodes it via Base64 and sends the result to STDOUT. It also writes

the second line with the same string, but this time, the URL is escaped. To test it, you would run it as follows on a shell, granted

it’s stored at /path/to/encrypt.pl.

echo -n ’username=testuser&server=example.org&password=testpass’ \

| /path/to/encrypt.pl

This command would result in the output strings CI8VN8toaE40w8E4OH2rAuFj3Qev9QdLI/Wv/VaBCVK2yNkBZjxE9

412

The sip:carrier Handbook mr5.5.7 413 / 577

eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg== and CI8VN8toaE40w8E4OH2rAuFj3Qev9QdLI%2FWv%2FVaBCVK

2yNkBZjxE9eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg%3D%3D. The sip:phone can use the former string to automati-

cally fill in the login form of the Login Screen if started via a Link like sipphone://CI8VN8toaE40w8E4OH2rAuFj3Qev9

QdLI/Wv/VaBCVK2yNkBZjxE9eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg==.

Here is the same code in PHP.

#!/usr/bin/php

<?php

$key = "iBmTdavJ8joPW3HO";

$iv = "tww21lQe6cmywrp3";

$clear = fgets(STDIN);

$cipher = fnEncrypt($clear, $key, $iv);

echo $cipher, "\n";

echo urlencode($cipher), "\n";

function fnEncrypt($clear, $key, $iv) {

$pad = 16 - strlen($clear) % 16;

$clear .= str_repeat(pack(’C’, $pad), $pad);

return rtrim(base64_encode(mcrypt_encrypt(

MCRYPT_RIJNDAEL_128, $key, $clear,

MCRYPT_MODE_CBC, $iv)), "\0");

}

?>

Similar to the Perl code, you can call it like this:

echo -n ’username=testuser&server=example.org&password=testpass’ \

| /path/to/encrypt.php

However, a URL with the sipphone:// schema is not displayed as a link in an SMS or an Email client and thus can not be

clicked by the end customer, so you need to make a detour via a regular http:// URL. To do so, you need a 3rd Party Launch

Handler to trick the phone to open such a link.

Therefore, that the 3rd Party Sign-Up Form needs to return a link containing a URL pointing to the 3rd Party Launch Handler and

pass the URL escaped string gathered above to the client via an SMS or an Email. Since it is the regular http:// link, it is

clickable on the phone and can be launched from virtually any client (SMS, Email, etc.), which correctly renders an HTML link.

A possible SMS sent to the end customer (via the phone number entered in the sign-up from) could, therefore, look as follows

(trying to stay below 140 chars).

http://example.org/p?c=CI8VN8toaE40w8E4OH2rAuFj3Qev9QdLI

%2FWv%2FVaBCVK2yNkBZjxE9eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg%3D%3D to launch sipphone

An HTML Email could look like this:

Welcome to Example.org,

413

The sip:carrier Handbook mr5.5.7 414 / 577

<a href="http://www.example.org/sipphone?c=CI8VN8toaE40w8E4OH2rAuFj3Qev9QdLI

%2FWv%2FVaBCVK2yNkBZjxE9eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg%3D%3D">

click here

 to log in.

That way, you can do both: verify the contact details of the end customer, and send the end customer the login credentials in a

secure manner.

16.2.1.2 3rd Party Launch Handler

The URL http://www.example.org/sipphone mentioned above can be any simple script, and its sole purpose is to

send back a 301 Moved Permanently or 302 Moved Temporarily with a Location: sipphone://xxxxxx

xxxxxx header to tell the phone to open this link via the sip:phone app. The xxxxxxxxxxxx is the plain (non-URL-escaped) string

generated by the above script.

An example CGI script performing this task follows.

#!/usr/bin/perl -w

use strict;

use CGI;

my $q = CGI->new;

my $c = $q->param(’c’);

print CGI::redirect("sipphone://$c");

The script simply takes the URL parameter c from the URL http://www.example.org/sipphone?c=CI8VN8toaE40

w8E4OH2rAuFj3Qev9QdLI%2FWv%2FVaBCVK2yNkBZjxE9eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg%3D%3D crafted

above and puts its content into a Location header using the sipphone:// schema, and finally sends a 301 Moved

Permanently back to the phone.

The phone follows the redirect by opening the URL using the sip:phone app, which in turn decrypts the content and fills in the login

form.

Note

Future versions of the sip:carrier will be shipped with this launch handler integrated into the system. Up until and including the

version mr5.5.7, this script needs to be installed on any webserver manually.

16.2.2 Mobile Push Notification

The mobile push functionality provides the remote start of a mobile application on incoming calls via the Google GCM or the Apple

APNS notification services. It enables you to offer your subscribers a modern and convenient service on mobile devices.

414

The sip:carrier Handbook mr5.5.7 415 / 577

Caution

Although suspending an application on a phone and waking it up via the mobile push notification service extends battery

life, the whole mobile push notification concept is the best effort framework provided by Apple and Google for iOS and

Android respectively, and therefore does not guarantee 100% reliability.

16.2.2.1 Architecture

If the mobile push functionality is enabled and there are no devices registered for a subscriber, the call-flow looks as follows.

Figure 139: Mobile Push Workflow

1. The caller sends INVITE to proxy

2. The callee is offline, proxy forwards the call to AS (application server)

3. AS subscribes to the callee’s registration events on proxy

4. AS sends early media to the caller as a feedback, as the call initiation process might take a while

5. AS sends the push request to GCM/APNS service

6. GCM/APNS service delivers the push request to the callee

415

The sip:carrier Handbook mr5.5.7 416 / 577

7. The callee accepts the push request and confirms the mobile application start (unattended on Android), then the mobile

application registers to proxy

8. Proxy sends registration notification to AS

9. AS deflects the call back to proxy

10. Proxy sends INVITE to the callee

11. The callee accepts the call

12. The response is sent back to the caller. Hence, the call setup is completed

In the case of a time-out (no registration notification within a particular time), the application server rejects the call request with an

error.

16.2.2.2 The Configuration Checklist

Follow this checklist to make sure you’ve completed all the steps. If you miss anything, the service may not work as expected.

Name Description Link

Obtain a trusted SSL certificate from a

CA

Required for either application Section 16.2.2.3

Create an Apple developer account

and enable the push notification

service

For iOS mobile application Section 16.2.2.4

Obtain the Apple certificate for the app For iOS mobile application Section 16.2.2.5

Obtain the API key for the app from

Google

For Android mobile application Section 16.2.2.6

Provide the required information to

developers

It is required to make beta builds and

publish the apps

Section 16.2.2.7

Adjust the configuration Adjust the config.yml file and apply the

changes (usually performed by

Sipwise)

Section 16.2.2.8

Recheck your DNS Zone configuration Check that the DNS Zone is correctly

configured

Section 16.2.2.9

Add DNS SRV records Create specific DNS SRV records for

SIP and XMPP services

Section 16.2.2.10

Check NTP configuration Ensure that all your servers show

exact time

Section 16.2.2.11

Enable Apple/Google Mobile Push in

the Admin Panel

It can be enabled for a domain or

separate subscribers

Section 16.2.2.12

Configure a mobile application Check that subscribers can easily

install and use your application

Section 16.2.2.13

416

The sip:carrier Handbook mr5.5.7 417 / 577

16.2.2.3 Obtain the Trusted SSL Certificate

A trusted SSL certificate is required, and we suggest obtaining it before starting the configuration.

The mobile application uses respective iOS/Android libraries to establish a secure TLS connection with certain sip:carrier services,

such as SIP/XMPP/pushd(https). A signed SSL certificate is required to guarantee the security of this connection.

Any Certificate Authority (CA) such as Verisign and others can provide you with the required trusted SSL certificate (a certificate

and the key files) which you will use in the configuration below.

16.2.2.4 Create an Apple Account and Enable the Push Notification Service

Below is a brief instruction on how to create an Apple account and enable the Push Notification Service in it. You may need to

perform additional steps depending on your project.

Note

You may only create an Apple account (step 1 below) and enroll into the Apple Developer Program (step 2 below) and Sipwise

developers will do the rest. Still, you can perform all the steps by yourself.

1. Create an Apple developer account to get the Apple ID for your company. For this, go to developer.apple.com/account

2. Enrol in the Apple Developer Program. It is required to configure push notifications as you will need a push notification

certificate for your App ID, which requires the Apple Developer Program membership. Go to developer.apple.com/programs

for more details.

3. Register an App ID:

• Sign into developer.apple.com/account.

417

The sip:carrier Handbook mr5.5.7 418 / 577

• Click Certificates, IDs & Profiles.

• Under Identifiers, select App IDs.

• Click the Add button (+) in the upper-right corner.

418

The sip:carrier Handbook mr5.5.7 419 / 577

• Enter a name for the App ID in the App ID Description block. This helps you identify the App ID later.

• Select Explicit App ID and enter the app’s bundle ID in the Bundle ID field. Note that an explicit App ID exactly matches

the bundle ID of an app you are building — for example, com.example.push. An explicit App ID can not contain an asterisk

(*).

419

The sip:carrier Handbook mr5.5.7 420 / 577

• In the App Services section enable Push Notifications. Click Continue to submit the form

420

The sip:carrier Handbook mr5.5.7 421 / 577

• Click Submit to create the App ID.

16.2.2.5 Obtain an Apple SSL Certificate and a Private Key

1. Create a CSR (Certificate Signing Request):

• Sign into developer.apple.com/account/ios/certificate.

• Click the Add button (+) in the upper-right corner.

• Select Apple Push Notification service SSL (Sandbox & Production) as the certificate type and click Continue.

421

The sip:carrier Handbook mr5.5.7 422 / 577

• Select your App ID and click Continue.

422

The sip:carrier Handbook mr5.5.7 423 / 577

• Read the information about creating a CSR.

• Follow the instructions to create a CSR using Keychain Access in MAC.

Note

If you do not have access to a Mac, you can still create a CSR in Linux or Windows using OpenSSL, for example.

2. Get the Certificate and Private Key

• When you have the CSR file return to the browser and click Continue.

423

The sip:carrier Handbook mr5.5.7 424 / 577

• Click Choose File. . . in your browser.

424

The sip:carrier Handbook mr5.5.7 425 / 577

• Select the CSR file you just created and saved and click Continue.

425

The sip:carrier Handbook mr5.5.7 426 / 577

• Click Download to download the certificate (give it the aps.cer name).

• Open the downloaded certificate file (it should automatically be opened in Keychain Access, otherwise open it manually

in Keychain Access).

• Find the certificate you just opened/imported in Keychain Access.

• Expand the certificate to show the Private Key.

• Select only the Private Key portion of the certificate, right-click on it and select Export "Common Name". . . from the menu.

• Choose a location (e.g. Desktop) and filename to export the .p12 file to and click Save.

• Optionally pick a password for the .p12 file to protect its private key contents and click OK. (You will then need to enter

your log-in password to permit the export).

3. Generate a PEM file from the p12 file:

• Open up your terminal and run the following commands to create a PEM file from the p12 file (If you input a password for

the p12 file, you will need to enter it here):

cd ~/Desktop

openssl x509 -in aps.cer -inform der -out PushChatCert.pem

openssl pkcs12 -in PushChatCert.p12 -out PushCertificate.pem -nodes -clcerts

openssl pkcs12 -nocerts -out PushChatKey.pem -in PushChatKey.p12

426

The sip:carrier Handbook mr5.5.7 427 / 577

16.2.2.6 Obtain the API Key for the App from Google

You can use Google Cloud Messaging (GCM) to send push notifications to your subscribers with Android-based mobile devices.

Google Cloud Messaging is a free service that acts as an intermediary between the NGCP and devices of your subscribers.

Google’s Cloud Connection Server (CCS), a part of GCP, manages the persistent connections with mobile devices to deliver your

push notifications.

While communicating with CCS, the NGCP identifies itself using an API key. To get it, follow the steps below.

1. Create a new project in the Google APIs Console page. For this go to code.google.com/apis/console.

2. Click Create a Project..

427

The sip:carrier Handbook mr5.5.7 428 / 577

3. Input the project name, agree with the Terms of Service and click Create.

4. Click Google Cloud Messaging on the Overview page.

428

The sip:carrier Handbook mr5.5.7 429 / 577

5. Click Enable for the Google Cloud Messaging.

6. Click Go to Credentials.

429

The sip:carrier Handbook mr5.5.7 430 / 577

7. Select Google Cloud Messaging and Web Server from the corresponding lists and click What credentials do I need?

8. Adjust the API Key name and input the IP addresses of all your load balancers under Accept requests from these server IP

addresses. Click Create API key.

430

The sip:carrier Handbook mr5.5.7 431 / 577

Note

You may skip adding the IP addresses, otherwise list ALL your load balancers.

9. Copy your API key and click Done. Save the API key for future use.

16.2.2.7 Provide the Required Information to Developers

Please, provide Sipwise developers with the following files and information so that they can make beta builds and submit the

application to the App Store:

• Access to your Apple developer account

• The trusted SSL certificate and its private key

• The Apple SSL certificate and its private key

431

The sip:carrier Handbook mr5.5.7 432 / 577

For the Android application, provide the following:

• Access to your Google developer account

• Google application API key

16.2.2.8 Adjust the sip:carrier Configuration (Usually Performed by Sipwise)

1. Upload the Apple SSL certificate (PushChatCert.pem) and the private key (PushChatKey.pem) to /etc/ngcp-config/ssl/

2. Upload the trusted SSL certificate (CAsigned.crt) and the private key (CAsigned.key) to /etc/ngcp-config/ssl/

3. Specify the corresponding paths and names in the pushd section of the config.yml file:

• apns: section (For iOS mobile application)

– certificate: ’/etc/ngcp-config/ssl/PushChatCert.pem’

– enable: yes

– key: ’/etc/ngcp-config/ssl/PushChatKey.pem’

• enable: yes

• gcm: section (for Android mobile application)

– enable: yes

– key: ’google_server_api_key_here’

• ssl: yes

• sslcertfile: /etc/ngcp-config/ssl/CAsigned.crt

• sslcertkeyfile: /etc/ngcp-config/ssl/CAsigned.key

You can find an example of /etc/ngcp-config/config.yml configuration in the config.yml overview section.

4. Apply your changes:

ngcpcfg apply ’enabled the backup feature.’

ngcpcfg push all

16.2.2.9 Recheck Your DNS Zone Configuration

Check that your NS and A DNS records are correctly configured.

Let’s consider the following example: * the load-balancers have the lb01a.example.com and the lb01b.example.com names * the

shared name is lb01.example.com and the shared IP address is 1.1.1.1 * the service name is voipservice.example.com

The following DNS records must be present:

Server Name Record type IP Address

lb01a.example.com A 1.2.3.4

lb01b.example.com A 5.6.7.8

lb01.example.com A 1.1.1.1

voipservice.example.com A 1.1.1.1
432

apcs01.html#xpushd

The sip:carrier Handbook mr5.5.7 433 / 577

16.2.2.10 Add SRV Records to DNS

Add at least one record for each service: xmpp-server, xmpp-client, sips.

A regular SRV record has the following form:

_service._proto.name. TTL class SRV priority weight port target

• service: the symbolic name of the service (xmpp-server, xmpp-client, sips).

• proto: the transport protocol of the desired service (TCP).

• name: the domain name (ending in a dot).

• TTL: standard DNS time to live field.

• class: the standard DNS class field (this is always IN).

• priority: the priority of the target host (lower value means more preferred).

• weight: a relative weight for records with the same priority (the higher the value, the more requests will be sent).

• port: the TCP or UDP port of the service.

• target: the canonical hostname of the machine providing the service (ending in a dot).

Here are examples of the SRV records:

_xmpp-server._tcp.voipservice.example.com. 18000 IN SRV 10 50 5269 voipservice.example.com.

_xmpp-client._tcp.voipservice.example.com. 18000 IN SRV 10 50 5222 voipservice.example.com.

_sips._tcp.voipservice.example.com. 18000 IN SRV 10 100 5061 voipservice.example.com.

You can always check whether the required SRV records are configured by executing the following commands:

dig SRV _xmpp-client._tcp.voipservice.example.net

dig SRV _xmpp-server._tcp.voipservice.example.net

dig SRV _sips._tcp.voipservice.example.net

16.2.2.11 Check NTP Configuration

We strongly suggest that the clocks of all the nodes within the platform are synchronized. To ensure this, check that the NTP

service is correctly configured on all your sip:carrier servers and works reliably. Execute the following command for quick test of

time synchronization:

ntpq -p

If the current node synchronizes with an NTP server, this server will be marked by the star (*) symbol.

433

The sip:carrier Handbook mr5.5.7 434 / 577

16.2.2.12 Enable Apple/Google Mobile Push

It can be enabled for a domain or separate subscribers in the Admin Panel.

To enable the service for a domain:

1. Go to Settings→Domains and click on the Preferences button of the domain you want to enable Apple/Google Mobile Push

for.

2. Go to the Internals group and enable the mobile_push_enable parameter.

16.2.2.13 Perform Tests

Perform tests when the application is available:

1. Download and install the application.

2. Open the application and input your registration username in the username@domain.name format and password.

3. Review the quality of application branding.

4. Make test calls.

5. Test the presence functionality.

6. Test the chat and group chat.

7. Test messaging.

8. Test the sharing functionality (e.g. pictures, video and voice messages and maps).

9. Check the application phone book integration with the phone’s one

Make sure that the subscribers can start using your services in the easiest possible way.

434

The sip:carrier Handbook mr5.5.7 435 / 577

16.3 Lawful Interception

16.3.1 Introduction

The Sipwise sip:carrier, as a communications platform carrying voice, fax and messaging data has to provide means for lawful

interception of the content of communication by third party entities. Those Law Enforcement Agencies (LEAs) have to be able

to connect to the Sipwise NGCP platform in a standardized way — ETSI, 3GPP and other organisations define the interface (and

data exchange) between telecommunication operators and LEAs.

High level overview of lawful interception is shown in the following figure:

Figure 140: LI: High Level Overview

Main interfaces of lawful interception according to ETSI standard:

435

The sip:carrier Handbook mr5.5.7 436 / 577

Figure 141: LI: ETSI Interfaces

16.3.1.1 Terms and Abbreviations

Content of Communication (CC)
Information exchanged between two or more users of a telecommunications service, excluding Intercept Related Informa-

tion.

Note

This includes information which may, as part of some telecommunications service, be stored by one user for subsequent

retrieval by another.

CC Internal Interception Function (CC-IIF)
The CC-IIF shall cause the CC, specified by the CCTF, via the CCCI to be duplicated and passed to the MF.

Content of Communication Control Interface (CCCI)
Carries controls information from the CCTF to the CC-IIF.

CC Trigger Function (CCTF)
The purpose of the CCTF is to determine the location of the CC-IIF device associated to the target CC traffic, and to control

the CC-IIF via the CCCI interface.

Content of Communication Trigger Interface (CCTI)
Carries trigger information from the IRI-IIF to the CCTF.

436

The sip:carrier Handbook mr5.5.7 437 / 577

Handover Interface (HI)
Physical and logical interface across which the interception measures are requested from an operator, and the results of

interception are delivered from an operator to an LEMF.

Intercept Related Information (IRI)
Collection of information or data associated with telecommunication services involving the target identity, specifically call or

service associated information or data (e.g. call identifier, unsuccessful call attempts) and location information.

Intercept Related Information Internal Interception Function (IRI-IIF)
The purpose of the IRI-IIF is to generate IRI information associated with sessions, calls, connections and any other infor-

mation involving interception targets identified by Law Enforcement Agency (LEA) sessions.

Internal Network Interface (INI)
Network’s internal interface between the Internal Intercepting Function and a mediation function.

Law Enforcement Agency (LEA)
Organization authorized, by a lawful authorization based on a national law, to request interception measures and to receive

the results of telecommunications interceptions.

Law Enforcement Monitoring Facility (LEMF)
Law enforcement facility designated as the transmission destination for the results of interception relating to a particular

interception subject.

Lawful Interception Administration Function (AF)
The AF ensures that an intercept request from a LEA for IRI or CC or both is provisioned for collection from the network,

and subsequent delivery to the LEMF.

Lawful Interception Mediation Function (MF)
Mechanism which passes information between an access provider or network operator or service provider and a handover

interface.

1. Firstly it receives information related to active intercepts from the IRI-IIF(s) and CC-IIF(s) within the service provider

network.

2. Secondly correlates and formats that IRI and CC information in real time for delivery to the LEMF over the HI2 and HI3

handover Interfaces.

X1, X2 and X3 Interfaces
The 3GPP standard for Lawful Interception defines the handover interfaces with different names compared to the ETSI

standard. The Xn interface corresponds to the INIn interface and is functionally identical to the INIn interface.

16.3.2 Architecture and Configuration of LI Service

Sipwise sip:carrier platform implements the functions defined by LI requirements in a way that it relies on a third party provider for

the Lawful Interception Mediation Function (MF).

Regarding other LI functions that are defined by ETSI / 3GPP standards there are 2 possible implementations:

437

The sip:carrier Handbook mr5.5.7 438 / 577

1. Sipwise NGCP behaves as the Administration Function (AF) but the actual call data capturing is carried out by other SIP

endpoints. In this case NGCP forwards the calls to be intercepted to its SIP peers dedicated for LI service. Within the

scope of SIP peer based solution there are still 2 modes of operation:

• Call loopback to NGCP: the LI peer receives the call, extracts IRI and CC data and then routes the call back to NGCP.

NGCP handles the looped back call as if that was initiated from NGCP and sets up the second call leg to the destination.

• Call forwarded by peer directly to destination: in this case NGCP will handle the call to LI peer as an ordinary second call

leg to the destination.

2. Sipwise NGCP itself provides the required LI functions: AF and call data capturing; IRI and CC of intercepted calls are

fowarded to the third party MF from NGCP.

This handbook will discuss the second setup in details in the following sections.

The below figure illustrates the logical connection of LI functions on Sipwise NGCP.

Figure 142: LI with 3rd Party Provider

438

The sip:carrier Handbook mr5.5.7 439 / 577

16.3.2.1 Architecture Based on Captagent Module

Note

This kind of LI implementation will be phased out in future NGCP releases. A short description is kept here for reference, as

NGCP still (as of version mr4.5.2) supports LI services with captagent module.

The captagent based implementation of LI functions on Sipwise NGCP includes the following components:

• captagent: a software module provided by a third party; its operation can be summarized as follows:

1. the captagent process gets LI requests through an API

2. the process listens for and analyses SIP (INVITE) messages; based on the message headers it decides whether the SIP

session must be intercepted

3. in case the session must be intercepted, captagent sends IRI through X2 interface to the MF element

4. based on the SDP data, the process captures session media and forwards that through X3 interface to the MF element

• third party MF: Group2000’s LIMA system playes the role of Mediation Function (MF) and interacts with captagent module,

using X1, X2 and X3 interfaces.

16.3.2.2 Architecture Based on Voisniff-NG Module

Although the implementation of LI services with captagent is still available and configurable on sip:carrier, Sipwise suggests

deploying a revised solution with its voisniff-ng software module. This newer implementation also relies on a 3rd party LI

provider representing the LI Mediation Function (MF), where Sipwise currently (as of NGCP version mr4.5.2) cooperates with

Group2000, Pine and Utimaco.

Sipwise NGCP components providing LI functions:

• ngcp-panel: this module is responsible for managing REST API for the whole NGCP in general

– runs on: web01 node on a sip:carrier platform

– LI functions: AF; INI1 / X1 interface towards the MF

• kamailio-proxy: this module serves as a generic call control function on the NGCP

– runs on: typically prx01 node on a sip:carrier platform

– LI functions: CCTF and IRI-IIF; INI2 / X2 interface towards the MF

• voisniff-ng: this module is a generic element for capturing SIP and RTP traffic on the NGCP

– runs on: typically lb01 node on a sip:carrier platform

– LI functions: CC-IIF; INI3 / X3 interface towards the MF

439

The sip:carrier Handbook mr5.5.7 440 / 577

Note

Please keep in mind that voisniff-ng module is not installed by default on Sipwise sip:carrier. Please contact Sipwise if

you need to activate LI services on the platform.

Authentication and Confidentiality

It is required that the communication between the telecommunication operator’s network element (that is: Sipwise NGCP) and

the MF be authenticated and confidential, since the intercepted session related data and content of communication must not be

disclosed to any 3rd party. For this purpose NGCP’s LI service applies authentication and LI session data encryption based on

public key cryptography mechanism (TLS).

Both Sipwise NGCP and the MF must authenticate themselves by certificates, for this reason the NGCP operator must ensure

that valid certificates are deployed on the system. There is a need to contact the 3rd party LI provider, so that he can provide the

necessary client certificates that NGCP will use to setup secured connection to the MF on X2 and X3 interfaces.

Similarly, the MF provider must contact the NGCP operator to offer him valid client certificates that the MF element will use to

establish secured connection to the NGCP on X1 interface.

16.3.2.3 Configuration of LI Service

In order to enable LI services on sip:carrier the platform administrator has to explicitly enable lawful interception through the main

configuration file (config.yml).

Here below is a sample configuration, which shows parameters of intercept and voisniff sections.

intercept:

captagent:

cin_max: ’3000’

cin_min: ’0’

country_code: ’49’

debug: ’7’

filter: ’port 5080’

license: ’’

port: ’18090’

prefix_len: ’3’

schema: http

enabled: yes

peer:

acc: no

inbound_prefix: LI_

outbound_prefix: intercept_

type: voisniff

voisniff:

admin_panel: no

daemon:

bpf: ’udp or ip6 proto 44 or ip[6:2] & 0x1fff != 0’

440

The sip:carrier Handbook mr5.5.7 441 / 577

external_interfaces: vlan31 vlan35 vlan61 vlan51

filter:

exclude:

- active: ’0’

case_insensitive: ’1’

pattern: ’\ncseq: *\d+ +(register|notify|options)’

include: []

internal_interfaces: lo

li_x1x2x3:

call_id:

suffix:

- _pbx-1

- _b2b-1

- _xfer-1

client_certificate: /etc/ngcp-config/ssl/li/x23_client/x23_client_cert.pem

enabled: yes

fix_checksums: no

fragmented: no

interface:

excludes: []

local_name: sipwise

private_key: /etc/ngcp-config/ssl/li/x23_client/x23_client_cert_priv_key.pem

x1:

port: ’18090’

mysql_dump:

enabled: no

num_threads: ’4’

mysql_dump_threads: ’4’

start: yes

threads_per_interface: ’10’

partitions:

increment: ’700000’

keep: ’10’

Configuration Parameters

intercept.enable

Set it to yes if you want to activate LI service. Default: no

intercept.peer.acc

Calls to be intercepted may be forwarded to LI peers. The LI peer may forward the call to the original destination, without

looping the call back to NGCP. Set this parameter to yes if you want to enable billing for such calls. Default: no

intercept.peer.inbound_prefix

Calls to be intercepted may be forwarded to LI peers. This parameter specifies the prefix that is prepended to SIP usernames

when the call is looped back to NGCP, in order to avoid sending the call again to any LI peer. Used by NGCP internally.

Default: LI_

441

The sip:carrier Handbook mr5.5.7 442 / 577

intercept.peer.outbound_prefix

Calls to be intercepted may be forwarded to LI peers. This parameter specifies the prefix that is prepended to SIP usernames

when the call is routed to an LI peer. It will be stripped off by rewrite rules of the peer, before sending the call effectively to

the peer. Used by NGCP internally. Default: intercept_

intercept.type

The LI service provider module; allowed values are:

• none: LI service is not activated

• peer: LI service is activated and call data capturing is performed by SIP peers

• captagent: LI service is activated and call data capturing is performed by captagent module

• voisniff: LI service is activated and call data capturing is performed by voisniff module

Default: none

voisniff.admin_panel , voisniff.daemon.mysql_dump.* , voisniff.partitions.*
These parameters are not used in LI configuration, but only for call statistics which can be retrieved through the Admin web

interface.

voisniff.daemon.bpf

This sets the basic packet filter applied by voisniff-ng module when capturing packets on network interfaces. Default:

"port 5060 or 5062 or ip6 proto 44 or ip[6:2] & 0x1fff != 0"

Note

The default value basically allows capturing SIP traffic only. It is usually necessary to modify the parameter in order

to capture both SIP and RTP traffic. An example of such a value: "udp or ip6 proto 44 or ip[6:2] &

0x1fff != 0".

voisniff.daemon.external_interfaces

This is a list of network interfaces (typically VLAN IDs) where voisniff-ng should listen for and capture packets.

Tip

VLAN interfaces have to be listed when they are used for intercepted calls. On the other hand virtual interfaces for

additional IP addresses (e.g. eth0:1) do not have to be listed separately, because the base interface (e.g. eth0) will be

used to capture packets.

voisniff.daemon.filter.exclude

Additional filter to determine packets that need to be excluded from capturing. This configuration parameter is a list of items,

each of them has 3 components:

• active: Determines whether the filter is active or not. Allowed values are: 0 (false/inactive; this is the default) or 1

(true/active).

• case_insensitive: Determines whether the pattern is case-insensitive (1; this is the default) or not (0).

• pattern: A regular expression providing the matching pattern for packets that have to be filtered.

442

The sip:carrier Handbook mr5.5.7 443 / 577

voisniff.daemon.filter.include

Additional filter to determine packets that need to be included in capturing. The parameter has the same syntax as voisn

iff.daemon.filter.exclude.

voisniff.daemon.internal_interfaces

A list of network interfaces which are considered only for internal communication between voisniff-ng and other NGCP

components. Packets on these interfaces are not captured.

voisniff.daemon.li_x1x2x3.call_id.suffix

List of NGCP-internal Call-ID suffix patterns that should be ignored when determining the original SIP Call-ID of an inter-

cepted call.

Caution

Please do not change these patterns unless instructed to do so by a Sipwise engineer! Changing the patterns

may result in falsely recognised Call-IDs and eventually missed SIP messages during an intercepted call.

voisniff.daemon.li_x1x2x3.client_certificate

The client certificate that NGCP uses to connect over TLS to a 3rd party LI provider.

voisniff.daemon.li_x1x2x3.enabled

Set it to yes to enable LI services via X1, X2 and X3 interfaces. Default: no

voisniff.daemon.li_x1x2x3.fix_checksums

When enabled (= yes), NGCP will calculate UDP header checksum for packets sent out on X2 and X3 interfaces. This is

necessary when the checksum calculation is normally left to the network interface hardware and therefore the UDP header

checksum is inherently incorrect on application level. Also the UDP checksum must be calculated by voisniff-ng on re-

assembled packets, so enable this option if there are fragmented packets in intercepted call traffic. Default: disabled (=

no)

voisniff.daemon.li_x1x2x3.fragmented

When disabled (= no), voisniff-ng defragments all packets and sends out only reassembled packets via X2 and X3 inter-

faces. If the option is enabled (= yes), voisniff-ng will instead send out the original fragments via X2 and X3. Default:

no

voisniff.daemon.li_x1x2x3.interface.excludes

This is a list of interfaces that must be excluded from the interception procedures. The list contains regular expressions that

describe the to-be-exluded interfaces, for example: - ˆlo$ to exclude the loopback interface. Default: empty list

voisniff.daemon.li_x1x2x3.local_name

This parameter maps to the header.source field of the X2 protocol. It’s an arbitrary string and can be used to identify

the sending NGCP system. Default: sipwise

Note

As of NGCP version mr4.5.2, this is currently not used.

voisniff.daemon.li_x1x2x3.private_key

The private key that NGCP uses to connect over TLS to a 3rd party LI provider. Only necessary if the client certificate file

does not include the private key.

443

The sip:carrier Handbook mr5.5.7 444 / 577

voisniff.daemon.li_x1x2x3.x1.port

The port number on which voisniff-ng listens for incoming X1 messages. Default: 18090

Caution

You should leave the parameter set to the default value, unless there is a good reason to change it. The default

value ensures backward compatibility with captagent LI module.

voisniff.daemon.start

Determines whether voisniff service must be started on the platform. Set it to yes if you’d like to activate voisniff

that is needed for LI service too. Default: no

voisniff.daemon.threads_per_interface

This is a performance tuning option and controls how many threads per enabled sniffing interface should be launched.

Example: if it’s set to 10 and 3 interfaces are enabled for sniffing, a total of 30 threads will be launched. Default: 2

Caution

Do not set it to a high number, or simply leave it at its default value, unless there is a performance problem with

voisniff service. Please keep in mind that a high number of threads might also decrease the overall system

performance of NGCP!

16.3.3 X1, X2 and X3 Interface Specification

Short description of Xn interfaces:

• The X1 interface is used by an LI provider to create, modify, delete and list interceptions on the Sipwise NGCP. It is designed as

RESTful HTTP interface using JSON (with JSON-HAL in responses from the NGCP) as content type to provision interceptions.

• The X2 interface is a TLV based interface with JSON payload with a simple request/response mechanism over a secure TLS

connection, used to pass intercepted signaling data towards an LI provider.

• The X3 interface is also a TLV based interface with a binary payload encapsulating the intercepted RTP data.

16.3.3.1 X1 Interface

The resource used to work with interceptions is always https://ngcp-ip:1443/api/interceptions/

Authentication

Authentication and authorization on the NGCP API is performed via HTTP Basic Auth or SSL Client certificates.

• HTTP Basic Auth: With cURL use --user username:password option to specify your access credentials.

curl -i - X GET -- user myuser:mypassword https://example.org:1443/api/interceptions/

Additionally use the --insecure option if you are testing against a self-signed server certificate.

444

The sip:carrier Handbook mr5.5.7 445 / 577

• SSL Client Authentication: You can generate and download client certificates for administrators and resellers via the NGCP

Panel in the Administrators view.

For the actual client authentication, you will need two files which you can download from the panel after creating the client

certificates:

1. The client certificate generated via the NGCP Panel. This is usually labelled NGCP-API-client-certificate-xxxxx.pem.

2. The CA certificate used to sign the server certificate, in case it as been self-signed or the CA is not recognized by the

client host environment.

With cURL use --cert /path/to/NGCPAPIclientcertificatexxxxx.pem to specify the client certificate, and -

-cacert /path/to/cacert.pem to specify the CA certificate in case of a self-signed server certificate.

curl -i - X GET --cert /path/to/NGCPAPIclientcertificatexxxxx.pem \

-- cacert /path/to/cacert.pem https://example.org:1443/api/interceptions/

Additionally use the --insecure option if you are testing against a self-signed server certificate.

API Description

Collection Actions
Allowed methods for the collection as in METHOD /api/interceptions/

• OPTIONS

• POST

• GET

• HEAD

Item Actions
Allowed methods for a collection item as in METHOD /api/interceptions/id

• PATCH

• OPTIONS

• DELETE

• PUT

• GET

• HEAD

Properties

• liid (Number): The LI ID for this interception.

• number (String): The number to intercept.

• x2_host (String): The IP address of the X2 interface.

• x2_password (null, String): The password for authenticating on the X2 interface.

• x2_port (Number): The port of the X2 interface.

• x2_user (null, String): The username for authenticating on the X2 interface.

445

The sip:carrier Handbook mr5.5.7 446 / 577

• x3_host (null, String): The IP address of the X3 interface.

• x3_port (null, Number): The port of the X3 interface.

• x3_required (null, Boolean): Whether to also intercept call content via X3 interface (false by default).

Query Parameters

• liid: Filter for interceptions of a specific interception ID

• number: Filter for interceptions of a specific number (in E.164 format)

• order_by: Order collection by a specific attribute. Possible values are: id, reseller_id, liid, number, c

c_required, delivery_host, delivery_port, delivery_user, delivery_pass, modify_t

imestamp, create_timestamp, deleted, uuid, sip_username, sip_domain, cc_delivery

_host, cc_delivery_port

• order_by_direction: Direction which the collection should be ordered by. Possible values are: asc (default

), desc

API Examples

Get a specific interception

• Request:

curl - i -- insecure -- user administrator:administrator - X GET

https://localhost:1443/api/interceptions/528

• Response:

HTTP/1.1 200 OK

Server: nginx

Date: Tue, 01 Dec 2015 09:43:41 GMT

ContentType: application/hal+json; profile="http://purl.org/sipwise/ngcpapi/";

charset=utf 8

ContentLength: 634

Connection: keepalive

Link: </api/interceptions/>; rel=collection

Link: <http://purl.org/sipwise/ngcpapi/>; rel=profile

Link: </api/interceptions/528>; rel="item self"

SetCookie: ngcp_panel_session=35b56d921c36c1fc6edb8fcd0a86dd9af61ec62a; path=/;

expires=Tue, 01 D e c 2015 10:43:41 GMT; HttpOnly

StrictTransportSecurity: maxage=15768000

{

"_links" : {

"collection" : {

"href" : "/api/interceptions/"

},

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

446

The sip:carrier Handbook mr5.5.7 447 / 577

"templated" : true

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/528"

}

},

"id" : 528,

"liid" : 918273,

"number" : "0014155550132",

"x2_host" : "192.168.42.42",

"x2_password" : null,

"x2_port" : 3002,

"x2_user" : null,

"x3_host" : "192.168.42.42",

"x3_port" : 3003,

"x3_required" : true

}

Get all interceptions for a number

• Request:

curl - i -- insecure -- user administrator:administrator - X GET \

https://localhost:1443/api/interceptions/?number=0014155550132

• Response:

HTTP/1.1 200 OK

Server: nginx

Date: Tue, 01 Dec 2015 09:47:36 GMT

ContentType: application/hal+json; profile="http://purl.org/sipwise/ngcpapi/";

charset=utf 8

ContentLength: 1283

Connection: keepalive

SetCookie: ngcp_panel_session=238550c5737058db619b183d925b5f9a61261cfe; path=/;

expires=Tue, 01 Dec 2015 10:47:36 GMT; HttpOnly

StrictTransportSecurity: maxage=15768000

{

"_embedded" : {

"ngcp:interceptions" : {

"_links" : {

"collection" : {

"href" : "/api/interceptions/"

},

"curies" : {

447

The sip:carrier Handbook mr5.5.7 448 / 577

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/520"

}

},

"id" : 520,

"liid" : 1,

"number" : "0014155550132",

"x2_host" : "192.168.42.42",

"x2_password" : null,

"x2_port" : 3002,

"x2_user" : null,

"x3_host" : "192.168.42.42",

"x3_port" : 3003,

"x3_required" : true

}

},

"_links" : {

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"ngcp:interceptions" : {

"href" : "/api/interceptions/520"

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/?page=1&rows=10"

}

},

"total_count" : 1

}

Get all interceptions for all numbers

• Request:

curl - i -- insecure -- user administrator:administrator - X GET \

448

The sip:carrier Handbook mr5.5.7 449 / 577

https://localhost:1443/api/interceptions/

• Response:

HTTP/1.1 200 OK

Server: nginx

Date: Tue, 01 Dec 2015 09:43:18 GMT

ContentType: application/hal+json; profile="http://purl.org/sipwise/ngcpapi/";

charset=utf 8

ContentLength: 2364

Connection: keepalive

SetCookie: ngcp_panel_session=68398eea5bdd3885ad0517e1f6d367ccc80111fa; path=/;

expires=Tue, 01 Dec 2015 10:43:18 GMT; HttpOnly

StrictTransportSecurity: maxage=15768000

{

"_embedded" : {

"ngcp:interceptions" : [

{

"_links" : {

"collection" : {

"href" : "/api/interceptions/"

},

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/520"

}

},

"id" : 520,

"liid" : 1,

"number" : "0014155550132",

"x2_host" : "192.168.42.42",

"x2_password" : null,

"x2_port" : 3002,

"x2_user" : null,

"x3_host" : "192.168.42.42",

"x3_port" : 3003,

"x3_required" : true

},

{

"_links" : {

"collection" : {

449

The sip:carrier Handbook mr5.5.7 450 / 577

"href" : "/api/interceptions/"

},

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/528"

}

},

"id" : 528,

"liid" : 918273,

"number" : "0014155550132",

"x2_host" : "192.168.42.42",

"x2_password" : null,

"x2_port" : 3002, "x2_user" : null,

"x3_host" : "192.168.42.42",

"x3_port" : 3003,

"x3_required" : true

}

]

},

"_links" : {

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"ngcp:interceptions" : [

{

"href" : "/api/interceptions/520"

},

{

"href" : "/api/interceptions/528"

}

],

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/?page=1&rows=10"

}

},

"total_count" : 2

450

The sip:carrier Handbook mr5.5.7 451 / 577

}

Get interception for specific LIID

• Request:

curl - i -- insecure -- user administrator:administrator -X GET \

https://localhost:1443/api/interceptions/?liid=9876

• Response:

HTTP/1.1 200 OK

Server: nginx

Date: Tue, 01 Dec 2015 09:50:41 GMT

ContentType: application/hal+json; profile="http://purl.org/sipwise/ngcpapi/";

charset=utf 8

ContentLength: 1283

Connection: keepalive

SetCookie: ngcp_panel_session=23960dde6bb90f0c5c84575890194c53cce120ce; path=/;

expires=Tue, 01 Dec 2015 10:50:40 GMT; HttpOnly

StrictTransportSecurity: maxage=15768000

{

"_embedded" : {

"ngcp:interceptions" : {

"_links" : {

"collection" : {

"href" : "/api/interceptions/"

},

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/520"

}

},

"id" : 520,

"liid" : 1,

"number" : "0014155550132",

"x2_host" : "192.168.42.42",

"x2_password" : null,

"x2_port" : 3002,

"x2_user" : null,

"x3_host" : "192.168.42.42",

451

The sip:carrier Handbook mr5.5.7 452 / 577

"x3_port" : 3003,

"x3_required" : true

}

},

"_links" : {

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"ngcp:interceptions" : {

"href" : "/api/interceptions/520"

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/?page=1&rows=10"

}

},

"total_count" : 1

}

Create interception for a specific number

• Request:

curl - i -- insecure -- user administrator:administrator -X POST \

- H "ContentType: application/json" --data \

’{"liid":123, "number":"31032222203", "x2_host":"127.0.0.1", "x2_port":12345,

"x3_required":true, "x3_host":"127.0.0.2", "x3_port":23456}’ \

https://localhost:1443/api/interceptions/

• Response:

HTTP/1.1 201 Created

TransferEncoding: chunked

Connection: close

Location: /api/interceptions/528

SetCookie: ngcp_panel_session=e7817079d121fae4d86448b10e1fa21d0201c526; path=/;

expires=Tue, 01 Dec 2015 10:43:18 GMT; HttpOnly

StrictTransportSecurity: maxage=15768000

The path to the newly created interception is found in the Location header of the response.

Update specific interception

• Request:

452

The sip:carrier Handbook mr5.5.7 453 / 577

curl - i -- insecure -- user administrator:administrator -X PUT \

- H "ContentType: application/json" - H ’Prefer: return=representation’ -- data \

’{"liid":918273, "number":"0014155550132", "x2_host":"192.168.42.42", "x2_port":5000,

"x3_required":false}’ \

https://localhost:1443/api/interceptions/123

• Response:

HTTP/1.1 200 OK

ContentType: application/hal+json; profile="http://purl.org/sipwise/ngcpapi/";

charset=utf 8

ContentLength: 621

Link: </api/interceptions/>; rel=collection

Link: <http://purl.org/sipwise/ngcpapi/>; rel=profile

Link: </api/interceptions/530>; rel=self

PreferenceApplied: return=representation

SetCookie: ngcp_panel_session=0b56e4a197b0e9f6e22a998e85473a0184770740; path=/;

expires=Tue, 01 Dec 2015 10:56:17 GMT; HttpOnly

{

"_links" : {

"collection" : {

"href" : "/api/interceptions/"

},

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/530"

}

},

"id" : 530,

"liid" : 918273,

"number" : "0014155550132",

"x2_host" : "192.168.42.42",

"x2_password" : null,

"x2_port" : 5000,

"x2_user" : null,

"x3_host" : null,

"x3_port" : null,

"x3_required" : false

}

The Prefer: return=representation header forces the API to return the content, otherwise status 201 with no content is returned.

453

The sip:carrier Handbook mr5.5.7 454 / 577

Update only certain items for a specific interception

• Request:

curl - i -- insecure -- user administrator:administrator - X PATCH \

- H "ContentType: application/jsonpatch+json" - H ’Prefer: return=representation’ \

--data ’[{"op":"replace", "path":"/x2_host", "value":"192.168.42.42"},{"op":"replace",

"path":"/x2_port", "value":4000}]’ \

https://localhost:1443/api/interceptions/530

• Response:

HTTP/1.1 200 OK

Server: nginx

Date: Tue, 01 Dec 2015 10:06:06 GMT

ContentType: application/hal+json; profile="http://purl.org/sipwise/ngcpapi/";

charset=utf 8

ContentLength: 620

Connection: close

Link: </api/interceptions/>; rel=collection

Link: <http://purl.org/sipwise/ngcpapi/>; rel=profile

Link: </api/interceptions/530>; rel=self

PreferenceApplied: return=representation

SetCookie: ngcp_panel_session=0693129d63d543a85f96d464ff9a8f807cfc4d18; path=/;

expires=Tue, 01 Dec 2015 11:06:06 GMT; HttpOnly

StrictTransportSecurity: maxage=15768000

{

"_links" : {

"collection" : {

"href" : "/api/interceptions/"

},

"curies" : {

"href" : "http://purl.org/sipwise/ngcpapi/#rel {rel}",

"name" : "ngcp",

"templated" : true

},

"profile" : {

"href" : "http://purl.org/sipwise/ngcpapi/"

},

"self" : {

"href" : "/api/interceptions/530"

}

},

"id" : 530,

"liid" : 918273,

"number" : "0014155550132",

"x2_host" : "192.168.42.42",

"x2_password" : null,

"x2_port" : 4000,

454

The sip:carrier Handbook mr5.5.7 455 / 577

"x2_user" : null,

"x3_host" : null,

"x3_port" : null,

"x3_required" : false

}

Delete specific interception

• Request:

curl - i -- insecure -- user administrator:administrator -X DELETE \

https://localhost:1443/api/interceptions/123

• Response:

HTTP/1.1 204 No Content

Server: nginx

Date: Tue, 01 Dec 2015 10:08:49 GMT

Connection: keepalive

SetCookie: ngcp_panel_session=570c66b66732629766f86b8ed9bd0d64902ae73e; path=/;

expires=Tue, 01 Dec 2015 11:08:49 GMT; HttpOnly

XCatalyst: 5.90042

StrictTransportSecurity: maxage=15768000

16.3.3.2 X2 Interface

The communication via the X2 interface consists of request-response pairs.

Request

The request is formatted as: X2/<bodylength>/<body>

Body part has the following items:

Table 24: X2 Message Body Items

Element Type Length Description

/x2/header/source String arbitrary

length

identifier of Sipwise node which captured the data

/x2/header/destination String arbitrary

length

identifier of LI mediation system

/x2/header/type String arbitrary

length

always "sip" (but later potentially "xmpp" and others too)

/x2/header/version PosInteger arbitrary

length

always "1"

455

The sip:carrier Handbook mr5.5.7 456 / 577

Table 24: (continued)

Element Type Length Description

/x2/header/timestamp String 27 chars format: YYYY-MM-DDThh:mm:ss.ffffffZ; timestamp in

UTC when the X2 package is sent to mediation

/x2/body/dialogid PosInteger arbitrary

length

globally increasing counter for each new communication

dialog (e.g. call)

/x2/body/messageid PosInteger arbitrary

length

increasing counter for each new x2 message within a

dialog, starting from 0

/x2/body/timestamp String 27 chars format: YYYY-MM-DDThh:mm:ss.ffffffZ; timestamp in

UTC when the package has been captured on the wire

/x2/body/interceptions one or more elements containing the following

information, one element per intercepted target:

/x2/body/interceptions/liid PosInteger arbitrary

length

interception id ("liid") as set via X1 interface

/x2/body/interceptions/direction String arbitrary

length

either "totarget" or "fromtarget" from the soft-switch

perspective (if target is the called party, it is "totarget", if

target is the calling party, it is "fromtarget").

/x2/body/data Base64

encoded

arbitrary content of full IP frame and up on the OSI layer; packets

fragmented on the wire are provided in fully assembled

format

Example of full message:

X2/418/

{

"header": {

"source": "prx01a.example.com",

"destination": "x2destination.example.com",

"type": "sip",

"version": 1,

"timestamp": "2015 03 11T09:18:04.729803Z"

},

"body": {

"dialogid": 4,

"messageid": 0,

"timestamp": "2015 03 11T09:18:04.729123Z",

"interceptions": [

{ "liid": 174, "direction": "fromtarget" },

{ "liid": 175, "direction": "totarget" }

],

"data": "<base64 encoded ip,udp/tcp,sip frame>"

}

}

456

The sip:carrier Handbook mr5.5.7 457 / 577

Response

• Success: X2-ACK/0/

• Error: X2-ERR/<length>/<error string>

Keep-Alive Mechanism

A regular keep-alive mechanism with a default value of 10s is used on the connection if it is re-used across multiple messages.

• Request: X2/0/

• Response: X2-ACK/0/

16.3.3.3 X3 Interface

On the X3 interface TLV based packets are sent via secured (TLS) connection on a pre-established stream. X3 messages do not

need to be acknowledged, except for keep-alive messages.

X3 Message Structure

Table 25: X3 Message Structure

Field Length

Header arbitrary

CCCID 4 bytes

MessageId 4 bytes

Timestamp 8 bytes

Payload arbitrary

Header Details

Table 26: X3: Header Details

Field Length Content

type 2 bytes always "X3"

delimiter 1 byte always "/"

length arbitrary ASCII string

delimiter 1 byte always "/"

457

The sip:carrier Handbook mr5.5.7 458 / 577

CCCID Details

dialogid (32 bit in network byte order, reset to 0 after 232-1)

The dialogid is referencing the /x2/body/dialogid field in order to correlate an X3 packet to an X2 call.

MessageId Details

messageid (32 bit in network byte order, reset to 0 after 232-1)

The messageid is a counter within a dialog sequencing the X3 packets sent from the NGCP. This counter is not correlated in

any way with X2, rather than starting at 0 with the first RTP packet captured within a dialog.

Timestamp Details

• seconds (32 bit in network byte order)

• fraction (32 bit in network byte order)

The timestamp represents the Unix epoch starting from 1970-01-01.

Payload Details

Table 27: X3: Payload Details

Field Length

original ip header 20 bytes for v4, 40 bytes for v6

original udp header 8 bytes

original rtp header variable, 12-72 bytes

original rtp payload arbitrary

Keep-Alive Mechanism

A regular keep-alive mechanism with a default value of 10s is used on the connection if it is re-used across multiple messages.

• Request: X3/0/

• Response: X3-ACK/0/

16.4 3rd Party Call Control

16.4.1 Introduction

The Sipwise NGCP offers the possibility to perform call control through 3rd party applications. This functionality, called Party Call

Control and referred to as "PCC" throughout this handbook, is available since mr5.1.1 release.

458

The sip:carrier Handbook mr5.5.7 459 / 577

Incoming calls to local subscribers may be signalled to a 3rd party CAC (Call Admission Control) server. Before accepting (that

is: sending the SIP INVITE request to the called subscriber) or rejecting the call, NGCP will wait for an explicit reply from the CAC

/ PCC server, or a timeout.

Short Messages received by NGCP for a local subscriber may also be signalled to the PCC server. After an explicit reply with

"accepted" status from the PCC server, the NGCP will forward the SM to the final recipient.

Important

Sipwise NGCP does not support delivering SMs to the local subscribers directly. Local subscribers can define a Call

Forward for SMS instead, thus allowing themselves to receive SMs on their mobile phones.

3rd party call control may be implemented in many ways, such as by server-side or client-side applications (e.g. smartphone app).

Note

Please note that the Sipwise NGCP implements a proprietary protocol for PCC deployments and adapting the protocol to

customer needs requires software development from Sipwise.

16.4.2 Details of Call Processing with PCC

16.4.2.1 Overview

The following figure presents the schema of incoming call processing when PCC is involved:

Figure 143: Overview of Party Call Control

The messages / interactions of PCC call processing are:

459

The sip:carrier Handbook mr5.5.7 460 / 577

1. NGCP Load-Balancer receives a SIP INVITE message from the caller.

2. The LB forwards the INVITE to the PROXY component as usual with every incoming call.

3. The PROXY (kamailio-proxy module) checks whether the called subscriber has the PCC feature activated. If this is the

case, it will send an HTTP POST or GET request (configurable) to the PCC server with the most important details of the

call (such as calling and called party numbers, call-ID, a token for internal identification of the session).

4. The PCC server replies with 200 OK HTTP status in order to indicate that it understood the request and will provide the

final status (such as ACCEPTED or REJECTED) of the call later.

• Optional:

– *1) The PCC server requests the subscriber’s confirmation to accept the call for instance via a smartphone app.

– *2) The subscriber indicates accepting the call to the PCC server.

5. The PCC server send an HTTP POST request to the WEB component of NGCP, using the NGCP REST API, to signal

accepting the call.

6. The WEB will reply with 200 OK HTTP status.

7. The WEB sends an internal XMLRPC request to PROXY indicating that the incoming call can be accepted.

8. The PROXY sends the SIP INVITE message to the LB, i.e. it continues the call setup as usual.

9. The LB sends the INVITE to the subscriber.

There are more software modules within NGCP’s components and those are shown separately on the diagrams in following

sections of the handbook. For instance the PROXY component has the kamailio-proxy and ngcp-sems modules.

16.4.2.2 Successful Call Initiation at PCC Server

A subscriber with PCC activated will not receive the SIP INVITE request directly, but only after a series of intermediate CAC (Call

Admission Control) steps, involving the NGCP Proxy and the PCC server. First of those steps is the call initiation at the PCC

server:

Figure 144: Successful Call Initiation with PCC

460

The sip:carrier Handbook mr5.5.7 461 / 577

1. When kamailio-proxy receives the INVITE request from NGCP LB, it will forward the message to ngcp-sems module with 2

private SIP headers:

P-App-Name: party_call_control

P-App-Param: callid="acbd";caller="4369912345";callee="4310001";caller_clir="0";

2. These headers will activate the PCC function in ngcp-sems and it will send an HTTP POST request to the PCC server,

instead of creating the second call leg directly towards NGCP LB. An example of such a request (not all details included):

POST /calls/4310001/initiate HTTP/1.1

Content-Type: application/json

{

"actualMsisdn": 4369912345,

"callingMsisdn": 4310001,

"actualClir": 0,

"callId": "abcd",

"token": "PCC-aijfeoi"

}

where:

• actualMsisdn: calling party number

• callingMsisdn: called party number

• actualClir: non-0 if CLIR is active

• callid: the SIP Call-ID

• token: a generated token that identifies the session between NGCP and the PCC server

The target URL has the format: /calls/<called_party_num>/initiate

3. The PCC server replies with HTTP 200 OK if it understood the request and can proceed with working on that.

16.4.2.3 Call Initiation at PCC Server with Error

The ngcp-sems module on NGCP Proxy will wait for a response from PCC server, once it has sent the "initiate" request to it. If the

PCC server responds with an HTTP error status, such as any 4xx, then ngcp-sems reports the error condition of PCC server with

a SIP 487 Request Terminated reply to kamailio-proxy.

461

The sip:carrier Handbook mr5.5.7 462 / 577

Figure 145: Call Initiation Error with PCC

16.4.2.4 Call Initiation at PCC Server with Timeout

The ngcp-sems module on NGCP Proxy will wait for a response from PCC server, once it has sent the "initiate" request to it. If

the PCC server does not respond with HTTP 200 OK within 30 seconds (configurable) then ngcp-sems considers the PCC is not

available. In such a case ngcp-sems sends a SIP 408 Timeout reply to kamailio-proxy.

Figure 146: Call Initiation Timeout with PCC

16.4.2.5 Call Accepted by PCC Server

If the PCC server (eventually this may also be the called subscriber) accepts the call, the PCC server will send an HTTP POST

request to the REST API interface of NGCP (Web/Management component). This request must contain a status field with the

content ACCEPT (configurable) so that NGCP continues the call setup towards called party. Example:

POST /api/partycallcontrols HTTP/1.1

Content-Type: application/json

462

The sip:carrier Handbook mr5.5.7 463 / 577

{

"type": "pcc",

"caller": 4369912345,

"callee": 4310001,

"status": "ACCEPT",

"callId": "abcd",

"token": "PCC-aijfeoi"

}

The target URL of the request: /api/partycallcontrols. The type parameter must have a value of pcc.

You can see the flow of messages in the diagram below:

Figure 147: Call Accepted by PCC

1. The PCC server sends an HTTP POST request to NGCP’s REST API.

2. NGCP Web will reply with 200 OK HTTP status once the request is validated.

3. The ngcp-panel module generates an XMLRPC call to the ngcp-sems module on the PROXY. An example is shown here:

<?xml version="1.0"?>

<methodCall>

<methodName>postDSMEvent</methodName>

<params>

<param>

<value><string>PCC-aijfeoi</string></value>

</param>

<param>

<value><array><data>

<value><array><data>

<value><string>cmd</string></value>

<value><string>handleCall</string></value>

</data></array></value>

<value><array><data>

<value><string>callid</string></value>

<value><string>abcd</string></value>

463

The sip:carrier Handbook mr5.5.7 464 / 577

</data></array></value>

<value><array><data>

<value><string>caller</string></value>

<value><string>4369912345</string></value>

</data></array></value>

<value><array><data>

<value><string>callee</string></value>

<value><string>4310001</string></value>

</data></array></value>

<value><array><data>

<value><string>status</string></value>

<value><string>ACCEPT</string></value>

</data></array></value>

</data></array></value>

</param>

</params>

</methodCall>

At this point ngcp-sems examines the following:

• whether the token (listed as first param parameter of postDSMEvent) matches any of the saved session tokens

• whether the callid parameter’s value matches the session’s SIP Call-ID

• whether the status parameter’s value is ACCEPT (configurable)

and if all those conditions are valid it will indicate to kamailio-proxy module that the call can be accepted (i.e. call setup

towards the callee may continue).

4. ngcp-sems module sends 301 Accepted SIP response to kamailio-proxy and the latter can forward the SIP INVITE message

to NGCP LB. If the status parameter’s value is not ACCEPT (configurable), ngcp-sems will reply 487 Request Terminated

to kamailio-proxy.

16.4.2.6 Indicating Call Termination at PCC Server

In the same manner as call initiation happens, call termination is also reported by NGCP towards the PCC server.

464

The sip:carrier Handbook mr5.5.7 465 / 577

Figure 148: Call Termination with PCC

The target URL of the HTTP POST request for the call termination case looks like: /calls/<called_party_num>/term

inate

The body of the request must contain the following element: "reason": "BYE", where the reason can be one of BYE,

CANCEL, NOANSWER and REJECT. An example of a call termination request:

POST /calls/4310001/terminate HTTP/1.1

Content-Type: application/json

{

"actualMsisdn": 4369912345,

"callingMsisdn": 4310001,

"actualClir": 0,

"callId": "abcd",

"token": "PCC-aijfeoi",

"reason": "BYE"

}

NGCP will not take the response of PCC server into consideration, because the call has already been terminated at SIP protocol

level.

16.4.3 Voicemail Notification

16.4.3.1 Using the PCC Framework

The PCC call control framework may also be used for voicemail notifications. The Sipwise NGCP involves its elements: asterisk

(Voicemail server) and ngcp-vmnotify in the process of the notification.

465

The sip:carrier Handbook mr5.5.7 466 / 577

Figure 149: Voicemail Notification with PCC

1. The asterisk voicemail server triggers the ngcp-vmnotify script when a caller leaves a voicemail message in the callee’s

voicebox.

2. ngcp-vmnotify sends an HTTP POST request to the PCC server, as given in the example below:

POST /voicemail/4310001/notify HTTP/1.1

Content-Type: application/json

{

"caller": 4369912345,

"callee": 4310001,

"recording_id": 45235 ,

"timestamp": "2017-06-13T14:21:17T+01:00",

"duration": 17

}

The target URL is: /voicemail/<called_party_num>/notify

3. The PCC server replies with 200 OK if it properly processed the request.

16.4.3.2 Using SMS

The NGCP also supports voicemail notifications in form of short messages, using the built-in SMS modules. In such a case the

ngcp-vmnotify module will send an HTTP POST request to the REST API (NGCP Web), that will contain the short message and

finally be stored in the central database. Afterwards the short message will be sent to the recipient by NGCP Proxy.

466

The sip:carrier Handbook mr5.5.7 467 / 577

Figure 150: Voicemail Notification with SMS

1. The asterisk voicemail server triggers the ngcp-vmnotify script when a caller leaves a voicemail message in the callee’s

voicebox.

2. ngcp-vmnotify sends an API request to ngcp-api module, as given in the example below:

POST /api/sms/?skip_checks=true&skip_journal=false HTTP/1.1

Content-Type: application/json

{

"subscriber_id": 90

"caller": 4369912345,

"callee" : 4310001,

"text": "user1 4310001 17 Tue 13 Jun 2017 14:21:17 +01:00"

}

The target URL is: /api/sms

3. The ngcp-api stores the message in the database.

4. The kannel-smsbox module of NGCP Proxy will query the database for messages waiting for delivery and send the SM to

its recipient through NGCP LB.

16.4.4 Incoming Short Message Acceptance

16.4.4.1 Indicating Incoming SM to PCC Server

The PCC server may also serve as a control point for incoming short messages. The Sipwise NGCP may indicate an incoming

SM to the PCC server, which in turn must explicitly accept the message, so that the message will be forwarded to the recipient.

467

The sip:carrier Handbook mr5.5.7 468 / 577

Figure 151: Short Message Notification with PCC

1. The ngcp-panel module on NGCP Web component will query the central database for pending incoming SMs.

2. The ngcp-panel will send an HTTP POST request to the PCC server if there is a message waiting for a subscriber. An

example of such request is shown here:

POST /sms/4310001/in HTTP/1.1

Content-Type: application/json

{

"caller": 4369912345,

"callee": 4310001,

"token": "PCC-aijfeoi",

"callId": "abcd",

"text": "This is the SM text"

}

The target URL in this case is: /sms/<called_party_num>/in

3. The PCC server replies with 200 OK HTTP status if it properly understood the request.

16.4.4.2 Incoming SM Accepted by PCC Server

As in the case of an incoming call, the PCC server will send an HTTP POST request to the REST API of NGCP, in order to signal

the acceptance of the SM.

468

The sip:carrier Handbook mr5.5.7 469 / 577

Figure 152: Short Message Accepted by PCC

1. The PCC server sends the request to NGCP Web component, where ngcp-api module will process it. An example:

POST /api/partycallcontrols HTTP/1.1

Content-Type: application/json

{

"type": "sms",

"caller": 4369912345,

"callee": 4310001,

"status": "ACCEPT",

"callId": "abcd",

"token": "PCC-aijfeoi"

}

The target URL of the request: /api/partycallcontrols. The type parameter must have a value of sms.

2. The ngcp-api module responds with 200 OK HTTP status if it properly understood the request.

3. The ngcp-api updates the status of the SM in the database so that the SM may be forwarded to the recipient.

4. The kannel-smsbox module on NGCP Proxy will query the central database for SMs to be delivered and will forward the SM

towards an SMSC, via NGCP LB.

16.4.5 Configuration of PCC

The configuration of the PCC feature is done via the main configuration file: /etc/ngcp-config/config.yml. The relevant

section is: apps.party_call_control, the example below shows the default values of the parameters.

apps:

party_call_control:

accepted_reply: 200*

enable: no

pcc_server_url: https://127.0.0.1:9090/pcc/${prefix}${callee}${suffix}

request_timeout: ’30’

469

The sip:carrier Handbook mr5.5.7 470 / 577

trigger_on_hangup: yes

The configuration parameters are:

• accepted_reply: defines the value of status data element (in the PCC server’s POST request sent to /api/party

callcontrols API resource) that means the "accepted" status of the call. For instance the handbook showed the value

ACCEPT in previous sections, instead of the default 200*

• enable: must be set to yes in order to enable the PCC feature

• pcc_server_url: the URL, pointing to the PCC server, where HTTP POST requests must be sent. The variables ${pre

fix}, ${callee} and ${suffix} will be replaced with actual values when a request is sent. Please do not change this

part of the URL! Possible values are:

– prefix = calls, suffix = initiate

– prefix = calls, suffix = terminate

– prefix = voicemail, suffix = notify

– prefix = sms, suffix = in

– callee = <called_party_num>

• request_timeout: time in seconds until NGCP will wait for an HTTP reply from the PCC server, once the NGCP has sent

a request to it

• trigger_on_hangup: if set to yes, NGCP will send a "terminate" request to the PCC server at the end of the call

16.4.6 Troubleshooting of PCC

The Sipwise NGCP will provide logs of its activities that are very useful for troubleshooting the call processing with PCC feature.

This section will provide examples from various log files that can help to find potential problems in call setup.

16.4.6.1 Kamailio Proxy Log

PCC activation at ngcp-sems module

Oct 17 17:00:45 prx01a proxy[3206]: NOTICE: <script>: Call to PCC (Party Call Control) - R= ←↩
sip:2133339@192.168.10.11:5060;user=phone ID=1849964028_125696279@10.0.0.121 UA=’<null>’

Call accepted by PCC server

Oct 17 17:00:16 prx01a proxy[3210]: NOTICE: <script>: NAT-Reply - S=301 - Accepted M=INVITE ←↩
IP=192.168.10.12:5080 (192.168.10.12:5080) ID=1850250074_83465152@10.0.0.121 UA=’<null ←↩

>’

Oct 17 17:00:16 prx01a proxy[3210]: INFO: <script>: Received 200 OK (Accepted) from PCC ←↩
Server, routing the call to its original callee - ID=1850250074_83465152@10.0.0.121 UA ←↩
=’<null>’

470

The sip:carrier Handbook mr5.5.7 471 / 577

16.4.6.2 SEMS Log

Initiate call at PCC

Oct 17 17:10:47 prx01a sems[5059]: [#7f73237f7700] [mod_py_log, PyDSM.cpp:42] INFO: PCC ←↩
http request to http://example.com/pcc/calls/4366811112222/initiate - callid 1851794724 ←↩
_134068006@10.0.0.121

Oct 17 17:10:47 prx01a sems[5059]: [#7f73237f7700] [mod_py_log, PyDSM.cpp:42] INFO: PCC ←↩
form data: {’actualMsisdn’: ’4369933334444’, ’actualClir’: ’0’, ’token’: ’PCC-12DBBD25 ←↩
-59E61D770001841C-237F7700’, ’callingMsisdn’: ’4366811112222’, ’callId’: ’1851794724 ←↩
_134068006@10.0.0.121’} - callid 1851794724_134068006@10.0.0.121

Oct 17 17:10:47 prx01a sems[5059]: [#7f73237f7700] [mod_py_log, PyDSM.cpp:42] INFO: PCC ret ←↩
: 0 num_handles: 1

Oct 17 17:10:47 prx01a sems[5059]: [#7f73237f7700] [mod_py_log, PyDSM.cpp:42] INFO: RT: 0 1 ←↩
0 [] []

...

Oct 17 17:10:47 prx01a sems[5059]: [#7f73237f7700] [mod_py_log, PyDSM.cpp:42] INFO: RT: 0 0 ←↩
0 [<pycurl.Curl object at 0x7f7378067c50>] []

Oct 17 17:10:47 prx01a sems[5059]: [#7f73237f7700] [mod_py_log, PyDSM.cpp:42] INFO: PCC ←↩
reply for callid 1851794724_134068006@10.0.0.121: 200

Call accepted by PCC server

Oct 17 17:10:51 prx01a sems[5059]: [#7f7323efe700] [execute, XMLRPC2DI.cpp:714] INFO: ←↩
XMLRPC2DI ’postDSMEvent’: function ’postDSMEvent’

Oct 17 17:10:51 prx01a sems[5059]: [#7f7323efe700] [execute, XMLRPC2DI.cpp:718] INFO: ←↩
params: <[’PCC-12DBBD25-59E61D770001841C-237F7700’, [[’cmd’, ’handleCall’], [’callid’, ←↩
’1851794724_134068006@10.0.0.121’], [’caller’, ’4369933334444’], [’callee’, ←↩
’4366811112222’], [’status’, ’ACCEPT’]]]>

Oct 17 17:10:51 prx01a sems[5059]: [#7f7323efe700] [execute, XMLRPC2DI.cpp:724] INFO: ←↩
result: <[200, ’OK’]>

Oct 17 17:10:51 prx01a sems[5059]: [#7f73237f7700] [execute, DSMCoreModule.cpp:521] INFO: ←↩
FSM: ’PCC RESULT -- ACCEPT’

Terminate call at PCC

Oct 17 17:10:53 prx01a sems[5059]: [#7f73235f5700] [mod_py_log, PyDSM.cpp:42] INFO: PCC ←↩
http request to http://example.com/pcc/calls/4366811112222/terminate - callid 1851794724 ←↩
_134068006@10.0.0.121

Oct 17 17:10:53 prx01a sems[5059]: [#7f73235f5700] [mod_py_log, PyDSM.cpp:42] INFO: PCC ←↩
form data: {’actualMsisdn’: ’4369933334444’, ’callId’: ’1851794724_134068006@10 ←↩
.0.0.121’, ’callingMsisdn’: ’4366811112222’, ’reason’: ’CANCEL’, ’token’: ’PCC-12DBBD25 ←↩
-59E61D770001841C-237F7700’, ’actualClir’: ’0’} - callid 1851794724_134068006@10.0.0.121

16.4.6.3 NGCP Panel Log

SM notification at PCC server

471

The sip:carrier Handbook mr5.5.7 472 / 577

Oct 18 09:10:16 web01a ngcp-panel: INFO: pcc is set to 1 for prov subscriber id 18451

Oct 18 09:10:16 web01a ngcp-panel: INFO: >>>> source check for booking.com passed, continue ←↩
with time check

Oct 18 09:10:16 web01a ngcp-panel: INFO: >>>> time check for 1508310615 passed, use ←↩
destination set

Oct 18 09:10:16 web01a ngcp-panel: INFO: >>>> proceed sms forwarding

Oct 18 09:10:16 web01a ngcp-panel: INFO: >>>> forward sms to 4369933334444

Oct 18 09:10:16 web01a ngcp-panel: INFO: sending pcc request for sms with id 305125 to http ←↩
://example.com/pcc/sms/4366811112222/in

Oct 18 09:10:16 web01a ngcp-panel: INFO: sending pcc request succeeded

Oct 18 09:10:16 web01a ngcp-panel: INFO: status for pcc sms of 305125 is BUSY, don’t ←↩
forward sms

In the last line the status is BUSY. The purpose of this is to prevent forwarding the SM to the mobile phone of the recipient.

Otherwise, in order to let NGCP forward the message to the recipient, the status is ACCEPT.

16.4.6.4 REST API Log

Call accepted by PCC server

Oct 18 10:19:39 web01a ngcp-panel: INFO: IP=192.168.10.20 CALLED=API[POST]/api/ ←↩
partycallcontrols/ TX=14EE9C4CD2599A70 USER=username DATA={} MSG="" LOG="{"type":"pcc"," ←↩
caller":"4365033334444","callee":"4366811112222","status":"ACCEPT","token":"PCC-273C2CDA ←↩
-59E70E96000BE0C4-231F1700","callid":"406885946_117428858@10.0.0.121"}"

Oct 18 10:19:39 web01a ngcp-panel: INFO: IP=192.168.10.20 CALLED=API[POST 200]/api/ ←↩
partycallcontrols/ TX=14EE9C4CD2599A70 USER=username DATA={} MSG="" LOG=""

SM accepted by PCC server

Oct 18 10:20:30 web01a ngcp-panel: INFO: IP=192.168.10.20 CALLED=API[POST]/api/ ←↩
partycallcontrols/ TX=14EE9C58CEA4D960 USER=username DATA={} MSG="" LOG="{"type":"sms"," ←↩
caller":"15556666","callee":"4366811112222","status":"ACCEPT","token":"1482d9e2-a9fc-40 ←↩
ee-bdaf-de6f7fc239f8","callid":"305175"}"

Oct 18 10:20:30 web01a ngcp-panel: INFO: IP=192.168.10.20 CALLED=API[POST 200]/api/ ←↩
partycallcontrols/ TX=14EE9C58CEA4D960 USER=username DATA={} MSG="" LOG=""

16.4.6.5 Voicemail Notification Log

The voicemail notifier script (/usr/bin/vmnotify) writes its log messages into the system log (/var/log/syslog). An

example:

Oct 18 09:53:34 prx01a vmnotify[20072]: Arguments: default 4366811112222 1 0 0 0 ←↩
4365033334444 2017-10-18T09:53:34+0200 8

Where the Arguments are:

472

The sip:carrier Handbook mr5.5.7 473 / 577

• default: Asterisk voicemail context

• the voicemail box owner

• 1: number of new messages

• 0: number of old messages

• 0: number of urgent messages

• 0: message ID of the latest message

• who left the message (caller)

• date and time of the message

• 8: duration of the message in seconds

473

The sip:carrier Handbook mr5.5.7 474 / 577

A Basic Call Flows

A.1 General Call Setup

Figure 153: General Call Setup

NGCP performs the following checks when processing a call coming from a subscriber and terminated at a peer:

• Checks if the IP address where the request came from is in the list of trusted IP addresses. If yes, this IP address is taken as

the identity for authentication. Otherwise, NGCP performs the digest authentication.

• When the subscriber is authorized to make the call, NGCP applies the Inbound Rewrite Rules for the caller and the callee

assigned to the subscriber (if any). If there are no Rewrite Rules assigned to the subscriber, the ones assigned to the subscriber’s

domain are applied. On this stage the platform normalises the numbers from the subscriber’s format to E.164.

• Matches the callee (called number) with local subscribers.

– If it finds a matching subscriber, the call is routed internally. In this case, NGCP applies the Outbound Rewrite Rules associ-

ated with the callee (if any). If there are no Rewrite Rules assigned to the callee, the ones assigned to the callee’s domain

are applied.

– If it does not find a matching subscriber, the call goes to a peer as described below.

• Queries the LNP database to find out if the number was ported or not.For details of LNP queries refer to the Local Number

Porting Section 5.4 chapter.

– If it was ported, NGCP applies the LNP Rewrite Rules to the called number.

• Based on the priorities of peering groups and peering rules (see Section 4.6.2.3 for details), NGCP selects peering groups for

call termination and defines their precedence.

474

The sip:carrier Handbook mr5.5.7 475 / 577

• Within every peering group the weight of a peering server defines its probability to receive the call for termination. Thus, the

bigger the weight of a server, the higher the probability that NGCP will send the call to it.

• Applies the Outbound Rewrite Rules for the caller and the callee assigned to a peering server when sending the call to it.

A.2 Endpoint Registration

Figure 154: Registration Call-Flow

The subscriber endpoint starts sending a REGISTER request, which gets challenged by a 401. After calculating the response of

the authentication challenge, it sends the REGISTER again, including the authentication response. The SIP proxy looks up the

credentials of the subscriber in the database, does the same calculation, and if the result matches the one from the subscriber,

the registration is granted.

The SIP proxy writes the content of the Contact header (e.g. sip:me@1.2.3.4:1234;transport=UDP) into its location

table (in case of NAT the content is changed by the SIP load-balancer to the IP/port from where the request was received), so

it knows where the reach a subscriber in case on an inbound call to this subscriber (e.g. sip:someuser@example.org is

mapped to sip:me@1.2.3.4:1234;transport=UDP and sent out to this address).

If NAT is detected, the SIP proxy sends a OPTION message to the registered contact every 30 seconds, in order to keep the NAT

binding on the NAT device open. Otherwise, for subsequent calls to this contact, the sip:provider PRO wouldn’t be able to reach

the endpoint behind NAT (NAT devices usually drop a UDP binding after not receiving any traffic for ~30-60 seconds).

475

The sip:carrier Handbook mr5.5.7 476 / 577

Figure 155: NAT-Ping Call-Flow

By default, a subscriber can register 5 contacts for an Address of Record (AoR, e.g. sip:someuser@example.org).

476

The sip:carrier Handbook mr5.5.7 477 / 577

477

The sip:carrier Handbook mr5.5.7 478 / 577

A.3 Basic Call

Figure 156: Basic Call Call-Flow

478

The sip:carrier Handbook mr5.5.7 479 / 577

The calling party sends an INVITE (e.g. sip:someuser@example.org) via the SIP load-balancer to the SIP proxy. The proxy

replies with an authorization challenge in the 407 response, and the calling party sends the INVITE again with authentication

credentials. The SIP proxy checks if the called party is a local user. If it is, and if there is a registered contact found for this

user, then (after various feature-related tasks for both the caller and the callee) the Request-URI is replaced by the URI of the

registered contact (e.g. sip:me@1.2.3.4:1234;transport=UDP). If it’s not a local user but a numeric user, a proper

PSTN gateway is being selected by the SIP proxy, and the Request-URI is rewritten accordingly (e.g. sip:+43123456789@

2.3.4.5:5060).

Once the proxy has finished working through the call features of both parties involved and has selected the final destination for the

call, and - optionally - has invoked the Media Relay for this call, the INVITE is sent to the SIP B2BUA. The B2BUA creates a new

INVITE message from scratch (using a new Call-ID and a new From-Tag), copies only various and explicitly allowed SIP headers

from the old message to the new one, filters out unwanted media capabilities from the SDP body (e.g. to force audio calls to use

G.711 as a codec) and then sends the new message via the SIP load-balancer to the called party.

SIP replies from the called party are passed through the elements back to the calling party (replacing various fields on the B2BUA

to match the first call leg again). If a reply with an SDP body is received by the SIP proxy (e.g. a 183 or a 200), the Media Relay

is invoked again to prepare the ports for the media stream.

Once the 200 is routed from the called party to the calling party, the media stream is fully negotiated, and the endpoints can start

sending traffic to each outer (either end-to-end or via the Media Relay). Upon reception of the 200, the SIP proxy writes a start

record for the accounting process. The 200 is also acknowledged with an ACK message from the calling party to the called party,

according to the SIP 3-way handshake.

Either of the parties can tear down the media session at any time by sending a BYE, which is passed through to the other

party. Once the BYE reaches the SIP proxy, it instructs the Media Relay to close the media ports, and it writes a stop record for

accounting purposes. Both the start- and the stop-records are picked up by the mediator service in a regular interval and are

converted into a Call Detail Record (CDR), which will be rated by the rate-o-mat process and can be billed to the calling party.

A.4 Session Keep-Alive

The SIP B2BUA acts as refresher for the Session-Timer mechanism as defined in RFC 4028. If the endpoints indicate support

for the UPDATE method during call-setup, then the SIP B2BUA will use an UPDATE message if enabled per peer, domain or

subscriber via Provisioning to check if the endpoints are still alive and responsive. Both endpoints can renegotiate the timer

within a configurable range. All values can be tuned using the Admin Panel or the APIs using Peer-, Domain- and Subscriber-

Preferences.

Tip

Keep in mind that the values being used in the signaling are always half the value being configured. So if you want to send a

keep-alive every 300 seconds, you need to provision sst_expires to 600.

If one of the endpoints doesn’t respond to the keep-alive messages or answers with 481 Call/Transaction Does Not

Exist, then the call is torn down on both sides. This mechanism prevents excessive over-billing of calls if one of the endpoints

is not reachable anymore or "forgets" about the call. The BYE message sent by the B2BUA triggers a stop-record for accounting

and also closes the media ports on the Media Relay to stop the call.

479

mailto:43123456789@2.3.4.5
mailto:43123456789@2.3.4.5

The sip:carrier Handbook mr5.5.7 480 / 577

Beside the Session-Timer mechanism to prevent calls from being lost or kept open, there is a maximum call length of 21600

seconds per default defined in the B2BUA. This is a security/anti-fraud mechanism to prevent overly long calls causing excessive

costs.

A.5 Voicebox Calls

Figure 157: Voicebox Call-Flow

Calls to the Voicebox (both for callers leaving a voicemail message and for voicebox owners managing it via the IVR menu) are

passed directly from the SIP proxy to the App-Server without a B2BUA. The App-Server maintains its own timers, so there is no

risk of over-billing or overly long calls.

In such a case where an endpoint talks via the Media Relay to a system-internal endpoint, the Media Relay bridges the media

streams between the public in the system-internal network.

In case of an endpoint leaving a new message on the voicebox, the Message-Waiting-Indication (MWI) mechanism triggers the

sending of a unsolicited NOTIFY message, passing the number of new messages in the body. As soon as the voicebox owner

dials into his voicebox (e.g. by calling sip:voicebox@example.org from his SIP account), another NOTIFY message is

sent to his devices, resetting the number of new messages.

480

The sip:carrier Handbook mr5.5.7 481 / 577

Important

The sip:carrier does not require your device to subscribe to the MWI service by sending a SUBSCRIBE (it would rather

reject it). On the other hand, the endpoints need to accept unsolicited NOTIFY messages (that is, a NOTIFY without a

valid subscription), otherwise the MWI service will not work with these endpoints.

481

The sip:carrier Handbook mr5.5.7 482 / 577

B NGCP configs overview

B.1 config.yml Overview

/etc/ngcp-config/config.yml is the main configuration YAML file used by Sipwise NGCP. After every changes it need

to run the command ngcpcfg apply my commit message to apply changes (followed by ngcpcfg push in the PRO

version to apply changes to sp2). The following is a brief description of the main variables contained into /etc/ngcp-config/

config.yml file.

B.1.1 apps

This section contains parameters for the additional applications that may be activated on sip:carrier.

apps:

malicious_call: no

party_call_control:

accepted_reply: 200*

enable: no

pcc_server_url: https://127.0.0.1:9090/pcc/${prefix}${callee}${suffix}

request_timeout: ’30’

trigger_on_hangup: yes

• malicious_call: If set to yes, the Malicious Call Identification (MCID) application will be enabled.

• party_call_control.accepted_reply: Defines the value of status data element that means the "accepted" status of the call.

• party_call_control.enable: Must be set to yes in order to enable the PCC feature.

• party_call_control.pcc_server_url: The URL, pointing to the PCC server, where HTTP POST requests must be sent. Do not

change the variable references ${prefix}, ${callee} and ${suffix}!

• party_call_control.request_timeout: Time in seconds until NGCP will wait for an HTTP reply from the PCC server, once the

NGCP has sent a request to it.

• party_call_control.trigger_on_hangup: If set to yes, NGCP will send a "terminate" request to the PCC server at the end of the

call.

Tip

See the Section 16.4.5 section of the handbook for more details on PCC configuration.

B.1.2 asterisk

The following is the asterisk section:

482

The sip:carrier Handbook mr5.5.7 483 / 577

asterisk:

log:

facility: local6

rtp:

maxport: 20000

minport: 10000

sip:

bindport: 5070

dtmfmode: rfc2833

voicemail:

enable: ’no’

fromstring: ’Voicemail server’

greeting:

busy_custom_greeting: ’/home/user/file_no_extension’

busy_overwrite_default: ’no’

busy_overwrite_subscriber: ’no’

unavail_custom_greeting: ’/home/user/file_no_extension’

unavail_overwrite_default: ’no’

unavail_overwrite_subscriber: ’no’

mailbody: ’You have received a new message from ${VM_CALLERID} in voicebox ${VM_MAILBOX ←↩
} on ${VM_DATE}.’

mailsubject: ’[Voicebox] New message ${VM_MSGNUM} in voicebox ${VM_MAILBOX}’

max_msg_length: 180

maxgreet: 60

maxmsg: 30

maxsilence: 0

min_msg_length: 3

normalize_match: ’^00|\+([1-9][0-9]+)$’

normalize_replace: ’$1’

serveremail: voicebox@sip.sipwise.com

• log.facility: rsyslog facility for asterisk log, defined in /etc/asterisk/logger.conf.

• rtp.maxport: RTP maximum port used by asterisk.

• rtp.minport: RTP minimun port used by asterisk.

• sip.bindport: SIP asterisk internal bindport.

• voicemail.greetings.*: set the audio file path for voicemail custom unavailable/busy greetings

• voicemail.mailbody: Mail body for incoming voicemail.

• voicemail.mailsubject: Mail subject for incoming voicemail.

• voicemail.max_msg_length: Sets the maximum length of a voicemail message, in seconds.

• voicemail.maxgreet: Sets the maximum length of voicemail greetings, in seconds.

• voicemail.maxmsg: Sets the maximum number of messages that may be kept in any voicemail folder.

483

The sip:carrier Handbook mr5.5.7 484 / 577

• voicemail.min_msg_length: Sets the minimun length of a voicemail message, in seconds.

• voicemail.maxsilence: Maxsilence defines how long Asterisk will wait for a contiguous period of silence before terminating an

incoming call to voice mail. The default value is 0, which means the silence detector is disabled and the wait time is infinite.

• voicemail.serveremail: Provides the email address from which voicemail notifications should be sent.

• voicemail.normalize_match: Regular expression to match the From number for calls to voicebox.

• voicemail.normalize_replace: Replacement string to return, in order to match an existing voicebox.

B.1.3 autoprov

The following is the autoprovisioning section:

autoprov:

hardphone:

skip_vendor_redirect: ’no’

server:

bootstrap_port: 1445

ca_certfile: ’/etc/ngcp-config/ssl/client-auth-ca.crt’

host: localhost

port: 1444

server_certfile: ’/etc/ngcp-config/ssl/myserver.crt’

server_keyfile: ’/etc/ngcp-config/ssl/myserver.key’

ssl_enabled: ’yes’

softphone:

config_lockdown: 0

webauth: 0

• autoprov.skip_vendor_redirect: Skip phone vendor redirection to the vendor provisioning web site.

B.1.4 backuptools

The following is the backup tools section:

backuptools:

cdrexport_backup:

enable: ’no’

etc_backup:

enable: ’no’

mail:

address: noc@company.org

error_subject: ’[ngcp-backup] Problems detected during daily backup’

log_subject: ’[ngcp-backup] Daily backup report’

send_errors: ’no’

send_log: ’no’

mysql_backup:

484

The sip:carrier Handbook mr5.5.7 485 / 577

enable: ’no’

exclude_dbs: ’syslog sipstats information_schema’

rotate_days: 7

storage_dir: ’/var/backup/ngcp_backup’

temp_backup_dir: ’/tmp/ngcp_backup’

• backuptools.cdrexport_backup.enable: Enable backup of cdrexport (.csv) directory.

• backuptools.etc_backup.enable: Enable backup of /etc/* directory.

• backuptools.mail.address: Destination email address for backup emails.

• backuptools.mail.error_subject: Subject for error emails.

• backuptools.mail.log_subjetc: Subject for daily backup report.

• backuptools.mail.send_error: Send daily backup error report.

• backuptools.mail.send_log: Send daily backup log report.

• backuptools.mysql_backup.enable: Enable daily mysql backup.

• backuptools.mysql_backup.exclude_dbs: exclude mysql databases from backup.

• backuptools.rotate_days: Number of days backup files should be kept. All files older than specified number of days are deleted

from the storage directory.

• backuptools.storage_dir: Storage directory of backups.

• backuptools.storage_group: Name of the group that backup files should be owned by.

• backuptools.storage_user: Name of the user that backup files should be owned by.

• backuptools.temp_backup_dir: Temporary storage directory of backups.

B.1.5 bootenv

The following is the bootenv section:

bootenv:

dhcp:

boot: ’/srv/tftp/pxelinux.0’

enable: ’yes’

end: 192.168.1.199

expire: 12h

start: 192.168.1.101

http_port: 3000

http_proxy: ’’

https_proxy: ’’

ro_port: 9998

rw_port: 9999

485

The sip:carrier Handbook mr5.5.7 486 / 577

tftp:

enable: ’yes’

root: ’/srv/tftp’

• bootenv.dhcp.enable: enable dnsmasq DHCP server

• bootenv.dhcp.boot: PXE image boot location

• bootenv.dhcp.start: first IP of DHCP scope

• bootenv.dhcp.end: last IP of DHCP scope

• bootenv.dhcp.expire: DHCP leasing expiration

• bootenv.http_port: HTTP port for iPXE boot files/configs

• bootenv.http_proxy: HTTP proxy to access Sipwise Debian repositories

• bootenv.https_proxy: HTTPS proxy to access Sipwise Debian repositories

• bootenv.ro_port: HTTP port for read-only access to Approx cache

• bootenv.rw_port: HTTP port for read-write access to Approx cache

• bootenv.tftp.enable: enable tftp server for PXE boot

• bootenv.tftp.root: root folder for tftp server

B.1.6 cdrexport

The following is the cdr export section:

cdrexport:

daily_folder: ’yes’

export_failed: ’no’

export_incoming: ’no’

exportpath: ’/home/jail/home/cdrexport’

full_names: ’yes’

monthly_folder: ’yes’

• cdrexport.daily_folder: Set yes if you want to create a daily folder for CDRs under the configured path.

• cdrexport.export_failed: Export CDR for failed calls.

• cdrexport.export_incoming: Export CDR for incoming calls.

• cdrexport.exportpath: The path to store CDRs in .csv format.

• cdrexport.full_names: Use full namen for CDRs instead of short ones.

• cdrexport.monthly_folder: Set yes if you want to create a monthly folder (ex. 201301 for January 2013) for CDRs under config-

ured path.

486

The sip:carrier Handbook mr5.5.7 487 / 577

B.1.7 checktools

The following is the check tools section:

checktools:

active_check_enable: ’1’

asr_ner_statistics: ’1’

collcheck:

cpuidle: ’0.1’

dfused: ’0.9’

eximmaxqueue: ’15’

kamminshmem: ’1048576’

lbminshmem: ’1048576’

loadlong: ’2’

loadmedium: ’2’

loadshort: ’3’

maxage: 30

memused: 0.98

siptimeout: ’15’

sslcert_timetoexpiry: ’30’

sslcert_whitelist: []

swapfree: 0.02

exim_check_enable: ’1’

force: ’0’

kamailio_check_concurrent_calls_enable: ’1’

kamailio_check_dialog_active_enable: ’1’

kamailio_check_dialog_early_enable: ’1’

kamailio_check_dialog_incoming_enable: ’1’

kamailio_check_dialog_local_enable: ’1’

kamailio_check_dialog_outgoing_enable: ’1’

kamailio_check_dialog_relay_enable: ’1’

kamailio_check_shmem_enable: ’1’

kamailio_check_usrloc_regdevices_enable: ’1’

kamailio_check_usrloc_regusers_enable: ’1’

monitor_peering_groups: ’1’

mpt_check_enable: ’0’

mysql_check_enable: ’1’

mysql_check_replication: ’1’

mysql_replicate_check_interval: ’3600’

mysql_replicate_check_tables:

- accounting

- billing

- carrier

- kamailio

- ngcp

- provisioning

- prosody

- rtcengine

487

The sip:carrier Handbook mr5.5.7 488 / 577

- stats

mysql_replicate_ignore_tables:

- accounting.acc_backup

- accounting.acc_trash

- kamailio.acc_backup

- kamailio.acc_trash

- ngcp.pt_checksums_sp1

- ngcp.pt_checksums_sp2

- ngcp.pt_checksums

oss_check_provisioned_subscribers_enable: ’1’

sip_check_enable: ’1’

sipstats_check_num_packets: ’1’

sipstats_check_num_packets_perday: ’1’

sipstats_check_partition_size: ’1’

snmpd:

communities:

public:

- localhost

trap_communities:

public:

- localhost

• checktools.collcheck.cpuidle: Sets the minimum value for CPU usage (0.1 means 10%).

• checktools.collcheck.dfused: Sets the maximun value for DISK usage (0.9 means 90%).

• checktools.collcheck.loadlong/loadlong/loadshort: Max values for load (long, short, medium term).

• checktools.collcheck.maxage: Max age in seconds.

• checktools.collcheck.memused: Sets the maximun value for MEM usage (0.7 means 70%).

• checktools.collcheck.siptimeout: Max timeout for sip options.

• checktools.collcheck.swapfree: Sets the minimun value for SWAP free (0.5 means 50%).

• checktools.exim_check_enable: Exim queue check plugin for ngcp-witnessd.

• checktools.active_check_enable: Active node check plugin for ngcp-witnessd.

• checktools.asr_ner_statistics: enable/Disable ASR/NER statistics.

• checktools.force: Perform checks even if not active from ngcp-check-active command.

• checktools.kamailio_check_*: Enable/Disable SNMP collective check pluglin for Kamailio.

• checktools.mpt_check_enable: MPT raid SNMP check plugin.

• checktools.mysql_check_enable: Enable/disable MySQL check SNMP plugin.

• checktools.mysql_check_replication: Enable/disable MySQL replication check.

488

The sip:carrier Handbook mr5.5.7 489 / 577

• checktools.mysql_replicate_check_interval: MySQL replication check interval in seconds.

• checktools.mysql_replicate_check_tables: List of tables that need to be checked for replication issues.

• checktools.mysql_replicate_ignore_tables: List of tables that need to be ignored during replication check.

• checktools.oss_check_provisioned_subscribers_enable: OSS provisioned subscribers count plugin.

• checktools.sip_check_enable/sipstats_check_*: Enable/Disable SIP check plugins.

• checktools.snmpd.communities.*: Sets the SNMP community and sources. Entries (i.e. the sources) under a community (like

public in the example) are in a list format, each line starting with "-" and followed by the source address.

• checktools.snmpd.trap_communities.*: Sets the SNMP TRAP community and destination for traps sent by NGCP. Format is the

same as for checktools.snmpd.communities.

B.1.8 cleanuptools

The following is the cleanup tools section:

cleanuptools:

acc_cleanup_days: 90

archive_targetdir: ’/var/backups/cdr’

binlog_days: 15

cdr_archive_months: 2

cdr_backup_months: 2

cdr_backup_retro: 3

compress: gzip

delete_old_cdr_files:

enabled: ’no’

max_age_days: 30

paths:

-

max_age_days: ~

path: ’/home/jail/home/*/20[0-9][0-9][0-9][0-9]/[0-9][0-9]’

remove_empty_directories: ’yes’

wildcard: ’yes’

-

max_age_days: ~

path: ’/home/jail/home/cdrexport/resellers/*/20[0-9][0-9][0-9][0-9]/[0-9][0-9]’

remove_empty_directories: ’yes’

wildcard: ’yes’

-

max_age_days: ~

path: ’/home/jail/home/cdrexport/system/20[0-9][0-9][0-9][0-9]/[0-9][0-9]’

remove_empty_directories: ’yes’

wildcard: ’yes’

sql_batch: 10000

trash_cleanup_days: 30

489

The sip:carrier Handbook mr5.5.7 490 / 577

• cleanuptools.acc_cleanup_days: CDR records in acc table in kamailio database will be deleted after this time

• cleanuptools.binlog_days: Time after MySQL binlogs will be deleted.

• cleanuptools.cdr_archive_months: How many months worth of records to keep in monthly CDR backup tables, instead of

dumping them into archive files and dropping them from database.

• cleanuptools.cdr_backup_months: How many months worth of records to keep in the current cdr table, instead of moving them

into the monthly CDR backup tables.

• cleanuptools.cdr_backup_retro: How many months to process for backups, going backwards in time and skipping cdr_backu

p_months months first, and store them in backup tables. Any older record will be left untouched.

• cleanuptools.delete_old_cdr_files:

– enabled: Enable (yes) or disable (no) exported CDR cleanup.

– max_age_days: Gives the expiration time of the exported CDR files in days. There is a general value which may be overridden

by a local value provided at a specific path. The local value is valid for the particular path only.

– paths: an array of path definitions

* path: a path where CDR files are to be found and deleted; this may contain wildcard characters

* wildcard: Enable (yes) or disable (no) using wildcards in the path

* remove_empty_directories: Enable (yes) or disable (no) removing empty directories if those are found in the given path

* max_age_days: the local expiration time value for files in the particular path

• cleanuptools.sql_batch: How many records to process within a single SQL statement.

• cleanuptools.trash_cleanup_days: Time after CDRs from acc_trash and acc_backup tables in kamailio database will

be deleted.

For the description of cleanuptools please visit Cleanuptools Description Section 13.4 section of the handbook.

B.1.9 cluster_sets

The following is the cluster sets section:

cluster_sets:

default:

dispatcher_id: 50

default_set: default

type: central

• cluster_sets.<label>: an arbitrary label of the cluster set; in the above example we have default

• cluster_sets.<label>.dispatcher_id: a unique, numeric value that identifies a particular cluster set

• cluster_sets.default_set: selects the default cluster set

• cluster_sets.type: the type of cluster set; can be central or distributed

490

The sip:carrier Handbook mr5.5.7 491 / 577

B.1.10 database

The following is the database section:

database:

bufferpoolsize: 24768M

• database.bufferpoolsize: Innodb_buffer_pool_size value in /etc/mysql/my.cnf

B.1.11 faxserver

The following is the fax server section:

faxserver:

enable: yes

fail_attempts: ’3’

fail_retry_secs: ’60’

mail_from: ’Sipwise NGCP FaxServer <voipfax@ngcp.sipwise.local>’

• faxserver.enable: yes/no to enable or disable ngcp-faxserver on the platform respectively.

• faxserver.fail_attempts: Amount of attempts to send a fax after which it is marked as failed.

• faxserver.fail_retry_secs: Amount of seconds to wait between "fail_attemts".

• faxserver.mail_from: Sets the e-mail From Header for incoming fax.

B.1.12 general

The following is the general section:

general:

adminmail: adjust@example.org

companyname: sipwise

lang: en

maintenance: no

production: yes

timezone: localtime

• general.adminmail: Email address used by monit to send notifications to.

• general.companyname: Label used in SNMPd configuration.

• general.lang: Sets sounds language (e.g: de for German)

• general.production: Label to hint self-check scripts about installation mode.

• general.maintenance: maintenance mode necessary for safe upgrades.

• general.timezone: sip:carrier Timezone

491

The sip:carrier Handbook mr5.5.7 492 / 577

B.1.13 haproxy

The following is the haproxy section:

haproxy:

admin: ’no’

admin_port: 8080

admin_pwd: iKNPFuPFHMCHh9dsXgVg

enable: ’no’

• haproxy.enable: enable haproxy

B.1.14 heartbeat

The following is the heartbeat section:

heartbeat:

hb_watchdog:

action_max: 5

enable: ’yes’

interval: 10

transition_max: 10

pingnodes:

- 10.60.1.1

- 192.168.3.4

• heartbeat.hb_watchdog.enable: Enable heartbeat watchdog in order to prevent and fix split brain scenario.

• heartbeat.hb_watchdog.action_max: Max errors before taking any action.

• heartbeat.hb_watchdog.interval: Interval in secs for the check.

• heartbeat.hb_watchdog.transition_max: Max checks in transition state.

• heartbeat.pingnodes: List of pingnodes for heartbeat. Minimun 2 entries, otherwise by default NGCP will set the default gateway

and DNS servers as pingnodes.

B.1.15 intercept

The following is the legal intercept section:

intercept:

captagent:

port: 18090

schema: http

enabled: ’no’

• intercept.captagent.enable: Enable captagent for Lawful Interception (addiotional NGCP module).

492

The sip:carrier Handbook mr5.5.7 493 / 577

B.1.16 kamailio

The following is the kamailio section:

kamailio:

lb:

cfgt: no

debug:

enable: no

modules:

- level: ’1’

name: core

- level: ’3’

name: xlog

debug_level: ’1’

external_sbc: []

extra_sockets: ~

max_forwards: ’70’

mem_log: ’1’

mem_summary: ’12’

nattest_exception_ips:

- 1.2.3.4

- 5.6.7.8

pkg_mem: ’16’

port: ’5060’

remove_isup_body_from_replies: no

security:

dos_ban_enable: yes

dos_ban_time: ’300’

dos_reqs_density_per_unit: ’50’

dos_sampling_time_unit: ’5’

dos_whitelisted_ips: []

dos_whitelisted_subnets: []

failed_auth_attempts: ’3’

failed_auth_ban_enable: yes

failed_auth_ban_time: ’3600’

topoh:

enable: no

mask_callid: no

mask_ip: 127.0.0.8

shm_mem: ’64’

skip_contact_alias_for_ua_when_tcp:

enable: no

user_agent_patterns: []

start: yes

strict_routing_safe: no

syslog_options: yes

tcp_children: 1

493

The sip:carrier Handbook mr5.5.7 494 / 577

tcp_max_connections: ’2048’

tls:

enable: no

port: ’5061’

sslcertfile: /etc/ngcp-config/ssl/myserver.crt

sslcertkeyfile: /etc/ngcp-config/ssl/myserver.key

udp_children: 1

use_dns_cache: on

proxy:

allow_info_method: no

allow_msg_method: no

allow_peer_relay: no

allow_refer_method: no

always_anonymize_from_user: no

authenticate_bye: no

cf_depth_limit: ’10’

cfgt: no

check_prev_forwarder_as_upn: no

children: 1

debug:

enable: no

modules:

- level: ’1’

name: core

- level: ’3’

name: xlog

debug_level: ’1’

default_expires: ’3600’

default_expires_range: ’30’

dlg_timeout: ’43200’

early_rejects:

block_admin:

announce_code: ’403’

announce_reason: Blocked by Admin

block_callee:

announce_code: ’403’

announce_reason: Blocked by Callee

block_caller:

announce_code: ’403’

announce_reason: Blocked by Caller

block_contract:

announce_code: ’403’

announce_reason: Blocked by Contract

block_in:

announce_code: ’403’

announce_reason: Block in

block_out:

announce_code: ’403’

494

The sip:carrier Handbook mr5.5.7 495 / 577

announce_reason: Blocked out

block_override_pin_wrong:

announce_code: ’403’

announce_reason: Incorrect Override PIN

callee_busy:

announce_code: ’486’

announce_reason: Busy Here

callee_offline:

announce_code: ’480’

announce_reason: Offline

callee_tmp_unavailable:

announce_code: ’480’

announce_reason: Temporarily Unavailable

callee_tmp_unavailable_gp:

announce_code: ’480’

announce_reason: Unavailable

callee_tmp_unavailable_tm:

announce_code: ’408’

announce_reason: Request Timeout

callee_unknown:

announce_code: ’404’

announce_reason: Not Found

cf_loop:

announce_code: ’480’

announce_reason: Unavailable

emergency_invalid:

announce_code: ’404’

announce_reason: Emergency code not available in this region

emergency_unsupported:

announce_code: ’403’

announce_reason: Emergency Calls Not Supported

invalid_speeddial:

announce_code: ’484’

announce_reason: Speed-Dial slot empty

locked_in:

announce_code: ’403’

announce_reason: Callee locked

locked_out:

announce_code: ’403’

announce_reason: Caller locked

max_calls_in:

announce_code: ’486’

announce_reason: Busy

max_calls_out:

announce_code: ’403’

announce_reason: Maximum parallel calls exceeded

no_credit:

announce_code: ’402’

495

The sip:carrier Handbook mr5.5.7 496 / 577

announce_reason: Insufficient Credit

peering_unavailable:

announce_code: ’503’

announce_reason: PSTN Termination Currently Unavailable

reject_vsc:

announce_code: ’403’

announce_reason: VSC Forbidden

relaying_denied:

announce_code: ’403’

announce_reason: Relaying Denied

unauth_caller_ip:

announce_code: ’403’

announce_reason: Unauthorized IP detected

emergency_priorization:

enabled: no

register_fake_200: yes

register_fake_expires: ’3600’

reject_code: ’503’

reject_reason: Temporary Unavailable

retry_after: ’3600’

enum_suffix: e164.arpa.

expires_range: ’30’

filter_100rel_from_supported: no

filter_failover_response: 408|500|503

foreign_domain_via_peer: no

fritzbox:

enable: no

prefixes:

- 0$avp(caller_ac)

- $avp(caller_cc)$avp(caller_ac)

- \+$avp(caller_cc)$avp(caller_ac)

- 00$avp(caller_cc)$avp(caller_ac)

special_numbers:

- ’112’

- ’110’

- 118[0-9]{2}

ignore_auth_realm: no

ignore_subscriber_allowed_clis: no

keep_original_to: no

latency_limit_action: ’100’

latency_limit_db: ’500’

latency_log_level: ’1’

latency_runtime_action: 1000

lnp:

api:

add_caller_cc_to_lnp_dst: no

invalid_lnp_routing_codes:

- ^EE00

496

The sip:carrier Handbook mr5.5.7 497 / 577

- ^DD00

keepalive_interval: ’3’

lnp_request_blacklist: []

lnp_request_whitelist: []

port: ’8991’

reply_error_on_lnp_failure: no

request_timeout: ’1000’

server: localhost

enabled: no

skip_callee_lnp_lookup_from_any_peer: no

type: api

lookup_peer_destination_domain_for_pbx: no

loop_detection:

enable: no

expire: ’1’

max: ’5’

max_expires: ’43200’

max_gw_lcr: ’128’

max_registrations_per_subscriber: ’5’

mem_log: ’1’

mem_summary: ’12’

min_expires: ’60’

nathelper:

sipping_from: sip:pinger@sipwise.local

nathelper_dbro: no

natping_interval: ’30’

natping_processes: 1

nonce_expire: ’300’

pbx:

hunt_display_fallback_format: ’[H %s]’

hunt_display_fallback_indicator: $var(cloud_pbx_hg_ext)

hunt_display_format: ’[H %s]’

hunt_display_indicator: $var(cloud_pbx_hg_displayname)

hunt_display_maxlength: 8

ignore_cf_when_hunting: no

peer_probe:

available_treshold: ’1’

enable: yes

from_uri_domain: probe.ngcp.local

from_uri_user: ping

interval: ’10’

method: OPTIONS

reply_codes: class=2;class=3;code=403;code=404;code=405

timeout: ’5’

unavailable_treshold: ’1’

perform_peer_failover_on_tm_timeout: yes

perform_peer_lcr: no

pkg_mem: ’32’

497

The sip:carrier Handbook mr5.5.7 498 / 577

port: ’5062’

presence:

enable: yes

max_expires: ’3600’

reginfo_domain: example.org

proxy_lookup: no

push:

apns_alert: New call

apns_sound: incoming_call.xaf

report_mos: yes

set_ruri_to_peer_auth_realm: no

shm_mem: ’125’

start: yes

store_recentcalls: no

syslog_options: yes

tcp_children: 1

tm:

fr_inv_timer: ’180000’

fr_timer: ’9000’

treat_600_as_busy: yes

use_enum: no

usrloc_dbmode: ’1’

voicebox_first_caller_cli: yes

• kamailio.lb.cfgt: Enable/disable unit test config file execution tracing.

• kamailio.lb.debug.enable: Enable per-module debug options.

• kamailio.lb.debug.modules: List of modules to be traced with respective debug level.

• kamailio.lb.debug_level: Default debug level for kamailio-lb.

• kamailio.lb.external_sbc: SIP URI of external SBC used in the Via Route option of peering server.

• kamailio.lb.extra_sockets: Add here extra sockets for Load Balancer.

• kamailio.lb.max_forwards: Set the value for the Max Forwards SIP header for outgoing messages.

• kamailio.lb.mem_log: Specifies on which log level the memory statistics will be logged.

• kamailio.lb.mem_summary: Parameter to control printing of memory debugging information on exit or SIGUSR1 to log.

• kamailio.lb.nattest_exception_ips: List of IPs that don’t need the NAT test.

• kamailio.lb.shm_mem: Shared memory used by Kamailio Load Balancer.

• kamailio.lb.pkg_mem: PKG memory used by Kamailio Load Balancer.

• kamailio.lb.port: Default listen port.

• kamailio.lb.remove_isup_body_from_replies: Enable/disable stripping of ISUP part from the message body.

498

The sip:carrier Handbook mr5.5.7 499 / 577

• kamailio.lb.security.dos_ban_enable: Enable/Disable DoS Ban.

• kamailio.lb.security.dos_ban_time: Sets the ban time.

• kamailio.lb.security.dos_reqs_density_per_unit: Sets the requests density per unit (if we receive more then * lb.dos_reqs_density_per_unit

within dos_sampling_time_unit the user will be banned).

• kamailio.lb.security.dos_sampling_time_unit: Sets the DoS unit time.

• kamailio.lb.security.dos_whitelisted_ips: Write here the whitelisted IPs.

• kamailio.lb.security.dos_whitelisted_subnets: Write here the whitelisted IP subnets.

• kamailio.lb.security.failed_auth_attempts: Sets how many authentication attempts allowed before ban.

• kamailio.lb.security.failed_auth_ban_enable: Enable/Disable authentication ban.

• kamailio.lb.security.failed_auth_ban_time: Sets how long a user/IP has be banned.

• kamailio.lb.topoh.enable: Enable topology hiding module (see the Topology Hiding Section 14.6 subchapter for a detailed de-

scription).

• kamailio.lb.topoh.mask_callid: if set to yes, the SIP Call-ID header will also be encoded.

• kamailio.lb.topoh.mask_ip: an IP address that will be used to create valid SIP URIs, after encoding the real/original header

content.

• kamailio.lb.start: Enable/disable kamailio-lb service.

• kamailio.lb.strict_routing_safe: Enable strict routing handle feature.

• kamailio.lb.syslog_options: Enable/disable logging of SIP OPTIONS messages to kamailio-options-lb.log.

• kamailio.lb.tcp_children: Number of TCP worker processes.

• kamailio.lb.tcp_max_connections: Maximum number of open TCP connections.

• kamailio.lb.tls.enable: Enable TLS socket.

• kamailio.lb.tls.port: Set TLS listening port.

• kamailio.lb.tls.sslcertificate: Path for the SSL certificate.

• kamailio.lb.tls.sslcertkeyfile: Path for the SSL key file.

• kamailio.lb.udp_children: Number of UDP worker processes.

• kamailio.lb.use_dns_cache: Enable/disable use of internal DNS cache.

• kamailio.proxy.allow_info_method: Allow INFO method.

• kamailio.proxy.allow_msg_method: Allow MESSAGE method.

• kamailio.proxy.allow_peer_relay: Allow peer relay. Call coming from a peer that doesn’t match a local subscriber will try to go

out again, matching the peering rules.

• kamailio.proxy.allow_refer_method: Allow REFER method. Enable it with caution.

499

The sip:carrier Handbook mr5.5.7 500 / 577

• kamailio.proxy.always_anonymize_from_user: Enable anonymization of full From URI (as opposed to just From Display-name

part by default), has same effect as enabling the preference anonymize_from_user for all peers.

• kamailio.proxy.authenticate_bye: Enable BYE authentication.

• kamailio.proxy.cf_depth_limit: CF loop detector. How many CF loops are allowed before drop the call.

• kamailio.proxy.cfgt: Enable/disable unit test config file execution tracing.

• kamailio.proxy.check_prev_forwarder_as_upn: Enable/disable validation of the forwarder’s number taken from the Diversion

or History-Info header.

• kamailio.proxy.children: Number of UDP worker processes.

• kamailio.proxy.debug.enable: Enable per-module debug options.

• kamailio.proxy.debug.modules: List of modules to be traced with respective debug level.

• kamailio.proxy.debug_level: Default debug level for kamailio-proxy.

• kamailio.proxy.default_expires: Default expires value in seconds for a new registration (for REGISTER messages that contains

neither Expires HFs nor expires contact parameters).

• kamailio.proxy.default_expires_range: This parameter specifies that the expiry used for the registration should be randomly

chosen within default_expires_range seconds of the default_expires parameter.

• kamailio.proxy.dlg_timeout: Dialog timeout in seconds (by default 43200 sec - 12 hours).

• kamailio.proxy.early_rejects: Customize here the response codes and sound prompts for various reject scenarios. See the

subchapter Configuring Early Reject Sound Sets Section 5.14.1 for a detailed description.

• kamailio.proxy.emergency_prioritization.enabled: Enable an emergency mode support.

• kamailio.proxy.emergency_prioritization.register_fake_200: When enabled, generates a fake 200 response to REGISTER from

non-prioritized subscriber in emergency mode.

• kamailio.proxy.emergency_prioritization.register_fake_expires: Expires value for the fake 200 response to REGISTER.

• kamailio.proxy.emergency_prioritization.reject_code: Reject code for the non-emergency request.

• kamailio.proxy.emergency_prioritization.reject_reason: Reject reason for the non-emergency request.

• kamailio.proxy.emergency_prioritization.retry_after: Retry-After value when rejecting the non-emergency request.

Tip

In order to learn about details of emergency priorization function of NGCP please refer to Section 5.6 part of the handbook.

• kamailio.proxy.enum_suffix: Sets ENUM suffix - don’t forget . (dot).

• kamailio.proxy.expires_range: Set randomization of expires for REGISTER messages (similar to default_expires_range but

applies to recieved expires value).

• kamailio.proxy.filter_100rel_from_supported: Enable filtering of 100rel from Supported header, to disable PRACK.

500

The sip:carrier Handbook mr5.5.7 501 / 577

• kamailio.proxy.filter_failover_response: Response codes with no failover routing required.

• kamailio.proxy.foreign_domain_via_peer: Enable/disable of routing of calls to foreign SIP URI via peering servers.

• kamailio.proxy.fritzbox.enable: Enable detection for Fritzbox special numbers. Ex. Fritzbox add some prefix to emergency

numbers.

• kamailio.proxy.fritzbox.prefixes: Fritybox prefixes to check. Ex. 0$avp(caller_ac)

• kamailio.proxy.fritzbox.special_numbers: Specifies Fritzbox special number patterns. They will be checked with the prefixes

defined. Ex. 112, so the performed check will be sip:0$avp(caller_ac)112@ if prefix is 0$avp(caller_ac)

• kamailio.proxy.ignore_auth_realm: Ignore SIP authentication realm.

• kamailio.proxy.ignore_subscriber_allowed_clis: Set to yes to ignore the subscriber’s allowed_clis preference so that the

User-Provided CLI is only checked against customer’s allowed_clis preference.

• kamailio.proxy.latency_limit_action: Limit of runtime in ms for config actions. If a config action executed by cfg interpreter takes

longer than this value, a message is printed in the logs.

• kamailio.proxy.latency_limit_db: Limit of runtime in ms for DB queries. If a DB operation takes longer than this value, a warning

is printed in the logs.

• kamailio.proxy.latency_log_level: Log level to print the messages related to latency. Defaut is 1 (INFO).

• kamailio.proxy.latency_runtime_action: Limit of runtime in ms for SIP message processing cycle. If the SIP message processing

takes longer than this value, a warning is printed in the logs.

• kamailio.proxy.keep_original_to: Not used now.

• kamailio.proxy.lnp.api.add_caller_cc_to_lnp_dst: Enable/disable adding of caller country code to LNP routing number of the

result (no by default, LNP result in E.164 format is assumed).

• kamailio.proxy.lnp.api.invalid_lnp_routing_codes [only for api type]: number matching pattern for routing numbers that repre-

sent invalid call destinations; an announcement is played in that case and the call is dropped.

• kamailio.proxy.lnp.api.keepalive_interval: Not used now.

• kamailio.proxy.lnp.api.lnp_request_whitelist [only for api type]: list of matching patterns of called numbers for which LNP lookup

must be done.

• kamailio.proxy.lnp.api.lnp_request_blacklist [only for api type]: list of matching patterns of called numbers for which LNP lookup

must not be done.

• kamailio.proxy.lnp.api.port: Not used now.

• kamailio.proxy.lnp.api.reply_error_on_lnp_failure: Specifies whether platform should drop the call in case of LNP API server

failure or continue routing the call to the original callee without LNP.

• kamailio.proxy.lnp.api.request_timeout [only for api type]: timeout in milliseconds while Proxy waits for the response of an LNP

query from Sipwise LNP daemon.

• kamailio.proxy.lnp.api.server: Not used now.

501

The sip:carrier Handbook mr5.5.7 502 / 577

• kamailio.proxy.lnp.enabled: Enable/disable LNP (local number portability) lookup during call setup.

• kamailio.proxy.lnp.skip_callee_lnp_lookup_from_any_peer: if set to yes, the destination LNP lookup is skipped (has same effect

as enabling preference skip_callee_lnp_lookup_from_any_peer for all peers).

• kamailio.proxy.lnp.type: method of LNP lookup; valid values are: local (local LNP database) and api (LNP lookup through

external gateways). PLEASE NOTE: the api type of LNP lookup is only available for NGCP PRO / CARRIER installations.

• kamailio.proxy.lookup_peer_destination_domain_for_pbx: one of [yes, no, peer_host_name] - Sets the content of destina-

tion_domain CDR field for calls between CloudPBX subscribers. In case of no this field contains name of CloudPBX domain;

yes: peer destination domain; peer_host_name: human-readable name of the peering server.

• kamailio.proxy.loop_detection.enable: Enable the SIP loop detection based on the combination of SIP-URI, To and From header

URIs.

• kamailio.proxy.loop_detection.expire: Sampling interval in seconds for the incoming INVITE requests (by default 1 sec).

• kamailio.proxy.loop_detection.max: Maximum allowed number of SIP requests with the same SIP-URI, To and From header

URIs within sampling interval. Requests in excess of this limit will be rejected with 482 Loop Detected response.

• kamailio.proxy.max_expires: Sets the maximum expires in seconds for registration.

• kamailio.proxy.max_gw_lcr: Defines the maximum number of gateways in lcr_gw table

• kamailio.proxy.max_registrations_per_subscriber: Sets the maximum registration per subscribers.

• kamailio.proxy.mem_log: Specifies on which log level the memory statistics will be logged.

• kamailio.proxy.mem_summary: Parameter to control printing of memory debugging information on exit or SIGUSR1 to log.

• kamailio.proxy.min_expires: Sets the minimum expires in seconds for registration.

• kamailio.proxy.nathelper.sipping_from: Set the From header in OPTIONS NAT ping.

• kamailio.proxy.nathelper_dbro: Default is "no". This will be "yes" on CARRIER in order to activate the use of a read-only

connection using LOCAL_URL

• kamailio.proxy.natping_interval: Sets the NAT ping interval in seconds.

• kamailio.proxy.natping_processes: Set the number of NAT ping worker processes.

• kamailio.proxy.nonce_expire: Nonce expire time in seconds.

• kamailio.proxy.pbx.hunt_display_fallback_format: Default is [H %s]. Sets the format of the hunt group indicator that is sent as

initial part of the From Display Name when subscriber is called as a member of PBX hunt group if the preferred format defined

by the hunt_display_format and hunt_display_indicator can not be used (as in the case of not provisioned

subscriber settings). The %s part is replaced with the value of the hunt_display_fallback_indicator variable.

• kamailio.proxy.pbx.hunt_display_fallback_indicator: The internal kamailio variable that sets the number or extension of the hunt

group. Default is $var(cloud_pbx_hg_ext) which is populated during call routing with the extension of the hunt group.

• kamailio.proxy.pbx.hunt_display_format: Default is [H %s]. Sets the format of hunt group indicator that is sent as initial part of

the From Display Name when subscriber is called as a member of PBX hunt group. This is the preferred (default) indicator

format with Display Name, where the %s part is replaced with the value of the hunt_display_indicator variable.

502

The sip:carrier Handbook mr5.5.7 503 / 577

• kamailio.proxy.pbx.hunt_display_indicator: The internal kamailio variable that contains the preferred identifier of the hunt group.

Default is $var(cloud_pbx_hg_displayname) which is populated during call routing with the provisioned Display Name

of the hunt group.

• kamailio.proxy.pbx.hunt_display_maxlength: Default is 8. Sets the maximum length of the variable used as the part of hunt

group indicator in Display Name. The characters beyond this limit are truncated in order for hunt group indicator and calling

party information to fit on display of most phones.

• kamailio.proxy.pbx.ignore_cf_when_hunting: Default is no. Whether to disregard all individual call forwards (CFU, CFB, CFT

and CFNA) of PBX extensions when they are called via hunt groups. Note that call forwards configured to local services such

as Voicebox or Conference are always skipped from group hunting.

• kamailio.proxy.peer_probe.enable: Enable the peer probing, must be also checked per individual peer in the panel/API.

• kamailio.proxy.peer_probe.interval: Peer probe interval in seconds.

• kamailio.proxy.peer_probe.timeout: Peer probe response wait timeout in seconds.

• kamailio.proxy.peer_probe.reply_codes: Defines the response codes that are considered successful response to the configured

probe request, e.g. class=2;class=3;code=403;code=404;code=405, with class defining a code range.

• kamailio.proxy.peer_probe.unavailable_treshold: Defines after how many failed probes a peer is considered unavailable.

• kamailio.proxy.peer_probe.available_treshold: Defines after how many successful probes a peer is considered available.

• kamailio.proxy.peer_probe.from_uri_user: From-userpart for the probe requests.

• kamailio.proxy.peer_probe.from_uri_domain From-hostpart for the probe requests.

• kamailio.proxy.peer_probe.method: [OPTIONS|INFO] - Request method for probe request.

Tip

You can find more information about peer probing configuration in Section 5.10.2 of the handbook.

• kamailio.proxy.perform_peer_failover_on_tm_timeout: Specifies the failover behavior when maximum ring timeout (fr_inv_timer)

has been reached. In case it is set to yes: failover to the next peer if any; in case of no stop trying other peers.

• kamailio.proxy.perform_peer_lcr: Enable/Disable Least Cost Routing based on peering fees.

• kamailio.proxy.pkg_mem: PKG memory used by Kamailio Proxy.

• kamailio.proxy.shm_mem: Shared memory used by Kamailio Proxy.

• kamailio.proxy.port: SIP listening port.

• kamailio.proxy.presence.enable: Enable/disable presence feature

• kamailio.proxy.presence.max_expires: Sets the maximum expires value for PUBLISH/SUBSCRIBE message. Defines expiration

of the presentity record.

• kamailio.proxy.presence.reginfo_domain: Set FQDN of the NGCP domain used in callback for mobile push.

• kamailio.proxy.push.apns_alert: Set the content of alert field towards APNS.

503

The sip:carrier Handbook mr5.5.7 504 / 577

• kamailio.proxy.push.apns_sound: Set the content of sound field towards APNS.

• kamailio.proxy.report_mos: Enable MOS reporting in the log file.

• kamailio.proxy.set_ruri_to_peer_auth_realm: Set R-URI using peer auth realm.

• kamailio.proxy.start: Enable/disable kamailio-proxy service.

• kamailio.proxy.store_recentcalls: Store recent calls to redis (used by Malicious Call Identification application).

• kamailio.proxy.syslog_options: Enable/disable logging of SIP OPTIONS messages to kamailio-options-proxy.log.

• kamailio.proxy.tcp_children: Number of TCP worker processes.

• kamailio.proxy.tm.fr_inv_timer: Set INVITE transaction timeout if no final reply for an INVITE arrives after a provisional message

was received (ringing timeout).

• kamailio.proxy.tm.fr_timer: Set INVITE transaction timeout if the destination is not responding with provisional response mes-

sage.

• kamailio.proxy.treat_600_as_busy: Enable the 6xx response handling according to RFC3261. When enabled, the 6xx response

should stop the serial forking. Also, CFB will be triggered or busy prompt played as in case of 486 Busy response.

• kamailio.proxy.use_enum: Enable/Disable ENUM feature.

• kamailio.proxy.usrloc_dbmode: Set the mode of database usage for persistent contact storage.

• kamailio.proxy.voicebox_first_caller_cli: When enabled the previous forwarder’s CLI will be used as caller CLI in case of chained

Call Forwards.

B.1.17 lnpd

The following section defines configuration of LNP daemon, that is used when LNP queries are served by external gateways→
the so called LNP API mode.

lnpd:

config:

daemon:

foreground: ’false’

json-rpc:

ports:

- ’8095’

loglevel: ’6’

sip:

port: ’5095’

threads: ’4’

instances:

default:

module: sigtran

destination: 0.0.0.0

from-domain: voip.example.com

504

The sip:carrier Handbook mr5.5.7 505 / 577

headers:

- header: INAP-Service-Key

value: ’2’

reply:

tcap: raw-tcap

enabled: no

• lnpd.enabled: Enable/disable LNP daemon

• lnpd.config: details are shown in Configuration of LNP daemon Section 5.4.2.3

B.1.18 mediator

The following is the mediator section:

mediator:

interval: 10

• mediator.interval: Running interval of mediator.

B.1.19 modules

The following is the modules section:

modules:

- enable: no

name: dummy

options: numdummies=2

• modules: list of configs needed for load kernel modules on boot.

• enable: Enable/disable loading of the specific module (yes/no)

• name: kernel module name

• options: kernel module options if needed

B.1.20 nginx

The following is the nginx section:

nginx:

status_port: 8081

xcap_port: 1080

505

The sip:carrier Handbook mr5.5.7 506 / 577

• nginx.status_port: Status port used by nginx server

• nginx.xcap_port: XCAP port used by nginx server

B.1.21 ntp

The following is the ntp server section:

ntp:

servers:

- 0.debian.pool.ntp.org

- 1.debian.pool.ntp.org

- 2.debian.pool.ntp.org

- 3.debian.pool.ntp.org

• ntp.servers: Define your NTP server list.

B.1.22 ossbss

The following is the ossbss section:

ossbss:

apache:

port: 2443

proxyluport: 1080

restapi:

sslcertfile: ’/etc/ngcp-panel/api_ssl/api_ca.crt’

sslcertkeyfile: ’/etc/ngcp-panel/api_ssl/api_ca.key’

serveradmin: support@sipwise.com

servername: "\"myserver\""

ssl_enable: ’yes’

sslcertfile: ’/etc/ngcp-config/ssl/myserver.crt’

sslcertkeyfile: ’/etc/ngcp-config/ssl/myserver.key’

frontend: ’no’

htpasswd:

-

pass: ’{SHA}w4zj3mxbmynIQ1jsUEjSkN2z2pk=’

user: ngcpsoap

logging:

apache:

acc:

facility: daemon

identity: oss

level: info

err:

facility: local7

level: info

506

The sip:carrier Handbook mr5.5.7 507 / 577

ossbss:

facility: local0

identity: provisioning

level: DEBUG

web:

facility: local0

level: DEBUG

provisioning:

allow_ip_as_domain: 1

allow_numeric_usernames: 0

auto_allow_cli: 1

carrier:

account_distribution_function: roundrobin

prov_distribution_function: roundrobin

credit_warnings:

-

domain: example.com

recipients:

- nobody@example.com

threshold: 1000

faxpw_min_char: 0

log_passwords: 0

no_logline_truncate: 0

pw_min_char: 6

routing:

ac_regex: ’[1-9]\d{0,4}’

cc_regex: ’[1-9]\d{0,3}’

sn_regex: ’[1-9]\d+’

tmpdir: ’/tmp’

• ossbss.frontend: Enable disable SOAP interface. Set value to fcgi to enable old SOAP interface.

• ossbss.htpasswd: Sets the username and SHA hashed password for SOAP access. You can generate the password using the

following command: htpasswd -nbs myuser mypassword.

• ossbss.provisioning.allow_ip_as_domain: Allow or not allow IP address as SIP domain (0 is not allowed).

• ossbss.provisioning.allow_numeric_usernames: Allow or not allow numeric SIP username (0 is not allowed).

• ossbss.provisioning.faxpw_min_char: Minimum number of characters for fax passwords.

• ossbss.provisioning.pw_min_char: Minimum number of characters for sip passwords.

• ossbss.provisioning.log_password: Enable logging of passwords.

• ossbss.provisioning.routing: Regexp for allowed AC (Area Code), CC (Country Code) and SN (Subscriber Number).

507

The sip:carrier Handbook mr5.5.7 508 / 577

B.1.23 pbx (only with additional cloud PBX module installed)

The following is the PBX section:

pbx:

bindport: 5085

enable: ’no’

highport: 55000

lowport: 50001

media_processor_threads: 10

session_processor_threads: 10

xmlrpcport: 8095

• pbx.enable: Enable Cloud PBX module.

B.1.24 prosody

The following is the prosody section:

prosody:

ctrl_port: 5582

log_level: info

• prosody.ctrl_port: XMPP server control port.

• prosody.log_level: Prosody loglevel.

B.1.25 pushd

The following is the pushd section:

pushd:

apns:

enable: yes

endpoint: api.push.apple.com

endpoint_port: 0

extra_instances:

- certificate: ’/etc/ngcp-config/ssl/PushCallkitCert.pem’

enable: yes

key: ’/etc/ngcp-config/ssl/PushCallkitKey.pem’

type: callkit

http2_jwt:

ec_key: ’/etc/ngcp-config/ssl/AuthKey_ABCDE12345.pem’

ec_key_id: ’ABCDE12345’

enable: yes

issuer: ’VWXYZ67890’

508

The sip:carrier Handbook mr5.5.7 509 / 577

tls_certificate: ’’

tls_key: ’’

topic: ’com.example.appID’

legacy:

certificate: ’/etc/ngcp-config/ssl/PushChatCert.pem’

feedback_endpoint: feedback.push.apple.com

feedback_interval: ’3600’

key: ’/etc/ngcp-config/ssl/PushChatKey.pem’

socket_timeout: 0

domains:

- apns:

endpoint: api.push.apple.com

extra_instances:

- certificate: ’/etc/ngcp-config/ssl/PushCallkitCert-example.com.pem’

enable: no

key: ’/etc/ngcp-config/ssl/PushCallkitKey-example.com.pem’’

type: callkit

http2_jwt:

ec_key: ’/etc/ngcp-config/ssl/AuthKey_54321EDCBA.pem’

ec_key_id: ’54321EDCBA’

issuer: ’09876ZYXWV’

tls_certificate: ’’

tls_key: ’’

topic: ’com.example.otherAppID’

legacy:

certificate: ’/etc/ngcp-config/ssl/PushChatCert-example.com.pem’

feedback_endpoint: feedback.push.apple.com

key: ’/etc/ngcp-config/ssl/PushChatKey-example.com.pem’

domain: example.com

enable: yes

gcm:

key: ’google_api_key_for_example.com_here’

enable: yes

gcm:

enable: yes

key: ’google_api_key_here’

priority:

call: high

groupchat: normal

invite: normal

message: normal

muc:

exclude: []

force_persistent: ’true’

owner_on_join: ’true’

one_device_per_subscriber: no

port: 45060

processes: 4

509

The sip:carrier Handbook mr5.5.7 510 / 577

ssl: yes

sslcertfile: /etc/ngcp-config/ssl/CAsigned.crt

sslcertkeyfile: /etc/ngcp-config/ssl/CAsigned.key

unique_device_ids: no

• pushd.enable: Enable/Disable the Push Notification feature.

• pushd.apns.enable: Enable/Disable Apple push notification.

• pushd.apns.endpoint: API endpoint hostname or address. Should be one of api.push.apple.com or api.development.push.apple.com

for the newer HTTP2/JWT based protocol, or one of gateway.push.apple.com or gateway.sandbox.push.apple.com for the legacy

protocol.

• pushd.apns.endpoint_port: API endpoint port. Normally 443 or alternatively 2197 for the newer HTTP2/JWT based protocol, or

2195 for the legacy protocol.

• pushd.apns.legacy: Contains all options specific to the legacy APNS protocol. Ignored when HTTP2/JWT is in use.

• pushd.apns.legacy.certificate: Specify the Apple certificate for push notification https requests from the NGCP to an endpoint.

• pushd.apns.legacy.key: Specify the Apple key for push notification https requests from the NGCP to an endpoint.

• pushd.apns.legacy.feedback_endpoint: Hostname or address of the APNS feedback service. Normally one of feedback.push.apple.com

or feedback.sandbox.push.apple.com.

• pushd.apns.legacy.feedback_interval: How often to poll the feedback service, in seconds.

• pushd.apns.extra_instances: If the iOS app supports Callkit push notifications, they can be enabled here and the required

separate certificate and key can be specified. Ignored if HTTP2/JWT is enabled.

• pushd.http2_jwt: Contains all options specific to the newer HTTP2/JWT based APNS API protocol.

• pushd.http2_jwt.ec_key: Name of file that contains the elliptic-curve (EC) cryptographic key provided by Apple, in PEM format.

• pushd.http2_jwt.ec_key_id: 10-digit identification string of the EC key in use.

• pushd.http2_jwt.enable: Master switch for the HTTP2/JWT based protocol. Disables the legacy protocol when enabled.

• pushd.http2_jwt.issuer: Issuer string for the JWT token. Normally the 10-digit team ID string for which the EC key was issued.

• pushd.http2_jwt.tls_certificate: Optional client certificate to use for the TLS connection.

• pushd.http2_jwt.tls_key: Optional private key for the client certificate to use for the TLS connection.

• pushd.http2_jwt.topic: Topic string for the JWT token. Normally the bundle ID for the iOS app.

• pushd.gcm.enable: Enable/Disable Google push notification.

• pushd.gcm.key: Specify the Google key for push notification https requests from the NGCP to an endpoint.

• pushd.domains: Supports a separate set of push configurations (API keys, certificates, etc) for all subscribers of the given

domain.

• pushd.muc.exclude: list of MUC room jids excluded from sending push notifications.

510

The sip:carrier Handbook mr5.5.7 511 / 577

• pushd.muc.force_persistent: Enable/Disable MUC rooms to be persistent. Needed for NGCP app to work with other clients.

• pushd.muc.owner_on_join: Enable/Disable all MUC participants to be owners of the MUC room. Needed for NGCP app to work

with other clients.

• pushd.ssl: The security protocol the NGCP uses for https requests from the app in the push notification process.

• pushd.sslcertfile: The trusted certificate file purchased from a CA

• pushd.sslcertkeyfile: The key file that purchased from a CA

• pushd.unique_device_ids: Allows a subscriber to register the app and have the push notification enabled on more than one

mobile device.

B.1.26 qos

The following is the QOS section:

qos:

tos_rtp: 184

tos_sip: 184

• qos.tos_rtp: TOS value for RTP traffic.

• qos.tos_sip: TOS value for SIP traffic.

B.1.27 rate-o-mat

The following is the rate-o-mat section:

rateomat:

enable: ’yes’

loopinterval: 10

splitpeakparts: 0

• rateomat.enable: Enable/Disable Rate-o-mat

• rateomat.loopinterval: How long we shall sleep before looking for unrated CDRs again.

• rateomat.splitpeakparts: Whether we should split CDRs on peaktime borders.

B.1.28 redis

The following is the redis section:

redis:

database_amount: 16

port: 6379

syslog_ident: redis

511

The sip:carrier Handbook mr5.5.7 512 / 577

• redis.database_amout: Set the number of databases in redis. The default database is DB 0.

• redis.port: Accept connections on the specified port, default is 6379

• redis.syslog_ident: Specify the syslog identity.

B.1.29 reminder

The following is the reminder section:

reminder:

retries: 2

retry_time: 60

sip_fromdomain: voicebox.sipwise.local

sip_fromuser: reminder

wait_time: 30

weekdays: ’2, 3, 4, 5, 6, 7’

• reminder.retries: How many times the reminder feature have to try to call you.

• reminder.retry_time: Seconds between retries.

• reminder.wait_time: Seconds to wait for an answer.

B.1.30 rsyslog

The following is the rsyslog section:

rsyslog:

elasticsearch:

action:

resumeretrycount: ’-1’

bulkmode: ’on’

dynSearchIndex: ’on’

enable: ’yes’

queue:

dequeuebatchsize: 300

size: 5000

type: linkedlist

external_address:

external_log: 0

external_loglevel: warning

external_port: 514

external_proto: udp

ngcp_logs_preserve_days: 93

• rsyslog.elasticsearch.enable: Enable/Disable Elasticsearch web interface

512

The sip:carrier Handbook mr5.5.7 513 / 577

• rsyslog.external_address: Set the remote rsyslog server.

• rsyslog.ngcp_logs_preserve_days: Specify how many days to preserve old rotated log files in /var/log/ngcp/old path.

B.1.31 rtpproxy

The following is the rtp proxy section:

rtpproxy:

allow_userspace_only: yes

enabled: yes

firewall_iptables_chain: ’’

log_level: ’6’

maxport: ’40000’

minport: ’30000’

prefer_bind_on_internal: no

recording:

enabled: no

mp3_bitrate: ’48000’

nfs_host: 192.168.1.1

nfs_remote_path: /var/recordings

output_dir: /var/lib/rtpengine-recording

output_format: wav

output_mixed: yes

output_single: yes

resample: no

resample_to: ’16000’

spool_dir: /var/spool/rtpengine

rtp_timeout: ’60’

rtp_timeout_onhold: ’3600’

• rtpproxy.allow_userspace_only: Enable/Disable the user space failover for rtpengine (yes means enable). By default rtpengine

works in kernel space.

• rtpproxy.firewall_iptables_chain: If set, rtpengine will create an iptables rule for each individual media port opened in this chain.

• rtpproxy.log_level: Verbosity of log messages. The default 6 logs everything except debug messages. Increase to 7 to log

everything, or decrease to make logging more quiet.

• rtpproxy.maxport: Maximum port used by rtpengine for RTP traffic.

• rtpproxy.minport: Minimum port used by rtpengine for RTP traffic.

• rtpproxy.recording.enabled: Enable support for call recording.

• rtpproxy.recording.mp3_bitrate: If saving audio as MP3, bitrate of the output file.

• rtpproxy.recording.nfs_host: Mount an NFS share from this host for storage.

• rtpproxy.recording.nfs_remote_path: Remote path of the NFS share to mount.

513

The sip:carrier Handbook mr5.5.7 514 / 577

• rtpproxy.recording.output_dir: Local mount point for the NFS share.

• rtpproxy.recording.output_format: Either wav for PCM output or mp3.

• rtpproxy.recording.output_mixed: Create output audio files with all contributing audio streams mixed together.

• rtpproxy.recording.output_single: Create separate audio files for each contributing audio stream.

• rtpproxy.recording.resample: Resample all audio to a fixed bitrate (yes or no).

• rtpproxy.recording.resample_to: If resampling is enabled, resample to this sample rate.

• rtpproxy.recording.spool_dir: Local directory for temporary metadata file storage.

• rtpproxy.rtp_timeout: Consider a call dead if no RTP is received for this long (60 seconds).

• rtpproxy.rtp_timeout_onhold: Maximum limit in seconds for an onhold (1h).

B.1.32 security

The following is the security section. Usage of the firewall subsection is described in Section 14.2:

security:

firewall:

enable: no

logging:

days_kept: ’7’

enable: yes

file: /var/log/firewall.log

tag: NGCPFW

nat_rules4: ~

nat_rules6: ~

policies:

forward: DROP

input: DROP

output: ACCEPT

rules4: ~

rules6: ~

• security.firewall.enable: Enable/disable iptables configuration and rule generation for IPv4 and IPv6 (default: no)

• security.firewall.logging.days_kept: Number of days logfiles are kept on the system before being deleted (log files are rotated

daily, default: 7)

• security.firewall.logging.enable: Enables/disables logging of all packets dropped by the NGCP firewall (default: yes)

• security.firewall.logging.file: File firewall log messages go to (default: /var/log/firewall.log)

• security.firewall.logging.tag: String prepended to all log messages (internally DROP is added to any tag indicating the action

triggering the message, default: NGCPFW)

514

The sip:carrier Handbook mr5.5.7 515 / 577

• security.firewall.nat_rules4: Optional list of IPv4 firewall rules added to table nat using iptables-persistent syntax (default:

undef)

• security.firewall.nat_rules6: Optional list of IPv6 firewall rules added to table nat using iptables-persistent syntax (default:

undef)

• security.firewall.policies.forward: Default policy for iptables FORWARD chain (default: DROP)

• security.firewall.policies.input: Default policy for iptables INPUT chain (default: DROP)

• security.firewall.policies.output: Default policy for iptables OUTPUT chain (default: ACCEPT)

• security.firewall.rules4: Optional list of IPv4 firewall rules added to table filter using iptables-persistent syntax (default:

undef)

• security.firewall.rules6: Optional list of IPv6 firewall rules added to table filter using iptables-persistent syntax (default:

undef)

B.1.33 sems

The following is the SEMS section:

sems:

bindport: 5080

conference:

enable: ’yes’

max_participants: 10

debug: ’no’

highport: 50000

lowport: 40001

media_processor_threads: 10

prepaid:

enable: ’yes’

sbc:

calltimer_enable: ’yes’

calltimer_max: 3600

outbound_timeout: 6000

sdp_filter:

codecs: PCMA,PCMU,telephone-event

enable: ’yes’

mode: whitelist

session_timer:

enable: ’yes’

max_timer: 7200

min_timer: 90

session_expires: 300

session_processor_threads: 10

vsc:

block_override_code: 80

515

The sip:carrier Handbook mr5.5.7 516 / 577

cfb_code: 90

cfna_code: 93

cft_code: 92

cfu_code: 72

clir_code: 31

directed_pickup_code: 99

enable: ’yes’

park_code: 97

reminder_code: 55

speedial_code: 50

unpark_code: 98

voicemail_number: 2000

xmlrpcport: 8090

• sems.conference.enable: Enable/Disable conference feature.

• sems.conference.max_participants: Sets the number of concurrent participant.

• sems.highport: Maximum ports used by sems for RTP traffic.

• sems.debug: Enable/Disable debug mode.

• sems.lowport: Minimum ports used by sems for RTP traffic.

• sems.prepaid.enable: Enable/Disable prepaid feature.

• sems.sbc.calltimer_max: Set the default maximum call duration (used if otherwise is not defined by preference).

• sems.sbc.outbound_timeout: Set INVITE transaction timeout if the destination is not responding with provisional response

message.

• sems.sbc.session_timer.enable: Enable/Disable session timers (deprecated, use the web interface configuration).

• sems.vsc.*: Define here the VSC codes.

B.1.34 sms

This section provides configuration of Short Message Service on the NGCP. Description of the SMS module is provided earlier in

this handbook here Section 5.27.

In the below example you can see the default values of the configuration parameters.

sms:

core:

admin_port: ’13000’

smsbox_port: ’13001’

enable: no

loglevel: ’0’

sendsms:

max_parts_per_message: ’5’

516

The sip:carrier Handbook mr5.5.7 517 / 577

port: ’13002’

smsc:

dest_addr_npi: ’1’

dest_addr_ton: ’1’

enquire_link_interval: ’58’

host: 1.2.3.4

id: default_smsc

max_pending_submits: ’10’

no_dlr: yes

password: password

port: ’2775’

source_addr_npi: ’1’

source_addr_ton: ’1’

system_type: ’’

throughput: ’5’

transceiver_mode: ’1’

username: username

• sms.core.admin_port: Port number of admin interface of SMS core module (running on LB nodes).

• sms.core.smsbox_port: Port number used for internal communication between bearerbox module on LB nodes and smsbox

module on PRX nodes. This is a listening port of the bearerbox module (running on LB nodes).

• sms.enable: Set to yes if you want to enable SMS module.

• sms.loglevel: Log level of SMS module; the default 0 will result in writing only the most important information into the log file.

• sms.sendsms.max_parts_per_message: If the SM needs to be sent as concatenated SM, this parameter sets the max. number

of parts for a single (logical) message.

• sms.sendsms.port: Port number of smsbox module (running on PRX nodes).

• sms.smsc. : Parameters of the connection to an SMSC

– dest_addr_npi: Telephony numbering plan indicator for the SM destination, as defined by standards (e.g. 1 stands for E.164)

– dest_addr_ton: Type of number for the SM destination, as defined by standards (e.g. 1 stands for "international" format)

– enquire_link_interval: Interval of SMSC link status check in seconds

– host: IP address of the SMSC

– id: An arbitrary string for identification of the SMSC; may be used in log files and for routing SMs.

– max_pending_submits: The maximum number of outstanding (i.e. not acknowledged) SMPP operations between the NGCP

and SMSC. As a guideline it is recommended that no more than 10 (default) SMPP messages are outstanding at any time.

– no_dlr: Do not request delivery report; when sending an SM and this parameter is set to yes, NGCP will not request DR

for the message(s). May be required for some particular SMSCs, in order to avoid "Incorrect status report request parameter

usage" error messages from the SMSC.

– password: This is the password used for authentication on the SMSC.

– port: Port number of the SMSC where NGCP will connect to.

517

The sip:carrier Handbook mr5.5.7 518 / 577

– source_addr_npi: Telephony numbering plan indicator for the SM source, as defined by standards (e.g. 1 stands for E.164)

– source_addr_ton: Type of number for the SM source, as defined by standards (e.g. 1 stands for "international" format)

– system_type: Defines the SMSC client category in which NGCP belongs to; defaults to "VMA" (Voice Mail Alert) when no

value is given. (No need to set any value)

– throughput: The max. number of messages per second that NGCP will send towards the SMSC. (Value type: float)

– transceiver_mode: If set to 1 (yes / true), NGCP will attempt to use a TRANSCEIVER mode connection to the SMSC. It uses

the standard transmit port of the SMSC for receiving SMs too.

– username: This is the username used for authentication on the SMSC.

B.1.35 snmpagent

The following is the SNMP Agent section:

snmpagent:

daemonize: ’1’

debug: ’0’

update_interval: ’30’

• daemonize: Enable/Disable ngcp-snmp-agent daemonization.

• debug: Enable/Disable debug output.

• update_interval: Sets the interval in seconds used to update the fetched data.

B.1.36 sshd

The following is the sshd section:

sshd:

listen_addresses:

- 0.0.0.0

• sshd: specify interface where SSHD should run on. By default sshd listens on all IPs found in network.yml with type ssh_ext.

Unfortunately sshd can be limited to IPs only and not to interfaces. The current option makes it possible to specify allowed IPs

(or all IPs with 0.0.0.0).

B.1.37 sudo

The following is in the sudo section:

sudo:

logging: no

max_log_sessions: 0

518

The sip:carrier Handbook mr5.5.7 519 / 577

• logging: enable/disable the I/O logging feature of sudo. See man page of sudoreplay(8).

• max_log_sessions: when I/O logging is enabled, specifies how many log sessions per individual user sudo should keep before

it starts overwriting old ones. The default 0 means no limit.

B.1.38 voisniff

The following is the voice sniffer section:

voisniff:

admin_panel: no

daemon:

bpf: ’port 5060 or 5062 or ip6 proto 44 or ip[6:2] & 0x1fff != 0’

external_interfaces: eth0 eth1

filter:

exclude:

- active: ’0’

case_insensitive: ’1’

pattern: ’\ncseq: *\d+ +(register|notify|options)’

include: []

internal_interfaces: lo

li_x1x2x3:

call_id:

suffix:

- _pbx-1

- _b2b-1

- _xfer-1

client_certificate: ’’

enabled: no

fix_checksums: no

fragmented: no

interface:

excludes: []

local_name: sipwise

x1:

port: ’18090’

mysql_dump:

enabled: yes

num_threads: ’4’

mysql_dump_threads: ’4’

start: no

threads_per_interface: ’10’

partitions:

increment: ’700000’

keep: ’10’

Parameters commonly used for call statistics retrievable on the web interface and for lawful interception:

519

The sip:carrier Handbook mr5.5.7 520 / 577

• voisniff.daemon.bpf: Sets the basic packet filter applied by voisniff-ng module when capturing packets on network interfaces.

• voisniff.deamon.external_interfaces: List of network interfaces where voisniff-ng will listen for packets.

• voisniff.deamon.internal_interfaces: List of network interfaces that voisniff-ng will ignore for capturing packets. These are used

for internal communication among NGCP modules. Default: lo (→ the loopback interface)

• voisniff.daemon.filter.exclude and voisniff.daemon.filter.include: Additional filter to determine packets that need to be excluded

from / included in capturing.

• voisniff.deamon.start: Change to yes if you want voisniff-ng start at boot. Default is no.

• voisniff.daemon.threads_per_interface: Controls how many threads per enabled sniffing interface should be launched.

Parameters used only for call statistics:

• voisniff.admin_panel: Enable/Disable call statistics on Admin interface. Default: no.

• voisniff.daemon.mysql_dump.* and voisniff.daemon.mysql_dump_threads: These parameters determine how much resource

should be dedicated to call statistics collection and storage into the database.

• voisniff.partitions.*: These parameters determine how the collected packets are stored in the database: how big chunks are kept

in a single table (→ increment), how many tables with call data are kept in DB (→ keep).

Parameters used only for lawful interception:

• voisniff.daemon.li_x1x2x3.call_id.suffix: List of NGCP-internal Call-ID suffix patterns that should be ignored when determining

the original SIP Call-ID of an intercepted call.

• voisniff.daemon.li_x1x2x3.client_certificate: The client certificate that NGCP uses to connect over TLS to a 3rd party LI provider.

• voisniff.daemon.li_x1x2x3.enabled: Set it to yes to enable LI services via X1, X2 and X3 interfaces. Default: no

• voisniff.daemon.li_x1x2x3.fix_checksums: When enabled (= yes), NGCP will calculate UDP header checksum for packets sent

out on X2 and X3 interfaces. Default: no

• voisniff.daemon.li_x1x2x3.fragmented: Determines whether voisniff-ng is allowed to send fragmented packets via X2 and X3

interfaces. Default: no

• voisniff.daemon.li_x1x2x3.interface.excludes: This is a list of interfaces that must be excluded from the interception procedures.

Default: empty list

• voisniff.daemon.li_x1x2x3.local_name: This parameter maps to the header.source field of the X2 protocol. It’s an arbitrary

string and can be used to identify the sending NGCP system. Default: sipwise

• voisniff.daemon.li_x1x2x3.private_key: The private key that NGCP uses to connect over TLS to a 3rd party LI provider. Only

necessary if the client certificate file does not include the private key.

• voisniff.daemon.li_x1x2x3.x1.port: The port number on which voisniff-ng listens for incoming X1 messages. Default: 18090

Tip

Visit Section 16.3.2.3 part of the handbook to learn more about lawful interception configuration.

520

The sip:carrier Handbook mr5.5.7 521 / 577

B.1.39 www_admin

The following is the WEB Admin interface (www_admin) section:

www_admin:

ac_dial_prefix: 0

apache:

autoprov_port: 1444

billing_features: 1

callingcard_features: 0

callthru_features: 0

cc_dial_prefix: 00

conference_features: 1

contactmail: adjust@example.org

dashboard:

enabled: 1

default_admin_settings:

call_data: 0

is_active: 1

is_master: 0

read_only: 0

show_passwords: 1

domain:

preference_features: 1

rewrite_features: 1

vsc_features: 0

fastcgi_workers: 2

fax_features: 1

fees_csv:

element_order:

- source

- destination

- direction

- zone

- zone_detail

- onpeak_init_rate

- onpeak_init_interval

- onpeak_follow_rate

- onpeak_follow_interval

- offpeak_init_rate

- offpeak_init_interval

- offpeak_follow_rate

- offpeak_follow_interval

- use_free_time

http_admin:

autoprov_port: 1444

port: 1443

serveradmin: support@sipwise.com

521

The sip:carrier Handbook mr5.5.7 522 / 577

servername: "\"myserver\""

ssl_enable: ’yes’

sslcertfile: ’/etc/ngcp-config/ssl/myserver.crt’

sslcertkeyfile: ’/etc/ngcp-config/ssl/myserver.key’

http_csc:

autoprov_bootstrap_port: 1445

autoprov_port: 1444

port: 443

serveradmin: support@sipwise.com

servername: "\"myserver\""

ssl_enable: ’yes’

sslcertfile: ’/etc/ngcp-config/ssl/myserver.crt’

sslcertkeyfile: ’/etc/ngcp-config/ssl/myserver.key’

logging:

apache:

acc:

facility: daemon

identity: oss

level: info

err:

facility: local7

level: info

peer:

preference_features: 1

peering_features: 1

security:

password_allow_recovery: 0

password_max_length: 40

password_min_length: 6

password_musthave_digit: 0

password_musthave_lowercase: 1

password_musthave_specialchar: 0

password_musthave_uppercase: 0

password_sip_autogenerate: 0

password_sip_expose_subadmin: 1

password_web_autogenerate: 0

password_web_expose_subadmin: 1

speed_dial_vsc_presets:

vsc:

- ’*0’

- ’*1’

- ’*2’

- ’*3’

- ’*4’

- ’*5’

- ’*6’

- ’*7’

- ’*8’

522

The sip:carrier Handbook mr5.5.7 523 / 577

- ’*9’

subscriber:

auto_allow_cli: 0

extension_features: 0

voicemail_features: 1

• www_admin.http_admin.*: Define the Administration interface and certificates.

• www_admin.http_csc.*: Define the Customers interface and certificates.

• www_admin.contactmail: Email to show in the GUI’s Error page.

B.2 constants.yml Overview

/etc/ngcp-config/constants.yml is one of the main configuration files that contains important (static) configuration

parameters, like NGCP system-user data.

Caution

NGCP platform administrator should not change content of constants.yml file unless absolutely necessary. Please

contact Sipwise Support before changing any of the parameters within the constants.yml file!

B.3 network.yml Overview

/etc/ngcp-config/network.yml is one of the main configuration files that contains network-related configuration pa-

rameters, like IP addresses and roles of the node(s) in sip:carrier system.

The next example shows a part of the network.yml configuration file. Explanation of all the configuration parameters is

provided in Network Configuration Section 10 section of the handbook.

Sample host configuration for sip:carrier

web01a:

bond0:

bond_miimon: ’100’

bond_mode: active-backup

bond_slaves: ’eth0 eth1’

hwaddr: 00:00:00:00:00:00

ip: 192.168.1.2

netmask: 255.255.255.0

shared_ip:

- 192.168.1.1

type:

- boot_int

eth0:

hwaddr: 00:00:00:00:00:00

523

The sip:carrier Handbook mr5.5.7 524 / 577

eth1:

hwaddr: 00:00:00:00:00:00

interfaces:

- vlan11

- vlan666

- vlan35

- vlan100

- vlan80

- vlan90

- vlan15

- vlan20

- lo

- eth0

- eth1

- bond0

lo:

advertised_ip: []

hwaddr: 00:00:00:00:00:00

ip: 127.0.0.1

netmask: 255.0.0.0

shared_ip: []

shared_v6ip: []

type:

- ssh_ext

- api_int

v6ip: ’::1’

peer: web01b

role:

- mgmt

status: ’online’

vlan20:

advertised_ip: []

hwaddr: 00:00:00:00:00:00

ip: 172.31.3.75

netmask: 255.255.255.240

shared_ip:

- 172.31.3.74

type:

- web_int

vlan_raw_device: bond0

post_up:

- ’route add -host 172.30.172.247 gw 172.31.3.65 dev vlan20’

vlan100:

hwaddr: 00:0a:f7:8d:32:ec

ip: 172.31.3.5

netmask: 255.255.255.224

shared_ip:

- 172.31.3.4

524

The sip:carrier Handbook mr5.5.7 525 / 577

type:

- ha_int

- web_int

- ssh_ext

vlan_raw_device: bond0

vlan11:

dns_nameservers:

- 172.31.3.244

- 192.168.56.11

- 192.168.57.11

gateway: 172.31.3.33

hwaddr: 00:00:00:00:00:00

ip: 172.31.3.37

netmask: 255.255.255.224

shared_ip:

- 172.31.3.36

shared_v6ip: []

type:

- mon_ext

- ssh_ext

vlan_raw_device: bond0

vlan15:

hwaddr: 00:00:00:00:00:00

ip: 192.168.181.201

netmask: 255.255.255.0

post_up:

- ’route add -net 172.25.240.0/24 gw 192.168.181.1 dev vlan15’

- ’route add -net 192.168.6.0/24 gw 192.168.181.1 dev vlan15’

shared_ip:

- 192.168.181.200

type:

- ssh_ext

- web_int

- mon_ext

vlan_raw_device: bond0

vlan35:

hwaddr: 00:00:00:00:00:00

ip: 172.31.3.101

netmask: 255.255.255.240

shared_ip:

- 172.31.3.100

type:

- sip_int

vlan_raw_device: bond0

vlan666:

hwaddr: 00:00:00:00:00:00

ip: 46.5.10.37

netmask: 255.255.255.240

525

The sip:carrier Handbook mr5.5.7 526 / 577

shared_ip:

- 46.5.10.36

type:

- web_ext

vlan_raw_device: bond0

vlan80:

hwaddr: 00:00:00:00:00:00

ip: 172.31.3.237

netmask: 255.255.255.248

shared_ip:

- 172.31.3.236

type:

- phone_ext

- web_ext

vlan_raw_device: bond0

post_up:

- ’ip route add default via 172.31.3.233 dev vlan80 table phones_ext’

- ’ip rule add from 172.31.3.236 lookup phones_ext prio 1000’

vlan90:

hwaddr: 00:00:00:00:00:00

ip: 46.5.10.53

netmask: 255.255.255.248

post_up:

- ’route add -host 77.244.249.93 gw 46.5.10.49 dev vlan90’

shared_ip:

- 46.5.10.52

type:

- repos_ext

vlan_raw_device: bond0

526

The sip:carrier Handbook mr5.5.7 527 / 577

C NGCP-Faxserver Configuration

For an overview of Faxserver architecture and features, please see the Faxserver Section 5.11 chapter.

C.1 Faxserver Components

Starting from mr4.3 release there is a completely reworked fax server in a form of standalone daemon that uses Asterisk as its

transmission component. No other component — such as hylafax or iaxmodem— is necessary to send and receive faxes on

sip:carrier platform.

C.2 Enabling Faxserver

In order to configure functions of NGCP Faxserver one needs to update the main NGCP configuration file /etc/ngcp-config/

config.yml with the correct fax options:

faxserver:

enable: yes

fail_attempts: ’3’

fail_retry_secs: ’60’

keep_failed_fax: yes

keep_failed_fax_days: ’60’

keep_received_fax: yes

keep_received_fax_days: ’60’

keep_sent_fax: yes

keep_sent_fax_days: ’60’

mail_from: ’Sipwise NGCP FaxServer <voipfax@ngcp.sipwise.local>’

Parameters are:

• enable: must be yes to enable Faxserver

• fail_...: the number and timeout of fax sending retrials

• keep_...: fax retention definitions: enabling and length in days

• mail_from: the From header in the e-mail that is sent by Fax2Mail feature when a fax is received

Important

Ensure that in network.yml the api_int interface is assigned to the appropriate network interface or a VLAN of the node

with the mgmt role. Usually, this is the same network interface or VLAN where the ha_int interface is assigned to. The

api_int interface must be removed from all other nodes.

527

The sip:carrier Handbook mr5.5.7 528 / 577

C.3 Fax Templates Configuration

One needs to update /etc/ngcp-config/templates/etc/ngcp-faxserver/faxserver.conf.tt2 if he wants

to use custom content in the fax and e-mail templates that are used by Faxserver to generate the actual fax or e-mail. This may

be done under the "User templates" section in the file.

Applying new Faxserver configuration

Once the above mentioned configuration files have been modified the new settings must be applied:

ngcpcfg apply ’Configured fax server’

ngcpcfg push all

C.4 Fax Services Configuration per Subscriber

Fax services must be explicitly activated for subscribers before they can send or receive faxes. This activation and the custom

settings may be set on the NGCP Web panel in the following way (as an administrator):

• Go to Subscribers and find the subscriber that you want to modify settings for

• Click on Preferences button

• Select FaxFeatures

In both sections Fax2Mail and SendFax and Mail2Fax there is a field: Active. This must be changed from no to yes if the

particular fax service must be activated.

When fax services have been activated the user sees a summary of settings in FaxFeatures section on his Preferences page:

528

The sip:carrier Handbook mr5.5.7 529 / 577

Figure 158: Fax Settings

Details of Fax2Mail, SendFax and Mail2Fax settings are described in subsequent paragraphs.

C.5 Fax2Mail and SendFax Settings

• Name in Fax Header for SendFax: optional field that contains the subscribers name on faxes sent from the Web

panel directly

• Destinations: e-mail addresses and selections of notification items that define about which event and where an e-mail is

sent; this is a list of such definitions

529

The sip:carrier Handbook mr5.5.7 530 / 577

Figure 159: Fax2Mail Destination

The parameters for a destination are as follows:

• Destination Email: the e-mail address where the notification must be sent

• File Type: file format of faxes attached to e-mails

• Deliver Incoming Faxes: select this in order to receive incoming faxes in e-mail

• Deliver Outgoing Faxes: select this in order to receive a report about sent faxes

• Receive Reports: select this in order to receive reports about success / failure of fax transmissions

C.6 Mail2Fax Settings

A subscriber can restrict access to his Mail2Fax service with some methods, those can also be combined:

• using a secret key that is only known to him, and is inserted in every mail that he sends to NGCP to be forwarded as fax

• using an access control list (ACL) that determines from which endpoint and for which destination a mail-to-fax is accepted by

NGCP platform

530

The sip:carrier Handbook mr5.5.7 531 / 577

• Secret Key: the secret key used to validate the sender of an e-mail; not used if left empty

• Secret Key Renew: secret key renewal period; NGCP platform will enforce renewal of the secret key when the defined time

has elapsed

• Last Secret Key Modify Time: information about the last secret key modification time

• Secret Key Renew Notify: an e-mail address where the notification about secret key modification is sent

• ACL: access control list, see the details below; this is a list of access control rules

Figure 160: Mail2Fax Access Control List

The parameters for access control rules:

• From email: this sender is allowed to use Mail2Fax service

• Received from IP: this IP address or host name must be present in From e-mail header

• Destination: either a complete phone number in E.164 format, or a regular expression ("Use Regex" checkbox must be

ticked) that may define a range of numbers. Examples: "4313334445" as a single number; "ˆ4399.+" as a regular expression:

all destinations starting with "4399"

531

The sip:carrier Handbook mr5.5.7 532 / 577

Caution

When neither Secret Key, nor ACL is defined then Mail2Fax service will deny accepting any e-mail for sending faxes!

C.7 Sending Fax from Web Panel

A subscriber can log in to his Customer Self Care website and send faxes directly from there. In order to do this, one needs to do

the following:

• Go to Settings→Web Fax page

Tip

The list of received faxes is also available here.

• Press Send Fax button to start entering data, such as recipient and content for the fax being sent:

Figure 161: Sending Fax from Web Panel

532

The sip:carrier Handbook mr5.5.7 533 / 577

Both plain text message and attached files can be sent in the fax. First page(s) will contain the plain text message and the content

of attached files will follow that.

C.8 Faxserver Mail2Fax Configuration

Using NGCP Faxserver’s Mail2Fax service requires the configuration of sip:carrier’s local mail server that is Exim. It has to be

configured in a way that it can receive mails from outside of the server, because Exim by default listens only on the local interfaces

for incoming mails.

Exim Configuration

The NGCP platform administrator must reconfigure Exim in order to enable receiving e-mails for fax sending:

dpkg-reconfigure exim4-config

PLEASE NOTE: When entering configuration data the following points must be kept in mind:

• operation mode has to be set to "mail sent by smarthost; no local mail"

• "mail2fax.example.org" must be added to accepted domains, where "example.org" is the domain name of the NGCP

platform operator

DNS Configuration

It is necessary to add a subdomain starting as mail2fax. to the list of domain names. That is where the faxes will be sent by

users to trigger Mail2Fax service.

Tip

Alternatively, edit /etc/ngcp-config/templates/etc/exim4/conf.d/router/999_mail2fax.tt2 file

and adjust it to your personal preferences. Although this is not recommended and should only be done by Sipwise support

engineers.

C.9 Sending Fax Using E-mail Clients

When sending an e-mail that should be converted to a fax, there are some points to keep in mind so that Faxserver properly

processes the e-mail.

• To header:

– must contain the subscriber’s number who is sending the fax, as the username part of the mail address

– must contain the specific domain starting with mail2fax.

• Subject header: must contain the fax destination number

• Body should consist of plain text data

533

The sip:carrier Handbook mr5.5.7 534 / 577

• Adding attachments is possible, but only plain text and PDF formats are supported

Secret Key

In order to use the "secret key" access control feature, it should be either put in the first row of the e-mail body followed by an

empty line, or included as a plain text attachment. Once it has been validated, it will be removed from the email.

Important

Either add the secret key to the body, or attach it. Never do both as only one will be recognized and removed, leaving

the other one to be sent as part of the fax.

Mail Example

Provided there is a subscriber on sip:carrier platform with the 43130111 number, the destination fax is 43130222 and the secret

key is "MySecretKey":

From: User Name <username@example.org>

To: 43130111@mail2fax.example.org

Subject: 43130222

- - - - - - - - - - - - - - - - - -

MySecretKey

This is a test fax.

Cheers

C.10 Managing Faxes via the REST API

It is possible to send and receive faxes and configure fax settings using the built-in REST API interface.

In subsequent sections you can find examples of using the API for sending, receiving faxes and changing fax settings.

C.10.1 Configuring Fax Settings

C.10.1.1 Retrieving Fax Settings

The following example retrieves the fax settings for the subscriber with ID 3.

Method: GET

Content-Type: application/hal+json

https://127.0.0.1:1443/api/faxserversettings/3

The output format is as follows (only the relevant output data is shown):

534

The sip:carrier Handbook mr5.5.7 535 / 577

"active" : true,

"destinations" : [

{

"destination" : "user@company.com",

"filetype" : "PDF14",

"incoming" : true,

"outgoing" : true,

"status" : true

}

],

"name" : null,

"password" : null

C.10.1.2 Updating Fax Settings

The following example updates a specific parameter. Namely, it deactivates the fax feature for the subscriber with ID 3.

Method: PATCH

Content-Type: application/json-patch+json

https://127.0.0.1:1443/api/faxserversettings/3

--data-binary ’[{ "op" : "replace", "path" : "/active", "value" : 0 }]’

C.10.2 Sending a Fax

The following request sends a PDF file located at /tmp/test_fax.pdf as fax to 431110002 from the subscriber with ID 3.

Method: POST

Content-Type: multipart/form-data

https://127.0.0.1:1443/api/faxes/

--form ’json={"destination" : "431110002", "subscriber_id" : 3}’ --form ’faxfile=@/tmp/ ←↩
test_fax.pdf’

C.10.3 Receiving a Fax

All received faxes are stored on the server and can be retrieved on demand. You can retrieve a stored fax by following these steps:

1. Firstly, obtain the internal ID of the fax:

Method: GET

Content-Type: application/json

535

The sip:carrier Handbook mr5.5.7 536 / 577

https://127.0.0.1:1443/api/faxes/3

This request returns the list of stored faxes for the subscriber with ID 3. One of the available faxes is returned like this:

"callee" : "431110002",

"caller" : "431110001",

"direction" : "out",

"duration" : "0",

"filename" : "d9799276-b7d9-454f-98c3-714edf7e3072.tif",

"id" : 5,

"pages" : "1",

"quality" : "8031x7700",

"reason" : "Normal Clearing / SIP 200 OK [1/3]",

"signal_rate" : "14400",

"status" : "SUCCESS",

"subscriber_id" : 1,

"time" : "2016-07-30 09:49:59"

2. Now, to retrieve the fax with ID 5, use the following request:

Method: GET

Content-Type: application/hal+json

https://127.0.0.1:1443/api/faxerecordings/5

By default, the fax is in the TIFF format. It is also possible to request it in a different format. To retrieve the same fax in PDF14,

use the following request:

https://127.0.0.1:1443/api/faxerecordings/5?format=pdf14

C.10.4 Configuring Mail2Fax Settings

The configuration of Mail2Fax settings via the REST API is similar to the fax settings configuration.

C.10.4.1 Retrieving Mail2Fax Configuration

To get the Mail2Fax configuration for the subscriber with ID 3, use the following request:

Method: GET

Content-Type: application/hal+json

https://127.0.0.1:1443/api/mailtofaxsettings/3

The output format is as follows (only the relevant output data is shown):

536

The sip:carrier Handbook mr5.5.7 537 / 577

"acl" : [],

"active" : false,

"secret_key" : "secretkeypassword",

"secret_key_renew" : "daily",

"secret_renew_notify" : [

{

"destination" : "user1@company.com"

}

]

C.10.4.2 Updating Mail2Fax Configuration

The following set of requests changes the Mail2Fax configuration with new secret key settings.

• Secret key value:

Method: PATCH

Content-Type: application/json-patch+json

https://127.0.0.1:1443/api/faxserversettings/3

--data-binary ’[{ "op" : "replace", "path" : "/secret_key", "value" : " ←↩
newsecretkeypassword" }]’

• Secret key renewal interval:

Method: PATCH

Content-Type: application/json-patch+json

--data-binary ’[{ "op" : "replace", "path" : "/secret_key_renew", "value" : "monthly" } ←↩
]’

• List of email addresses that receive the automatic secret key update notifications:

Method: PATCH

Content-Type: application/json-patch+json

--data-binary ’[{ "op" : "replace", "path" : "/secret_renew_notify", "value" : [{ " ←↩
destination": "user2@company.com" }, { "destination": "user3@company.com" }] }]’

C.10.5 Using Advanced Faxserver and Mail2Fax Settings via the REST API

On the NGCP REST API documentation web page you can find the complete list of available Faxserver and Mail2Fax configuration

parameters: https://<ngcp_ip_address>:1443/api

537

https://<ngcp_ip_address>:1443/api

The sip:carrier Handbook mr5.5.7 538 / 577

Important

The information on the web page is relevant for your platform version and may change in next releases.

After visiting the API documentation main page, you can find the following entries related to Faxserver operations:

• Faxes (https://<ngcp_ip_address>:1443/api/#faxes)

• FaxRecordings (https://<ngcp_ip_address>:1443/api/#faxrecordings)

• FaxserverSettings (https://<ngcp_ip_address>:1443/api/#faxserversettings)

C.11 Troubleshooting

The following log file may be used to check Faxserver functionality: /var/log/ngcp/faxserver.log

C.11.1 Session ID (SID)

Faxserver stores basic information about each processed fax in a session file. The most important element within this set of data

is the Session ID (SID) that uniquely identifies a fax throughout its lifetime.

Session ID is a long hexadecimal string (a kind of UUID) that can be read from the above mentioned Faxserver logfile, and which

itself is used also as the filename in files that belong to a specific sent / received fax. An example:

root@sp1:~# cat /var/spool/ngcp/faxserver/failed/1e480167-5de6-4cc2-948b-de58d1a0bb8c.err

created: 2016-09-06 04:41:32

caller: 111111111

callee: 222222222

file: 1e480167-5de6-4cc2-948b-de58d1a0bb8c.tif

sid: 1e480167-5de6-4cc2-948b-de58d1a0bb8c

dir: out

attempts: 0

fail_attempts: 3

fail_retry_secs: 60

quality: normal

status: FAILED

error: Internal error

modified: 2016-09-06 17:41:30

root@sp1:~#

The data element sid is the session ID. Other important elements are:

• caller and callee: these are probably searched for when trying to figure out what happened to a specific fax transmission,

if you don’t know the SID

538

https://<ngcp_ip_address>:1443/api/#faxes
https://<ngcp_ip_address>:1443/api/#faxrecordings
https://<ngcp_ip_address>:1443/api/#faxserversettings

The sip:carrier Handbook mr5.5.7 539 / 577

• dir: direction of fax transmission: in’coming or ’out’going or ’mtf for mail-to-fax

• status: shows success or failure

• error: the error cause in case of failed faxes

C.11.2 Fax Storage Location

Faxserver stores all of its processed faxes at the path: /var/spool/ngcp/faxserver/... Within that directory the most

relevant subdirectories are failed and completed that store the SID file and the fax itself in TIFF format of those faxes that

failed or were successful, respectively.

539

The sip:carrier Handbook mr5.5.7 540 / 577

C.12 Adjusting the PBX Devices Configuration

Usually, everything required for PBX devices autoprovisioning is uploaded automatically as described in Section 16.1.1. In case

you would like to introduce changes into a PBX device configuration, create a custom PBX device profile or even upload a newer

firmware, this section will help you.

The Device Management is used by admins and resellers to define the list of device models, firmwares and configurations available

for end customer usage. These settings are pre-configured for the default reseller up-front by Sipwise and have to be set up for

every reseller separately, so a reseller can choose the devices he’d like to serve and potentially tweak the configuration for them.

List of available pre-configured devices Section 16.1.12.

End customers choose from a list of Device Profiles, which are defined by a specific Device Model, a list of Device Firmwares and

a Device Configuration. The following sections describe the setup of these components.

To do so, go to Settings→Device Management.

Figure 162: Device Management

540

The sip:carrier Handbook mr5.5.7 541 / 577

C.12.1 Setting up Device Models

A Device Model defines a specific hardware device, like the vendor, model name, the number of keys and their capabilities. For

example a Cisco SPA504G has 4 keys, which can be used for private lines, shared lines (SLA) and busy lamp field (BLF). If you

have an additional attendant console, you get 32 more buttons, which can only do BLF.

In this example, we will create a Cisco SPA504G with an additional Attendant Console.

Expand the Device Models row and click Create Device Model.

First, you have to select the reseller this device model belongs to, and define the vendor and model name.

Figure 163: Create Device Model Part 1

In the Line/Key Range section, you can define the first set of keys, which we will label Phone Keys. The name is important,

because it is referenced in the configuration file template, which is described in the following sections. The SPA504G internal

phone keys support private lines (where the customer can assign a normal subscriber, which is used to place and receive standard

phone calls), shared lines (where the customer can assign a subscriber which is shared across multiple people) and busy lamp

field (where the customer can assign other subscribers to be monitored when they get a call, and which also acts as speed dial

button to the subscriber assigned for BLF), so we enable all 3 of them.

541

The sip:carrier Handbook mr5.5.7 542 / 577

Figure 164: Create Device Model Part 2

In order to also configure the attendant console, press the Add another Line/Key Range button to specify the attendant console

keys.

Again provide a name for this range, which will be Attendant Console 1 to match our configuration defined later. There

are 32 buttons on the attendant console, so set the number accordingly. Those 32 buttons only support BLF, so make sure to

uncheck the private and shared line options, and only check the busy lamp field option.

542

The sip:carrier Handbook mr5.5.7 543 / 577

Figure 165: Create Device Model Part 3

The last two settings to configure are the Front Image and MAC Address Image fields. Upload a picture of the phone here in the

first field, which is shown to the customer for him to recognize easily how the phone looks like. The MAC image is used to tell the

customer where he can read the MAC address from. This could be a picture of the back of the phone with the label where the

MAC is printed, or an instruction image how to get the MAC from the phone menu.

The rest of the fields are left at their default values, which are set to work with Cisco SPAs. Their meaning is as follows:

• Bootstrap Sync URI: If a stock phone is plugged in for the first time, it needs to be provisioned somehow to let it know where to

fetch its configuration file from. Since the stock phone doesn’t know about your server, you have to define an HTTP URI here,

where the customer is connected with his web browser to set the according field.

• Bootstrap Sync HTTP Method : This setting defines whether an HTTP GET or POST is sent to the Sync URI.

• Bootstrap Sync Params: This setting defines the parameters appended to the Sync URI in case of a GET, or posted in the

request body in case of POST, when the customer presses the Sync button later on.

Finally press Save to create the new device model.

543

The sip:carrier Handbook mr5.5.7 544 / 577

Figure 166: Create Device Model Part 4

C.12.2 Uploading Device Firmwares

A device model can optionally have one or more device firmware(s). Some devices like the Cisco SPA series don’t support direct

firmware updates from an arbitrary to the latest one, but need to go over specific firmware steps. In the device configuration

discussed next, you can return the next supported firmware version, if the phone passes the current version in the firmware URL.

Since a stock phone purchased from any shop can have an arbitrary firmware version, we need to upload all firmwares needed to

get from any old one to the latest one. In case of the Cisco SPA3x/SPA5x series, that would be the following versions, if the phone

starts off with version 7.4.x:

• spa50x-30x-7-5-1a.bin

• spa50x-30x-7-5-2b.bin

• spa50x-30x-7-5-5.bin

So to get an SPA504G with a firmware version 7.4.x to the latest version 7.5.5, we need to upload each firmware file as follows.

544

The sip:carrier Handbook mr5.5.7 545 / 577

Open the Device Firmware row in the Device Management section and press Upload Device Firmware.

Select the device model we’re going to upload the firmware for, then specify the firmware version and choose the firmware file,

then press Save.

Figure 167: Upload Device Firmware

Repeat this step for every firmware in the list above (and any new firmware you want to support when it’s available).

C.12.3 Creating Device Configurations

Each customer device needs a configuration file, which defines the URL to perform firmware updates, and most importantly, which

defines the subscribers and features configured on each of the lines and keys. Since these settings are different for each physical

phone at all the customers, the Cloud PBX module provides a template system to specify the configurations. That way, template

variables can be used in the generic configuration, which are filled in by the system individually when a physical device fetches its

configuration file.

To upload a configuration template, open the Device Configuration row and press Create Device Configuration.

Select the device model and specify a version number for this configuration (it is only for your reference to keep track of different

545

The sip:carrier Handbook mr5.5.7 546 / 577

versions). For Cisco SPA phones, keep the Content Type field to text/xml, since the configuration content will be served to the

phone as XML file.

For devices other than the Cisco SPA, you might set text/plain if the configuration file is plain text, or application/

octet-stream if the configuration is compiled into some binary form.

Finally paste the configuration template into the Content area and press Save.

Figure 168: Upload Device Configuration

The templates for certified device models are provided by Sipwise, but you can also write your own. The following variables can

be used in the template:

• config.url: The URL to the config file, including the device identifier (e.g. http://sip.example.org:1444/dev

ice/autoprov/config/001122334455).

• firmware.maxversion: The latest firmware version available on the system for the specific device.

• firmware.baseurl: The base URL to download firmwares (e.g. http://sip.example.org:1444/device/aut

oprov/firmware). To fetch the next newer firmware for a Cisco SPA, you can use the template line [% firmware.

baseurl %]/$MA/from/$SWVER/next.

546

The sip:carrier Handbook mr5.5.7 547 / 577

• phone.stationname: The name of the station (physical device) the customer specifies for this phone. Can be used to show

on the display of the phone.

• phone.lineranges: An array of lines/keys as specified for the device model. Each entry in the array has the following keys:

– name: The name of the line/key range as specified in the Device Model section (e.g. Phone Keys).

– num_lines: The number of lines/keys in the line range (e.g. 4 in our Phone Keys example, or 32 in our Attendant

Console 1 example).

– lines: An array of lines (e.g. subscriber definitions) for this line range. Each entry in the array has the following keys:

* keynum: The index of the key in the line range, starting from 0 (e.g. keynum will be 3 for the 4th key of our Phone Keys

range).

* rangenum: The index of the line range, starting from 0. The order of line ranges is as you have specified them (e.g.

Phone Keys was specified first, so it gets rangenum 0, Auto Attendant 1 gets rangenum 1).

* type: The type of the line/key, on of private, shared or blf.

* username: The SIP username of the line.

* domain: The SIP domain of the line.

* password: The SIP password of the line.

* displayname: The SIP Display Name of the line.

In the configuration template, you can adjust embedded variable references for the existing variables. If you need other specific

variables, please request their development from Sipwise.

Tip

In order to change the provisioning base IP and port (default 1444), you have to access /etc/ngcp-config/config.

yml and change the value host and port under the autoprov.server section.

C.12.4 Creating Device Profiles

When the customer configures his own device, he doesn’t select a Device Model directly, but a Device Profile. A device profile

specifies which model is going to be used with which configuration version. This allows the operator to create new configuration

files and assign them to a profile, while still keeping older configuration files for reference or roll-back scenarios. It also makes

it possible to test new firmwares by creating a test device model with the new firmware and a specific configuration, without

impacting any existing customer devices.

To create a Device Profile for our phone, open the Device Profile row in the Device Management section and press Create Device

Profile.

Select the device configuration (which implicitly identifies a device model) and specify a Profile Name. This name is what the

customer sees when he is selecting a device he wants to provision, so pick a descriptive name which clearly identifies a device.

Press Save to create the profile.

547

The sip:carrier Handbook mr5.5.7 548 / 577

Figure 169: Create Device Profile

Repeat the steps as needed for every device you want to make available to customers.

548

The sip:carrier Handbook mr5.5.7 549 / 577

D RTC:engine

D.1 Overview

WebRTC is an open project providing browsers and mobile applications with Real-Time Communications (RTC) capabilities. The

RTC:engine protocol is a light weight messaging and signaling protocol for WebSocket clients. Technically it is a WebSocket sub

protocol. It consists of JSON messages that are used to initiate and control call dialogs, send chat messages, join and control

conferences and share files. It is similar to well known signaling protocols like SIP, but much simpler. It does not care about the

underlying network protocols, like SIP does.

D.2 RTC:engine enabling

The RTC:engine is not activated by default and needs a few steps to setup.

D.2.1 Enabling services via CLI

First you have to enable it first on your server via CLI. Connect with SSH on your server, open /etc/ngcp-config/config.yml with

your editor of choice and change the following properties:

fileshare:

enable: yes

rtcengine:

conference:

relay:

app_id: bormuth

url: http://xms.sipwise.com:81

call:

relay:

app_id: bormuth

url: http://xms.sipwise.com:81

enable: yes

expose_provisioning_api: yes

www_admin:

http_csc:

servername: ’$IP_OF_VM’

Save the config.yml file and run $ ngcpcfg apply enable rtcengine. After the script ran, check the status of all services via $

monit summary or $ monit status.

549

The sip:carrier Handbook mr5.5.7 550 / 577

D.2.2 Enabling via Panel for resellers and subscribers

The WebRTC subscriber is just a normal subscriber which has just a different configuration in his Preferences. You need to change

the following preferences under Subscribers→Details→Preferences→NAT and Media Flow Control :

• use_rtpproxy: Always with rtpproxy as additional ICE candidate

• transport_protocol: RTP/SAVPF (encrypted SRTP with RTCP feedback)

The transport_protocol setting may change, depending on your WebRTC client/browser configuration. Supported proto-

cols are the following:

• Transparent (Pass through using the client’s transport protocol)

• RTP/AVP (Plain RTP)

• RTP/SAVP (encrypted SRTP)

• RTP/AVPF (RTP with RTCP feedback)

• RTP/SAVPF (encrypted SRTP with RTCP feedback)

• UDP/TLS/RTP/SAVP (Encrypted SRTP using DTLS)

• UDP/TLS/RTP/SAVPF (Encrypted SRTP using DTLS with RTCP feedback)

Warning

The below configuration is enough to handle a WebRTC client/browser. As mentioned, you may need to tune a little bit

your transport_protocol configuration, depending on your client/browser settings.

In order to have a bridge between normal SIP clients (using plain RTP for example) and WebRTC client, the normal SIP clients’

preferences have to have the following configuration:

transport_protocol: RTP/AVP (Plain RTP)

This will teach Sip Provider to translate between Plain RTP and RTP/SAVPF when you have calls between normal SIP clients and

WebRTC clients.

D.2.3 Create RTC:engine session

D.2.3.1 Create sessions

Request:

curl -i -X POST --insecure --user SUBSCRIBER_ID:SUBSCRIBER_PW -H ’Content-Type: application ←↩
/json’ --data-binary ’{}’ https://IP_OF_VM/api/rtcsessions/

550

The sip:carrier Handbook mr5.5.7 551 / 577

Response Header:

Location: /api/rtcsessions/7

D.2.3.2 Receive sessions

Request:

curl -i -X GET --insecure --user SUBSCRIBER_ID:SUBSCRIBER_PW -H ’Content-Type: application/ ←↩
json’ https://IP_OF_VM/api/rtcsessions/{ID_FROM_LAST_REQUEST_HEADER}

Response Header:

{

...

"rtc_app_name" : "default_default_app",

"rtc_browser_token" : "22fz8e51-ad6e-481e-a389-15c58c3fe5ac",

"rtc_network_tag" : "",

"subscriber_id" : "263"

}

Tip

Use rtc_browser_token in your cdk.Client.

D.3 RTC:engine protocol details

D.3.1 Terminology

D.3.1.1 Connector

There are two kinds of connectors. The front and the back connectors. The only front connector is the BrowserConnector. It has

access to all WebSocket connections and is responsible for delivering RCT:engine protocol messages to the WebSocket clients,

and for forwarding messages from the WebSocket clients to the router.

Currently there are four back connectors (SipConnector, XmppConnector, WebrtcConnector, ConferenceConnector). Every back

connector implements a certain communication use case.

D.3.1.2 Router

The router is very simple stateless message broker, that is responsible for delivering the messages to the right connector. To

decide where to send the message, the router takes a look at the recipient address (to) and forwards the message to the specified

connector.

551

The sip:carrier Handbook mr5.5.7 552 / 577

D.3.1.3 User

D.3.1.4 App

An app is a scope for a certain RTC:engine integration. Every user can have multiple apps. And an app contains sessions.

D.3.1.5 Network

A network is a user wide configuration, that maps a custom network name (tag) to a certain back connector. Additionally it can

also store network specific configurations. And any account that is related to a certain network, will merge its custom configs with

the network configs, and send its messages to the specified connector.

D.3.1.6 Session

D.3.1.7 Account

An account represents the credentials for a specific network. Usually it consists of an identifier like a SIP uri (sip:user@domain.tld)

and an access token or rather a password.

D.3.1.8 Browser SDK

The Browser SDK is an abstraction layer on top of the RTC:engine protocol. It is served as bundled javascript library, and provides

convenient components and methods for all use cases.

D.3.2 Messages

A typical message created by the browser sdk contains the following fields:

{

"method": "module.action",

"from": "connector:id",

"to": "connector:id",

"session": "session",

"body": {

...

}

}

D.3.2.1 Fields

D.3.2.2 method

It is separated in two parts. The first part is the module. It is a delegation key to separate concerns in the code. The second part

is the action, which represents a specific method in a module.

552

The sip:carrier Handbook mr5.5.7 553 / 577

D.3.2.3 from

It represents the current sender of a message. For example the user creates a new call via the browser sdk, the message would

look like this:

{

"method": "call.start",

"from": "",

"to": "webrtc:b2bua1",

"session": "session1",

"body": {

...

}

}

The content of the field is completely irrelevant, because the BrowserConnector will overwrite this field. The reason is to avoid

user manipulation.

{

"method": "call.start",

"from": "browser:ws1",

"to": "webrtc:b2bua1",

"session": "session1",

"body": {

...

}

}

D.3.2.4 to

In general this field represents the recipient of a message. The recipients address consists of two parts. First part is the prefix

that targets the connector. Second part is the identifier of the recipient.

D.3.2.5 session

If you provisioned with the RTCEngine, you get a session and its token property. The browser SDK adds this token to every

message.

D.3.2.6 body

The body contains the payload of the message. Every message type has its own body schema.

553

The sip:carrier Handbook mr5.5.7 554 / 577

D.3.3 Account

Mainly an account consists of credentials (identifier, accessToken), that are needed to authenticate against the related network.

Its lifecycle is bound to the lifecycle of the related session.

After RTC:engine received session.open, it responds a session.validated message. This message contains all provisioned ac-

counts in its property "body.accounts".

D.3.3.1 Flow

554

The sip:carrier Handbook mr5.5.7 555 / 577

D.3.3.2 Messages

D.3.3.3 account.connect

RTC:engine needs one message per account. The message should contain the id of the account. The id is the object key in the

accounts object from the [session.validated](../session/index.md) message.

{

"from": "",

"to": "...:...",

"method": "account.connect",

"session": "...",

"body": {

"id": "..."

}

}

D.3.3.4 account.state

This message gives state information about the authentication and registration process of the related network and the correspond-

ing connector. For example, if the related connector is the SipConnector, it creates a new SIP B2BUA in background, and notify

the browser if any state change happens.

{

"from": "...:...",

"to": "browser:...",

"method": "account.state",

"session": "...",

"body": {

"id": "...",

"reason": "...",

"state": "..."

}

}

D.3.3.5 State reasons

• OK

• CONNECTING

• DISCONNECTING

• SERVICE_UNAVAILABLE

• SERVICE_ERROR

• BAD_CONFIGURATION

555

The sip:carrier Handbook mr5.5.7 556 / 577

• WRONG_CREDENTIALS

• CONNECTOR_UNAVAILABLE

• CONNECTOR_BUSY

• CONNECTOR_ERROR

• ACCOUNT_NOT_FOUND

D.3.3.6 States

• CONNECTED

• DISCONNECTED

556

The sip:carrier Handbook mr5.5.7 557 / 577

557

The sip:carrier Handbook mr5.5.7 558 / 577

D.3.4 Call

D.3.4.1 Flow

558

The sip:carrier Handbook mr5.5.7 559 / 577

D.3.4.2 call.start

The caller sends this message to the RTC:engine to initiate a new call dialog.

{

"from": "local",

"to": ["...:..."],

"method": "call.start",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"account": "..."

"replace": true|false,

"trickle": true|false,

"target": "...",

"sdp": "..."

}

}

D.3.4.3 Body properties

D.3.4.4 id

The id is a UUID version 4 that identifies the call dialog in the system. But caller and callee never have the same.

D.3.4.5 gcid

Whereas the gcid is a system wide and end-to-end consistent call identifier. It is necessary to track the entire call dialog.

D.3.4.6 account

It contains the callers account id. [(See accounts)](../account/index.md)

D.3.4.7 replace

This property is not used yet. It should support a call handover scenario.

D.3.4.8 trickle

If is set to true, the callee expects ice candidates, before the full sdp delivered by the caller, to accelerate the negotiation process.

559

The sip:carrier Handbook mr5.5.7 560 / 577

D.3.4.9 target

It’s the URI (sip:user@domain.tld) of the callee.

D.3.4.10 sdp

The sdp property contains a very early state of the browsers media machine. It contains no ice candidates so far.

D.3.4.11 call.alive

After the callee received the "call.start" message, it responds with a "call.alive" to the RTC:engine, immediately.

{

"from": "...",

"to": "...",

"method": "call.alive",

"session": "...",

"body": {

"id": "...",

"gcid": "..."

}

}

D.3.4.12 call.ringing

After the callee received the "call.start" message, it responds with a "call.ringing" to the RTC:engine, immediately.

{

"from": "...",

"to": "...",

"method": "call.ringing",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"account": null

}

}

D.3.4.13 call.accept

The callee sends this message after accepting the call explicitly.

{

"from": "...",

"to": "...",

560

The sip:carrier Handbook mr5.5.7 561 / 577

"method": "call.accept",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"account": null,

"trickle": true|false,

"sdp": "..."

}

}

D.3.4.14 call.ack.accept

Caller sends this message after it received the "call.accept" message from the callee.

{

"from": "...",

"to": "...",

"method": "call.ack.accept",

"session": "...",

"body": {

"id": "...",

"gcid": "..."

}

}

D.3.4.15 call.candidate

Both, caller and callee send ice candidates immediately after initiating respectively accepting the call.

{

"from": "...",

"to": "...",

"method": "call.candidate",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"candidate": {

"payload": "...",

"type": "WEBRTC_LEGACY"

}

}

}

561

The sip:carrier Handbook mr5.5.7 562 / 577

D.3.4.16 call.fullsdp

Both, caller and callee send this message after the ice gathering finished and all candidates are available.

{

"from": "...",

"to": "...",

"method": "call.fullsdp",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"sdp": "..."

}

}

D.3.4.17 call.change. . . .

All messages, that begin with "call.change", are important for renegotiation and glare handling.

D.3.4.18 call.change.lock.reset

D.3.4.19 call.change.lock

D.3.4.20 call.change.lock.ok

D.3.4.21 call.change.offer

D.3.4.22 call.change.answer

D.3.4.23 call.dtmf

Only works if the connector of the related account supports DTMF messages.

{

"from": "...",

"to": "...",

"method": "call.dtmf",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"dtmf": "...",

"account": null

}

}

562

The sip:carrier Handbook mr5.5.7 563 / 577

D.3.4.24 call.end

Both, caller and callee can send this message. It forces the counter part to end and destroy the call.

{

"from": "...",

"to": "...",

"method": "call.end",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"reason": "..."

}

}

D.3.4.25 call.ack.end

The counter part, that receives the "call.end" message, sends the "call.ack.end" message.

{

"from": "...",

"to": "...",

"method": "call.ack.end",

"session": "...",

"body": {

"id": "...",

"gcid": "...",

"account": null

}

}

563

The sip:carrier Handbook mr5.5.7 564 / 577

D.3.5 Session

D.3.5.1 Flow

D.3.5.2 Messages

D.3.5.3 session.open

{

"method": "session.open",

"from": "",

"to": "",

"session": "session1",

"body": {

"credentials": {

"userSession": "session1"

}

}

}

D.3.5.4 session.validated

This message is the response to session.open. If the session property is a valid session, you get a response where the result

property is true. In addition you get the account information to connect to the networks.

{

"method": "session.validated",

"from": "core",

564

The sip:carrier Handbook mr5.5.7 565 / 577

"to": "browser:ws1",

"session": "session1"

"body": {

"result": true,

"accounts": {

"account1": {

"identifier": "sip:account1@foo.bar"

"target": "sip-connector:b2bua-account1",

"network": {

"tag": "sip-network"

}

}

}

},

}

If something went wrong, result is set to false and an error reason appears.

{

"method": "session.validated",

"from": "core",

"to": "browser:ws1",

"session": "session1"

"body": {

"result": false,

"reason": {

"type": "invalidToken",

"message": "Your token is not a valid user session token!"

}

}

},

}

D.3.5.5 Reason types

• invalidToken

• tokenExpired

• missingCredentials

565

The sip:carrier Handbook mr5.5.7 566 / 577

E comx-fileshare-service

E.1 Overview

The comx-fileshare-service is a Node.js (4.4.0) based filesharing service and it is intended to be used via REST API. This service

allows you to upload arbitrary files to the server and to download/share them with a generated link.

The API can be used with in 2 ways:

• with simple identification, which means that only credentials of a user/subscriber are needed for authentication

• with session identification, which also provides for example the time-to-live (TTL) functionality besides authentication, and will

be used in combination with the RTC:engine.

E.2 Configuration and Usage

E.2.1 Change authentication method

To use NGCP subscribers as authentication against the API, you need to set it in the comx-fileshare-service config.js:

simpleUpload: {

authentication: {

enabled: true,

subscriber: true,

username: ’foo8’,

password: ’bar8’

}

}

You can now authenticate like this with the API:

curl -i -X POST --insecure --form file=@/tmp/test.txt --form --user ’43991002@domain.tld: ←↩
x43991002’

https://$NGCP_IP/rtc/fileshare/uploads

If you want to use the credentials from the config.js you need so set it to the following settings:

simpleUpload: {

authentication: {

enabled: true,

subscriber: false,

username: ’foo8’,

password: ’bar8’

}

}

In this case, the login parameter would be this:

566

The sip:carrier Handbook mr5.5.7 567 / 577

curl -i -X POST --insecure --form file=@/tmp/test.txt --form --user ’foo:bar’

https://$NGCP_IP/rtc/fileshare/uploads

E.2.2 Database Structure

Table information for the fileshare database:

• downloads table:

Table 28: Details of downloads Table in fileshare Database

Field Name Field Type Description

id CHAR, PRIMARY KEY Internal ID of the download action

state ENUM State of the download

uploaded_id CHAR, FOREIGN KEY External ID used for accessing the uploaded file in

uploads table

created_at DATETIME Download action creation time

updated_at DATETIME Time of last download action modification

• sessions table:

Table 29: Details of sessions Table in fileshare Database

Field Name Field Type Description

id CHAR, PRIMARY KEY Internal ID of the session

ttl INT Time-to-live value of the session (in seconds)

created_at DATETIME Session creation time

updated_at DATETIME Time of last session modification

• uploads table:

Table 30: Details of uploads Table in fileshare Database

Field Name Field Type Description

id CHAR, PRIMARY KEY Internal ID of the file entry

data LONGBLOB The file data

original_name VARCHAR Original name of the file

mime_type VARCHAR MIME type of the file

567

The sip:carrier Handbook mr5.5.7 568 / 577

Table 30: (continued)

Field Name Field Type Description

size INT File size in bytes

ttl INT Time-to-live value of the file

state ENUM State of the file

session_id CHAR, FOREIGN KEY External ID used to access session data in

sessions table

created_at DATETIME File creation / upload time

updated_at DATETIME Time of last file modification

E.3 Activation of Filesharing Service on NGCP

The service is installed on every sip:carrier system, but is not activated by default. In order to activate the service, connect

with SSH to your server, open /etc/ngcp-config/config.yml with your editor of choice and change the fileshare.

enable property from no to yes:

fileshare:

enable: yes

Apply the new configuration in the usual way:

ngcpcfg apply ’Enabled comx-fileshare-service’

ngcpcfg push all

and check the status with monit summary. It should be now up and running.

568

The sip:carrier Handbook mr5.5.7 569 / 577

E.4 Message Sequence Chart

E.4.1 Simple Message Sequence

Figure 170: Sequence Simple

569

The sip:carrier Handbook mr5.5.7 570 / 577

E.4.2 Detailed Message Sequence

Figure 171: Sequence Detailed

E.5 API of Filesharing Service

E.5.1 HTTP Authentication

Type: Basic Auth

username/password

570

The sip:carrier Handbook mr5.5.7 571 / 577

E.5.2 Upload and Download with Simple Identification

The following HTTP methods can be used to perform file upload and download:

POST /uploads // Simple upload

GET /uploads/{fileId} // Simple download

E.5.3 Upload and Download with Session Identification

The following HTTP methods can be used to perform file upload and download, and to manage sessions.

Session identification:

GET /sessions/{sessionId}/files // Get all files of a session

GET /sessions/{sessionId}/files/{fileId}/tokens/{tokenId} // Download a single file

POST /sessions // Create a new session

POST /sessions/{sessionId}/files // Create a new file entry

POST /sessions/{sessionId}/files/{fileId}/tokens // Generate a download token

PUT /sessions/{sessionId}/files/{fileId} // Upload and store a file

Simple identification:

GET /uploads/{fileId} // Get uploaded file

POST /uploads // Upload file

E.5.4 Curl Example for Simple Upload Request

curl -i -X POST --insecure --form file=@/tmp/test.txt --form --user ’foo:bar’

https://$NGCP_IP/rtc/fileshare/uploads

E.5.5 Upload Parameters

E.5.5.1 file

The parameter file defines the path to the desired file that should be uploaded.

Caution

This upload parameter is mandatory!

Curl example:

571

The sip:carrier Handbook mr5.5.7 572 / 577

curl -i -X POST --insecure --form file=@/tmp/test.txt https://$NGCP_IP/rtc/fileshare/ ←↩
uploads

E.5.5.2 user

The parameter user defines the user to authenticate with the fileshare service.

Caution

This upload parameter is mandatory!

curl -i -X POST --insecure --form --user ’foo:bar’ https://$NGCP_IP/rtc/fileshare/uploads

E.5.5.3 TTL

The parameter ttl defines the time-to-live (in seconds), that is how long the uploaded file will be available for download. The default

values for this parameter are defined in the configuration file:

models: {

session: {

ttl: 86400 * 7

},

upload: {

ttl: 3600

}

}

Curl example:

curl -i -X POST --insecure --form file=@/tmp/test.txt --form ttl=3600

--user ’foo:bar’ https://$NGCP_IP/rtc/fileshare/uploads

Response from curl when TTL is expired:

{

"message": "upload expired"

}

Response in the log file when TTL is expired:

Error at /uploads/88e5905d-5d96-4750-ab3d-77a1ed26f569: message=upload expired, status=410

572

The sip:carrier Handbook mr5.5.7 573 / 577

E.5.6 Number of Possible Downloads

There is a significant difference in the usage of the filesharing service between the approach within the RTC:engine and the simple

upload/download one:

• If you are using the simple upload and download approach, the generated download link you get for your file can be used as

many times as required, as long as the TTL is not expired.

• The approach with the Session ID, which will be used with the RTC:engine implementation, limits the download to one-time

only. This means that the generated download link can be used only once. If you plan to share the URL with multiple persons,

you have to generate one link for each recipient.

573

The sip:carrier Handbook mr5.5.7 574 / 577

F NGCP Internals

This chapter documents internals of the sip:carrier that should not be usually needed, but might be helpful to understand the

overall system.

F.1 Pending reboot marker

The sip:carrier has the ability to mark a pending reboot for any server, using the file /var/run/reboot-required. As soon as the

file exists, several components will report about a pending reboot to the end-user. The following components report about a

pending reboot right now: ngcp-status, ngcpcfg status, motd, ngcp-upgrade. Also, ngcp-upgrade will NOT allow proceeding with

an upgrade if it notices a pending reboot. It might affect rtpengine dkms module building if there is a pending reboot requested by

a newly installed kernel, etc.

F.2 Redis id constants

The list of current sip:carrier Redis DB IDs:

Service Redis DB N: central (role

db)

local Release Ticket Description

sems redis_db: - 0 mr3.7.1+ - HA switchover

rtpengine redis_db: - 1 mr3.7.1+ - HA switchover

proxy redis_db: 2 - mr3.7.1+ - Counter of

hunting groups

proxy redis_db: 3 - mr3.7.1+ - Concurrent

dialog

counters

proxy redis_db: - 4 mr3.7.1+ - List of keys of

the central

counters

prosody redis_db: 5 - mr3.7.1+ - XMPP cluster

sems PBX redis_db: - 6 mr3.7.1+ - HA switchover

sems redis_db: 7 - mr4.1.1+ MT#12707 Sems

malicious_call

app

captagent redis_db: - 8 mr4.1.1+ MT#15427 Captagent

internal data

monitoring redis_db: 9 - mr4.3+ MT#31 Old SNMP

agent

monitoring

data (unused)

proxy redis_db: 10 - mr4.3+ MT#16079 SIP Loop

detection

574

The sip:carrier Handbook mr5.5.7 575 / 577

F.2.1 InfluxDB monitoring keys

The InfluxDB ngcp monitoring database contains time series of several monitoring sources. The following are some of the current

measurements:

node Cluster node information.

memory System memory information.

proc_count Process counts.

monit Monit supervised processes information.

mail MTA information.

mysql MySQL database information.

kamailio Kamailio statistics information.

sip SIP statistics information.

The node measurement contains the following fields:

active Cluster node HA state (boolean: 1/0).

hb_proc_state Cluster node heartbeat process state (boolean:

stopped/running).

hb_host_state Cluster node host state (boolean: up/down).

hb_node_state Cluster node HA state (ngcp-check-active -p).

The monit measurement contains the following fields:

name The process name.

proc_status The process status.

monit_status The monit status.

pid The process ID.

ppid The process parent ID.

children The number of children.

uptime The process uptime.

cpu_percent The CPU usage in percent for this process.

cpu_percent_total The CPU usage in percent for the process group.

memory The memory in bytes for this process.

memory_total The memory in bytes for the process group.

memory_percent The memory in percent for this process.

memory_percent_total The memory in percent for the process group.

data_collected The timestamp when the data was collected.

The mysql measurement contains the following fields:

last_io_error Last IO error description.

last_sql_error Last SQL error description.

queries_per_second_average Average of queries per second.

575

The sip:carrier Handbook mr5.5.7 576 / 577

replication_discrepancies Number of replication discrepancies.

F.3 Enum preferences

All tables are in database "provisioning".

So called "enum preferences" allow a fixed set of possible values, an enumeration, for preferences. Following the differences

between other preferences are described.

Setting the attribute "data_type" of table "voip_preferences" to "enum" marks a preferences as an enum. The list of possible

options is stored in table "voip_preferences_enum".

voip_preferences_enum is:

id

boring pkey

preference_id

Reference to table voip_preferences.

label

A label to be displayed in frontends.

value

Value that will be written to voip_[usr|dom|peer]_preferences.value

if it is NOT NULL. Will not be written if it IS NULL. This can be

used to implement a "default value" for a preference that is visible

in frontends as such (will be listed first if nothing is actually

selected), but will not be written to

voip_[usr|dom|peer]_preferences.value. Usually forcing a domain or peer

default. Should also be named clearly (eg. __"use domain default"__).

(Note: Therefore will also not be written to any kamailio table.)

usr_pref

dom_pref

peer_pref

Flag if this is to be used for [usr|dom|peer] preferences.

default_val

Flag indicating if this should be used as a default value when

creating new entities or introducing new enum preferences (both done

via triggers). (Note: For this to work, value must also be set.)

Relevant triggers:

576

The sip:carrier Handbook mr5.5.7 577 / 577

enum_update

Propagates changes of voip_preferences_enum.value to

voip_[usr|dom|peer]_preferences.value

enum_set_default

Will create entries for default values when adding a new enum

preference. The default value is the tuple from voip_preferences_enum

WHERE default_val=1 AND value NOT NULL.

trigger voip_dom_crepl_trig

trigger voip_phost_crepl_trig

trigger voip_sub_crepl_trig

These three triggers will set possible default values (same condition

as for enum_set_default) when creating new subscribers/domains/peers.

Find a usage example in a section in db-schema/db_scripts/diff/9086.up.

577

	Introduction
	About this Handbook
	What is the sip:carrier?
	The Advantages of the sip:carrier
	Who is the sip:carrier for?
	Getting Help
	Phone Support
	Ticket System

	System Architecture
	Hardware Architecture
	Component Architecture
	Provisioning
	Signaling and Media Relay
	Scaling beyond one Hardware Chassis
	Architecture for central core and local satellites

	VoIP Service Administration Concepts
	Contacts
	Resellers
	SIP Domain
	Additional SIP Domains

	Contracts
	Customers
	Residential and SOHO customers
	Business customers with the Cloud PBX service
	SIP Trunking
	Mobile subscribers
	Pre-paid subscribers who use your calling cards

	Subscribers
	SIP Peerings

	VoIP Service Configuration Scenario
	Creating a SIP Domain
	Creating a Customer
	Creating a Subscriber
	Domain Preferences
	Subscriber Preferences
	Creating Peerings
	Creating Peering Groups
	Creating Peering Servers
	Authenticating and Registering against Peering Servers

	Configuring Rewrite Rule Sets
	Inbound Rewrite Rules for Caller
	Inbound Rewrite Rules for Callee
	Outbound Rewrite Rules for Caller
	Outbound Rewrite Rules for Callee
	Emergency Number Handling
	Assigning Rewrite Rule Sets to Domains and Subscribers
	Creating Dialplans for Peering Servers
	Call Routing Verification

	Features
	Managing System Administrators
	Configuring Administrators
	Access Rights of Administrators

	Access Control for SIP Calls
	Block Lists
	NCOS Levels
	IP Address Restriction

	Call Forwarding and Call Hunting
	Setting a simple Call Forward
	Advanced Call Hunting

	Local Number Porting
	Local LNP Database
	External LNP via LNP API

	Emergency Mapping
	Emergency Mapping Description
	Emergency Mapping Configuration

	Emergency Priorization
	Call-Flow with Emergency Mode Enabled
	Configuration of Emergency Mode
	Activating Emergency Mode

	Header Manipulation
	Header Filtering
	Codec Filtering
	Enable History and Diversion Headers

	SIP Trunking with SIPconnect
	User provisioning
	Inbound calls routing
	Number manipulations
	Registration

	Trusted Subscribers
	Peer Probing
	Introduction to Peer Probing Feature
	Configuration of Peer Probing
	Monitoring of Peer Probing
	Further Details for Advanced Users

	Fax Server
	Fax2Mail Architecture
	Sendfax and Mail2Fax Architecture

	Voicemail System
	Accessing the IVR Menu
	IVR Menu Structure
	Type Of Messages
	Folders
	Voicemail Languages Configuration
	Flowcharts with Voice Prompts

	Configuring Subscriber IVR Language
	Sound Sets
	Configuring Early Reject Sound Sets

	Conference System
	Configuring Call Forward to Conference
	Configuring Conference Sound Sets
	Joining the Conference
	Conference Flowchart with Voice Prompts

	Malicious Call Identification (MCID)
	Setup
	Usage
	Advanced configuration

	Subscriber Profiles
	Subscriber Profile Sets

	SIP Loop Detection
	Call-Through Application
	Administrative Configuration
	Call Flow

	Calling Card Application
	Administrative Configuration
	Call Flow

	Invoices and Invoice Templates
	Invoices Management
	Invoice Templates
	Invoices Generation

	Email Reports and Notifications
	Email events
	Initial template values and template variables
	Password reset email template
	New subscriber notification email template
	Invoice email template
	Email templates management

	The Vertical Service Code Interface
	Vertical Service Codes for PBX customers
	Configuration of Vertical Service Codes
	Voice Prompts for Vertical Service Code Configuration

	Handling WebRTC Clients
	XMPP and Instant Messaging
	Call Recording
	Introduction to Call Recording Function
	Information on Files and Directories
	Configuration
	REST API

	SMS (Short Message Service) on Sipwise NGCP
	Configuration
	Monitoring, troubleshooting
	REST API

	Customer Self-Care Interface and Menus
	The Customer Self-Care Web Interface
	Login Procedure
	Site Customization

	The Voicemail Menu

	Billing Configuration
	Billing Profiles
	Creating Billing Profiles
	Creating Billing Fees
	Creating Off-Peak Times

	Prepaid Accounting
	Fraud Detection and Locking
	Fraud Lock Levels

	Billing Customizations
	Billing Networks
	Profile Mapping Schedule
	Profile Packages
	Vouchers
	Top-up
	Balance Overviews
	Usage Examples

	Notes on Billing and Call Rating
	Billing Data Export
	Glossary of Terms
	File Name Format
	File Format
	File Transfer

	Provisioning REST API Interface
	API Workflows for Customer and Subscriber Management
	API performance considerations

	Configuration Framework
	Configuration templates
	.tt2 and .customtt.tt2 files
	.prebuild and .postbuild files
	.services files

	config.yml, constants.yml and network.yml files
	ngcpcfg and its command line options
	apply
	build
	commit
	decrypt
	diff
	encrypt
	help
	initialise
	pull
	push
	services
	status

	Network Configuration
	General Structure
	Available Host Options
	Interface Parameters

	Advanced Network Configuration
	Extra SIP Sockets
	Extra SIP and RTP Sockets
	Cluster Sets

	Licenses
	What is Subject to Licensing?
	How Licensing Works
	How to Configure Licenses
	How to Monitor License Client

	Software Upgrade
	Release Notes
	Overview
	Planning a software upgrade
	Preparing the software upgrade
	Log into the standby management server (web01a/db01a).
	Log into the remaining servers

	Upgrading the sip:carrier
	Preparing for maintenance mode
	Upgrading ONLY the first standby management node "A" (web01a/db01a)
	Upgrading the standby database node "A" (db*a)
	Upgrading other standby nodes "A" (lb*a/prx*a)
	Promote ALL standby nodes "A" to active.
	Upgrading ALL standby nodes "B" (web*b/db*b/lb*b/prx*b)

	Post-upgrade steps
	Disabling maintenance mode
	Post-upgrade checks

	Backup, Recovery and Database Maintenance
	sip:carrier Backup
	What data to back up
	The built-in backup solution

	Recovery
	Reset Database
	Accounting Data (CDR) Cleanup
	Cleanuptools Configuration
	Accounting Database Cleanup
	Exported CDR Cleanup

	Platform Security, Performance and Troubleshooting
	Sipwise SSH access to sip:carrier
	Firewalling
	Firewall framework
	NGCP firewall configuration
	IPv4 System rules
	Custom rules
	Example firewall configuration section

	Password management
	The "root" account
	The "administrator" account
	The "cdrexport" account
	The MySQL "root" user
	The "ngcpsoap" account

	SSL certificates.
	Securing your sip:carrier against SIP attacks
	Denial of Service
	Bruteforcing SIP credentials

	Topology Hiding
	Introduction to Topology Hiding on NGCP
	Configuration of Topology Hiding
	Considerations for Topology Hiding

	System Requirements and Performance
	Troubleshooting
	Collecting call information from logs
	Collecting SIP traces

	Monitoring and Alerting
	Internal Monitoring
	Process monitoring via monit
	System monitoring via Telegraf
	NGCP-specific monitoring via ngcp-witnessd
	Monitoring data in InfluxDB

	Statistics Dashboard
	External Monitoring Using SNMP
	Overview and Initial Setup
	Details

	Extensions and Additional Modules
	Cloud PBX
	PBX Device Provisioning
	Preparing PBX Rewrite Rules
	Creating Customers and Pilot Subscribers
	Creating Regular PBX Subscribers
	Assigning Subscribers to a Device
	Configuring Sound Sets for the Customer PBX
	Auto-Attendant Function
	Configuring Call Queues
	Device Auto-Provisioning Security
	Device Bootstrap and Resync Workflows
	Device Provisioning and Deployment Workflows
	List of available pre-configured devices
	Phone features
	Shared line appearance

	Sipwise sip:phone App (SIP client)
	Zero Config Launcher
	Mobile Push Notification

	Lawful Interception
	Introduction
	Architecture and Configuration of LI Service
	X1, X2 and X3 Interface Specification

	3rd Party Call Control
	Introduction
	Details of Call Processing with PCC
	Voicemail Notification
	Incoming Short Message Acceptance
	Configuration of PCC
	Troubleshooting of PCC

	Basic Call Flows
	General Call Setup
	Endpoint Registration
	Basic Call
	Session Keep-Alive
	Voicebox Calls

	NGCP configs overview
	config.yml Overview
	apps
	asterisk
	autoprov
	backuptools
	bootenv
	cdrexport
	checktools
	cleanuptools
	cluster_sets
	database
	faxserver
	general
	haproxy
	heartbeat
	intercept
	kamailio
	lnpd
	mediator
	modules
	nginx
	ntp
	ossbss
	pbx (only with additional cloud PBX module installed)
	prosody
	pushd
	qos
	rate-o-mat
	redis
	reminder
	rsyslog
	rtpproxy
	security
	sems
	sms
	snmpagent
	sshd
	sudo
	voisniff
	www_admin

	constants.yml Overview
	network.yml Overview

	NGCP-Faxserver Configuration
	Faxserver Components
	Enabling Faxserver
	Fax Templates Configuration
	Fax Services Configuration per Subscriber
	Fax2Mail and SendFax Settings
	Mail2Fax Settings
	Sending Fax from Web Panel
	Faxserver Mail2Fax Configuration
	Sending Fax Using E-mail Clients
	Managing Faxes via the REST API
	Configuring Fax Settings
	Sending a Fax
	Receiving a Fax
	Configuring Mail2Fax Settings
	Using Advanced Faxserver and Mail2Fax Settings via the REST API

	Troubleshooting
	Session ID (SID)
	Fax Storage Location

	Adjusting the PBX Devices Configuration
	Setting up Device Models
	Uploading Device Firmwares
	Creating Device Configurations
	Creating Device Profiles

	RTC:engine
	Overview
	RTC:engine enabling
	Enabling services via CLI
	Enabling via Panel for resellers and subscribers
	Create RTC:engine session

	RTC:engine protocol details
	Terminology
	Messages
	Account
	Call
	Session

	comx-fileshare-service
	Overview
	Configuration and Usage
	Change authentication method
	Database Structure

	Activation of Filesharing Service on NGCP
	Message Sequence Chart
	Simple Message Sequence
	Detailed Message Sequence

	API of Filesharing Service
	HTTP Authentication
	Upload and Download with Simple Identification
	Upload and Download with Session Identification
	Curl Example for Simple Upload Request
	Upload Parameters
	Number of Possible Downloads

	NGCP Internals
	Pending reboot marker
	Redis id constants
	InfluxDB monitoring keys

	Enum preferences

